1,046
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Emerging roles of brassinosteroids and light in anthocyanin biosynthesis and ripeness of climacteric and non-climacteric fruits

ORCID Icon, , , , & ORCID Icon

References

  • An, J. P., F. J. Qu, J. F. Yao, X. N. Wang, C. X. You, X. F. Wang, and Y. J. Hao. 2017. The bZIP transcription factor MdHY5 regulates anthocyanin accumulation and nitrate assimilation in apple. Horticulture Research 4:17023. doi:10.1038/hortres.2017.23.
  • An, X. H., Y. Tian, K. Q. Chen, X. J. Liu, D. D. Liu, X. B. Xie, C. G. Cheng, P. H. Cong, and Y. J. Hao. 2015. MdMYB9 and MdMYB11 are involved in the regulation of the JA-induced biosynthesis of anthocyanin and proanthocyanidin in apples. Plant & Cell Physiology 56 (4):650–62. doi:10.1093/pcp/pcu205.
  • An, J. P., X. F. Wang, X. W. Zhang, S. Q. Bi, C. X. You, and Y. J. Hao. 2019. MdBBX22 regulates UV-B-induced anthocyanin biosynthesis through regulating the function of MdHY5 and is targeted by MdBT2 for 26S proteasome-mediated degradation. Plant Biotechnology Journal 17 (12):2231–3. doi:10.1111/pbi.13196.
  • Ayub, R. A., L. Reis, L. Bosetto, P. Z. Lopes, C. W. Galvão, and R. M. Etto. 2018. Brassinosteroid plays a role on pink stage for receptor and transcription factors involved in strawberry fruit ripening. Plant Growth Regulation 84 (1):159–67. doi:10.1007/s10725-017-0329-5.
  • Azuma, A., H. Yakushiji, Y. Koshita, and S. Kobayashi. 2012. Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions. Planta 236 (4):1067–80. doi:10.1007/s00425-012-1650-x.
  • Bai, S., T. Saito, C. Honda, Y. Hatsuyama, A. Ito, and T. Moriguchi. 2014. An apple B-box protein, MdCOL11, is involved in UV-B- and temperature-induced anthocyanin biosynthesis. Planta 240 (5):1051–62. doi:10.1007/s00425-014-2129-8.
  • Bai, S., Y. Sun, M. Qian, F. Yang, J. Ni, R. Tao, L. Lin, Q. Shu, Z. Dong, and Y. Teng. 2017. Transcriptome analysis of bagging-treated red Chinese sand pear peels reveals light-responsive pathway functions in anthocyanin accumulation. Scientific Reports 7 (1):63 doi:10.1038/s41598-017-00069-z.
  • Bai, S., R. Tao, Y. Tang, L. Yin, Y. Ma, J. Ni, X. Yan, Q. Yang, Z. Wu, Y. Zeng, et al. 2019a. BBX16, a B-box protein, positively regulates light-induced anthocyanin accumulation by activating MYB10 in red pear. Plant Biotechnology Journal 17 (10):1985–97. doi:10.1111/pbi.13114.
  • Bai, S., R. Tao, L. Yin, J. Ni, Q. Yang, X. Yan, F. Yang, X. Guo, H. Li, and Y. Teng. 2019b. Two B-box proteins, PpBBX18 and PpBBX21, antagonistically regulate anthocyanin biosynthesis via competitive association with Pyrus pyrifolia ELONGATED HYPOCOTYL 5 in the peel of pear fruit. The Plant Journal: For Cell and Molecular Biology 100 (6):1208–23. doi:10.1111/tpj.14510.
  • Blancquaert, E. H., A. Oberholster, J. M. Ricardo-da-Silva, and A. J. Deloire. 2019. Grape flavonoid evolution and composition under altered light and temperature conditions in Cabernet Sauvignon (Vitis vinifera L.). Frontiers in Plant Science 10:1062 doi:10.3389/fpls.2019.01062.
  • Bouzayen, M., Latché, A. P. Nath, J., and C. Pech. 2010. Mechanism of fruit ripening. In Plant developmental biology - biotechnological perspectives, eds. E. Pua, M. Davey, 1st ed. Heidelberg, Berlin: Springer. doi:10.1007/978-3-642-02301-9_16.
  • Chai, Y. M., Q. Zhang, L. Tian, C. L. Li, Y. Xing, L. Qin, and Y. Y. Shen. 2013. Brassinosteroid is involved in strawberry fruit ripening. Plant Growth Regulation 69 (1):63–9. doi:10.1007/s10725-012-9747-6.
  • Clouse, S. D. 2011. Brassinosteroid signal transduction: From receptor kinase activation to transcriptional networks regulating plant development. The Plant Cell 23 (4):1219–30. doi:10.1105/tpc.111.084475.
  • de Oliveira, I. R., G. R. Crizel, J. Severo, C. M. G. C. Renard, F. C. Chaves, and C. V. Rombaldi. 2016. Preharvest UV-C radiation influences physiological, biochemical, and transcriptional changes in strawberry cv. Camarosa. Plant Physiology & Biochemistry : PPB 108:391–9. doi:10.1016/j.plaphy.2016.08.012.
  • de Oliveira, A. F., L. Mercenaro, A. D. Caro, L. Pretti, and G. Nieddu. 2015. Distinctive anthocyanin accumulation responses to temperature and natural UV radiation of two field-grown (Vitis vinifera L.) cultivars. Molecules 20 (2):2061–80. doi:10.3390/molecules20022061.
  • Deluc, L., F. Barrieu, C. Marchive, V. Lauvergeat, A. Decendit, T. Richard, J. P. Carde, J. M. Mérillon, and S. Hamdi. 2006. Characterization of a grapevine R2R3-MYB transcription factor that regulates the phenylpropanoid pathway. Plant Physiology 140 (2):499–511. doi:10.1104/pp.105.067231.
  • Fang, H., Y. Dong, X. Yue, J. Hu, S. Jiang, H. Xu, Y. Wang, M. Su, J. Zhang, Z. Zhang, et al. 2019. The B-box zinc finger protein MdBBX20 integrates anthocyanin accumulation in response to ultraviolet radiation and low temperature. Plant, Cell & Environment 42 (7):2090–104. doi:10.1111/pce.13552.
  • Feng, F., M. Li, F. Ma, and L. Cheng. 2013. Phenylpropanoid metabolites and expression of key genes involved in anthocyanin biosynthesis in the shaded peel of apple fruit in response to sun exposure. Plant Physiology & Biochemistry : PPB 69:54–61. doi:10.1016/j.plaphy.2013.04.020.
  • Feng, S., S. Sun, X. Chen, S. Wu, D. Wang, and X. Chen. 2015. PyMYB10 and PyMYB10.1 interact with bHLH to enhance anthocyanin accumulation in pears. PLoS One 10 (11):e0142112 doi:10.1371/journal.pone.0142112.
  • Feng, S., Y. Wang, S. Yang, Y. Xu, and X. Chen. 2010. Anthocyanin biosynthesis in pears is regulated by a R2R3-MYB transcription factor PyMYB10. Planta 232 (1):245–55. doi:10.1007/s00425-010-1170-5.
  • Fujioka, S., and T. Yokota. 2003. Biosynthesis and metabolism of brassinosteroids. Annual Review of Plant Biology 54:137–64. doi:10.1146/annurev.arplant.54.031902.134921.
  • Gallego, M. A. G., E. G. García-Carpintero, E. Sánchez-Palomo, I. Hermosín-Gutiérrez, and M. A. G. Viñas. 2012. Study of phenolic composition and sensory properties of red grape varieties in danger of extinction from the Spanish region of Castilla-La Mancha. European Food Research & Technology 234 (2):295–303. doi:10.1007/s00217-011-1636-0.
  • Gonzalez, A., M. Zhao, J. M. Leavitt, and A. M. Lloyd. 2008. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. The Plant Journal: For Cell & Molecular Biology 53 (5):814–27. doi:10.1111/j.1365-313X.2007.03373.x.
  • Guan, L., Z. Dai, B. H. Wu, J. Wu, I. Merlin, G. Hilbert, C. Renaud, E. Gomes, E. Edwards, S. H. Li, et al. 2016. Anthocyanin biosynthesis is differentially regulated by light in the skin and flesh of white-fleshed and teinturier grape berries. Planta 243 (1):23–41. doi:10.1007/s00425-015-2391-4.
  • Guo, Y. F., W. Shan, S. M. Liang, C. J. Wu, W. Wei, J. Y. Chen, W. J. Lu, and J. F. Kuang. 2019. MaBZR1/2 act as transcriptional repressors of ethylene biosynthetic genes in banana fruit. Physiologia Plantarum 165 (3):555–68. doi:10.1111/ppl.12750.
  • Guo, X., Y. Wang, Z. Zhai, T. Huang, D. Zhao, X. Peng, C. Feng, Y. Xiao, and T. Li. 2018. Transcriptomic analysis of light-dependent anthocyanin accumulation in bicolored cherry fruits. Plant Physiology & Biochemistry : PPB 130:663–77. doi:10.1016/j.plaphy.2018.08.016.
  • He, J. X., J. M. Gendron, Y. Sun, S. S. L. Gampala, N. Gendron, C. Q. Sun, and Z. Y. Wang. 2005. BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science (New York, N.Y.) 307 (5715):1634–8. doi:10.1126/science.1107580.
  • He, F., N. N. Liang, L. Mu, Q. H. Pan, J. Wang, M. J. Reeves, and C. Q. Duan. 2012. Anthocyanins and their variation in red wines I. Monomeric anthocyanins and their Color expression. Molecules (Basel, Switzerland) 17 (2):1571–601. doi:10.3390/molecules17021571.
  • He, Y., J. Li, Q. Ban, S. Han, and J. Rao. 2018. Role of brassinosteroids in Persimmon (Diospyros kaki L.) Fruit Ripening. Journal of Agricultural & Food Chemistry 66 (11):2637–44. doi:10.1021/acs.jafc.7b06117.
  • Hu, S., L. Liu, S. Li, Z. Shao, F. Meng, H. Liu, W. Duan, D. Liang, C. Zhu, T. Xu, et al. 2020. Regulation of fruit ripening by the brassinosteroid biosynthetic gene SlCYP90B3 via an ethylene-dependent pathway in tomato. Horticulture Research 7 (1):163. doi:10.1038/s41438-020-00383-0.
  • Huai, J., Y. Jing, and R. Lin. 2020. Functional analysis of ZmCOP1 and ZmHY5 reveals conserved light signaling mechanism in maize and Arabidopsis. Physiologia Plantarum 169 (3):369–79. doi:10.1111/ppl.13099.
  • Huang, X., X. Ouyang, and X. W. Deng. 2014. Beyond repression of photomorphogenesis: Role switching of COP/DET/FUS in light signaling. Current Opinion in Plant Biology 21:96–103. doi:10.1016/j.pbi.2014.07.003.
  • Huang, D., Y. Yuan, Z. Tang, Y. Huang, C. Kang, X. Deng, and Q. Xu. 2019. Retrotransposon promoter of Ruby1 controls both light- and cold-induced accumulation of anthocyanins in blood orange. Plant, Cell & Environment 42 (11):3092–104. doi:10.1111/pce.13609.
  • Ibañez, C., C. Delker, C. Martinez, K. Bürstenbinder, P. Janitza, R. Lippmann, W. Ludwig, H. Sun, G. V. James, M. Klecker, et al. 2018. Brassinosteroids dominate hormonal regulation of plant thermomorphogenesis via BZR1. Current Biology : CB 28 (2):303–10.e3. doi:10.1016/j.cub.2017.11.077.
  • Ji, Y., Y. Qu, Z. Jiang, J. Yan, J. Chu, M. Xu, X. Su, H. Yuan, and A. Wang. 2021. The mechanism for brassinosteroids suppressing climacteric fruit ripening. Plant Physiology 185 (4):1875–93. doi:10.1093/plphys/kiab013.
  • Jia, H., S. Wang, H. Lin, T. Satio, K. Ampa, Y. Todoroki, and S. Kondo. 2018. Effects of abscisic acid agonist or antagonist applications on aroma volatiles and anthocyanin biosynthesis in grape berries. The Journal of Horticultural Science & Biotechnology 93 (4):392–9. doi:10.1080/14620316.2017.1379364.
  • Jiang, M., L. Ren, H. Lian, Y. Liu, and H. Chen. 2016. Novel insight into the mechanism underlying light-controlled anthocyanin accumulation in eggplant (Solanum melongena L.). Plant Science : An International Journal of Experimental Plant Biology 249:46–58. doi:10.1016/j.plantsci.2016.04.001.
  • Ju, Y. L., M. Liu, H. Zhao, J. F. Meng, and Y. L. Fang. 2016. Effect of exogenous abscisic acid and methyl jasmonate on anthocyanin composition, fatty acids, and volatile compounds of Cabernet Sauvignon (Vitis vinifera L.) grape berries. Molecules 21 (10):1354. doi:10.3390/molecules21101354.
  • Kadomura-Ishikawa, Y., K. Miyawaki, A. Takahashi, T. Masuda, and S. Noji. 2015. Light and abscisic acid independently regulated FaMYB10 in Fragaria × ananassa fruit. Planta 241 (4):953–65. doi:10.1007/s00425-014-2228-6.
  • Kami, C., S. Lorrain, P. Hornitschek, and C. Fankhauser. 2010. Light-regulated plant growth and development. Current Topics in Developmental Biology 91:29–66. doi:10.1016/S0070-2153(10)91002-8.
  • Kanzaki, S., A. Ichihi, Y. Tanaka, S. Fujishige, S. Koeda, and K. Shimizu. 2020. The R2R3-MYB transcription factor MiMYB1 regulates light dependent red coloration of ‘Irwin’ mango fruit skin. Scientia Horticulturae 272:109567. doi:10.1016/j.scienta.2020.109567.
  • Kim, B., Y. J. Jeong, C. Corvalán, S. Fujioka, S. Cho, T. Park, and S. Choe. 2014. Darkness and gulliver2/phyB mutation decrease the abundance of phosphorylated BZR1 to activate brassinosteroid signaling in Arabidopsis. The Plant Journal : For Cell & Molecular Biology 77 (5):737–47. doi:10.1111/tpj.12423.
  • Kondo, S., H. Tomiyama, A. Rodyoung, K. Okawa, H. Ohara, S. Sugaya, N. Terahara, and N. Hirai. 2014. Abscisic acid metabolism and anthocyanin synthesis in grape skin are affected by light emitting diode (LED) irradiation at night. Journal of Plant Physiology 171 (10):823–9. doi:10.1016/j.jplph.2014.01.001.
  • Lai, B., X. J. Li, B. Hu, Y. H. Qin, X. M. Huang, H. C. Wang, and G. B. Hu. 2014. LcMYB1 is a key determinant of differential anthocyanin accumulation among genotypes, tissues, developmental phases and ABA and light stimuli in Litchi chinensis. PLoS One 9 (1):e86293 doi:10.1371/journal.pone.0086293.
  • Li, J. 2010. Regulation of the nuclear activities of brassinosteroid signaling. Current Opinion in Plant Biology 13 (5):540–7. doi:10.1016/j.pbi.2010.08.007.
  • Liang, D., T. Zhu, Q. Deng, L. Lin, Y. Tang, J. Wang, X. Wang, X. Luo, H. Zhang, X. Lv, et al. 2020. PacCOP1 negatively regulates anthocyanin biosynthesis in sweet cherry (Prunus avium L.). Journal of Photochemistry & Photobiology. B, Biology 203:111779 doi:10.1016/j.jphotobiol.2020.111779.
  • Li, Q. F., and J. X. He. 2016. BZR1 interacts with HY5 to mediate brassinosteroid- and light-regulated cotyledon opening in Arabidopsis in darkness. Molecular Plant 9 (1):113–25. doi:10.1016/j.molp.2015.08.014.
  • Li, C., H. Jia, Y. Chai, and Y. Shen. 2011. Abscisic acid perception and signaling transduction in strawberry: A model for non-climacteric fruit ripening. Plant Signaling & Behavior 6 (12):1950–3. doi:10.4161/psb.6.12.18024.
  • Li, Q. F., J. Lu, J. W. Yu, C. Q. Zhang, J. X. He, and Q. Q. Liu. 2018. The brassinosteroid-regulated transcription factors BZR1/BES1 function as a coordinator in multisignal-regulated plant growth. Biochimica et Biophysica Acta. Gene Regulatory Mechanisms 1861 (6):561–71. doi:10.1016/j.bbagrm.2018.04.003.
  • Li, Y. Y., K. Mao, C. Zhao, X. Y. Zhao, H. L. Zhang, H. R. Shu, and Y. J. Hao. 2012. MdCOP1 ubiquitin E3 ligases interact with MdMYB1 to regulate light-induced anthocyanin biosynthesis and red fruit coloration in apple. Plant Physiology 160 (2):1011–22. doi:10.1104/pp.112.199703.
  • Li, J., P. Nagpal, V. Vitart, T. C. McMorris, and J. Chory. 1996. A role for brassinosteroids in light-dependent development of Arabidopsis. Science (New York, N.Y.) 272 (5260):398–401. doi:10.1126/science.272.5260.398.
  • Li, Y., X. Qi, W. Cui, M. Lin, C. Qiao, Y. Zhong, J. Fang, and C. Hu. 2021. Restraint of bagging on fruit skin coloration in on-tree kiwifruit (Actinidia arguta). Journal of Plant Growth Regulation 40 (2):603–16. doi:10.1007/s00344-020-10124-1.(49).
  • Li, J., W. Terzaghi, Y. Gong, C. Li, J. J. Ling, Y. Fan, N. Qin, X. Gong, D. Zhu, and X. W. Deng. 2020a. Modulation of BIN2 kinase activity by HY5 controls hypocotyl elongation in the light. Nature Communications 11 (1):1592 doi:10.1038/s41467-020-15394-7.
  • Li, Y., P. Xu, G. Chen, J. Wu, Z. Liu, and H. Lian. 2020b. FvbHLH9 functions as a positive regulator of anthocyanin biosynthesis by forming a HY5-bHLH9 transcription complex in strawberry fruits. Plant & Cell Physiology 61 (4):826–37. doi:10.1093/pcp/pcaa010.
  • Li, H., K. Ye, Y. Shi, J. Cheng, X. Zhang, and S. Yang. 2017. BZR1 positively regulates freezing tolerance via CBF-dependent and CBF-independent pathways in Arabidopsis. Molecular Plant 10 (4):545–59. doi:10.1016/j.molp.2017.01.004.
  • Liu, L., C. Jia, M. Zhang, D. Chen, S. Chen, R. Guo, D. Guo, and Q. Wang. 2014. Ectopic expression of a BZR1-1D transcription factor in brassinosteroid signalling enhances carotenoid accumulation and fruit quality attributes in tomato. Plant Biotechnology Journal 12 (1):105–15. doi:10.1111/pbi.12121.
  • Liu, M., C. Song, M. Chi, T. Wang, L. Zuo, X. Li, Z. Zhang, and Z. Xi. 2016. The effects of light and ethylene and their interaction on the regulation of proanthocyanidin and anthocyanin synthesis in the skins of Vitis vinifera berries. Plant Growth Regulation 79 (3):377–90. doi:10.1007/s10725-015-0141-z.
  • Liu, W., Y. Wang, J. Sun, H. Jiang, H. Xu, N. Wang, S. Jiang, H. Fang, Z. Zhang, Y. L. Wang, et al. 2019. MdMYBDL1 employed by MdHY5 increases anthocyanin accumulation via repression of MdMYB16/308 in apple. Plant Science : An International Journal of Experimental Plant Biology 283:32–40. doi:10.1016/j.plantsci.2019.01.016.
  • Lorenzis, G. D., L. Rustioni, S. G. Parisi, F. Zoli, and L. Brancadoro. 2016. Anthocyanin biosynthesis during berry development in corvina grape. Scientia Horticulturae 212:74–48. doi:10.1016/j.scienta.2016.09.039.
  • Loyola, R., D. Herrera, A. Mas, D. C. J. Wong, J. Höll, E. Cavallini, A. Amato, A. Azuma, T. Ziegler, F. Aquea, et al. 2016. The photomorphogenic factors UV-B RECEPTOR 1, ELONGATED HYPOCOTYL 5, and HY5 HOMOLOGUE are part of the UV-B signalling pathway in grapevine and mediate flavonol accumulation in response to the environment. Journal of Experimental Botany 67 (18):5429–45. doi:10.1093/jxb/erw307.
  • Lu, Y., M. Zhang, X. Meng, H. Wan, J. Zhang, J. Tian, S. Hao, K. Jin, and Y. Yao. 2015. Photoperiod and shading regulate coloration and anthocyanin accumulation in the leaves of malus crabapples. Plant Cell, Tissue & Organ Culture (PCTOC) 121 (3):619–32. doi:10.1007/s11240-015-0733-3.
  • Luan, L. Y., Z. W. Zhang, Z. M. Xi, S. S. Huo, and L. N. Ma. 2016. Brassinosteroids regulate anthocyanin biosynthesis in the ripening of grape berries. South African Journal of Enology & Viticulture 34 (2):196–203. doi:10.21548/34-2-1094.
  • Luo, X. M., W. H. Lin, S. Zhu, J. Y. Zhu, Y. Sun, X. Y. Fan, M. Cheng, Y. Hao, E. Oh, M. Tian, et al. 2010. Integration of light- and brassinosteroid-signaling pathways by a GATA transcription factor in Arabidopsis. Developmental Cell 19 (6):872–83. doi:10.1016/j.devcel.2010.10.023.
  • Ma, Z. H., W. F. Li, J. Mao, W. Li, C. W. Zuo, X. Zhao, M. M. Dawuda, X. Y. Shi, and B. H. Chen. 2019. Synthesis of light-inducible and light-independent anthocyanins regulated by specific genes in grape ‘Marselan’ (V. vinifera L.)). Peerj. 7:e6521 doi:10.7717/peerj.6521.
  • Ma, H., T. Yang, Y. Li, J. Zhang, T. Wu, T. Song, Y. Yao, and J. Tian. 2021. The long noncoding RNA MdLNC499 bridges MdWRKY1 and MdERF109 function to regulate early-stage light-induced anthocyanin accumulation in apple fruit. The Plant Cell 33 (10):3309–22. doi:10.1093/plcell/koab188.
  • Maier, A., A. Schrader, L. Kokkelink, C. Falke, B. Welter, E. Iniesto, V. Rubio, J. F. Uhrig, M. Hülskamp, and U. Hoecker. 2013. Light and the E3 ubiquitin ligase COP1/SPA control the protein stability of the MYB transcription factors PAP1 and PAP2 involved in anthocyanin accumulation in Arabidopsis. The Plant Journal: For Cell & Molecular Biology 74 (4):638–51. doi:10.1111/tpj.12153.
  • Martínez-Lüscher, J., M. Sánchez-Díaz, S. Delrot, J. Aguirreolea, I. Pascual, and E. Gomès. 2014. Ultraviolet-B radiation and water deficit interact to alter flavonol and anthocyanin profiles in grapevine berries through transcriptomic regulation. Plant & Cell Physiology 55 (11):1925–36. doi:10.1093/pcp/pcu121.
  • Miao, L., Y. Zhang, X. Yang, J. Xiao, H. Zhang, Z. Zhang, Y. Wang, and G. Jiang. 2016. Colored light-quality selective plastic films affect anthocyanin content, enzyme activities, and the expression of flavonoid genes in strawberry (Fragaria × ananassa) fruit. Food Chemistry 207:93–100. doi:10.1016/j.foodchem.2016.02.077.
  • Nam, K. H., and J. Li. 2002. BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell 110 (2):203–12. doi:10.1016/S0092-8674(02)00814-0.
  • Nguyen, C. T., S. Lim, J. G. Lee, and E. J. Lee. 2017. VcBBX, VcMYB21, and VcR2R3MYB transcription factors are involved in UV-B-induced anthocyanin biosynthesis in the peel of harvested blueberry fruit. Journal of Agricultural & Food Chemistry 65 (10):2066–73. doi:10.1021/acs.jafc.6b05253.
  • Niu, S. S., C. J. Xu, W. S. Zhang, B. Zhang, X. Li, K. Lin-Wang, I. B. Ferguson, A. C. Allan, and K. S. Chen. 2010. Coordinated regulation of anthocyanin biosynthesis in Chinese bayberry (Myrica rubra) fruit by a R2R3 MYB transcription factor. Planta 231 (4):887–99. doi:10.1007/s00425-009-1095-z.
  • Nolan, T. M., N. Vukasinovic, D. Liu, E. Russinova, and Y. Yin. 2020. Brassinosteroids: Multidimensional regulators of plant growth, development, and stress responses. The Plant Cell 32 (2):295–318. doi:10.1105/tpc.19.00335.
  • Ohnishi, T. 2018. Recent advances in brassinosteroid biosynthetic pathway: Insight into novel brassinosteroid shortcut pathway. Journal of Pesticide Science 43 (3):159–67. doi:10.1584/jpestics.D18-040.
  • Onik, J. C., X. Hu, Q. Lin, and Z. Wang. 2018. Comparative transcriptomic profiling to understand pre- and post-ripening hormonal regulations and anthocyanin biosynthesis in early ripening apple fruit. Molecules 23 (8):1908. doi:10.3390/molecules23081908.
  • Ravindran, N., H. Ramachandran, N. Job, A. Yadav, K. P. Vaishak, and S. Datta. 2021. B-box protein BBX32 integrates light and brassinosteroid signals to inhibit cotyledon opening. Plant Physiology 187 (1):446–61. doi:10.1093/plphys/kiab304.
  • Reshef, N., N. Agam, and A. Fait. 2018. Grape berry acclimation to excessive solar irradiance leads to repartitioning between major flavonoid groups. Journal of Agricultural & Food Chemistry 66 (14):3624–36. doi:10.1021/acs.jafc.7b04881.
  • Rizzini, L., J.-J. Favory, C. Cloix, D. Faggionato, A. O’Hara, E. Kaiserli, R. Baumeister, E. Schäfer, F. Nagy, G. I. Jenkins, et al. 2011. Perception of UV-B by the Arabidopsis UVR8 protein. Science (New York, N.Y.) 332 (6025):103–6. doi:10.1126/science.1200660.
  • Rudell, D. R., J. P. Mattheis, X. Fan, and J. K. Fellman. 2002. Methyl jasmonate enhances anthocyanin accumulation and modifies production of phenolics and pigments in ‘Fuji’ apples. Journal of the American Society for Horticultural Science 127 (3):435–41. doi:10.21273/JASHS.127.3.435.
  • Samkumar, A., D. Jones, K. Karppinen, A. P. Dare, N. Sipari, R. V. Espley, I. Martinussen, and L. Jaakola. 2021. Red and blue light treatments of ripening bilberry fruits reveal differences in signalling through abscisic acid-regulated anthocyanin biosynthesis. Plant Cell & Environment 44 (10):3227–3245. doi:10.1111/pce.14158.
  • Shan, W., Y. F. Guo, W. Wei, J. Y. Chen, W. J. Lu, D. B. Yuan, X. G. Su, and J. F. Kuang. 2020. Banana MaBZR1/2 associate with MaMPK14 to modulate cell wall modifying genes during fruit ripening. Plant Cell Reports 39 (1):35–46. doi:10.1007/s00299-019-02471-5.
  • Shin, J., E. Park, and G. Choi. 2007. PIF3 regulates anthocyanin biosynthesis in an HY5-dependent manner with both factors directly binding anthocyanin biosynthetic gene promoters in Arabidopsis. The Plant Journal: For Cell & Molecular Biology 49 (6):981–94. doi:10.1111/j.1365-313X.2006.03021.x.
  • Song, J., K. Cao, Y. Hao, S. Song, W. Su, and H. Liu. 2019. Hypocotyl elongation is regulated by supplemental blue and red light in cucumber seedling. Gene 707:117–25. doi:10.1016/j.gene.2019.04.070.
  • Soubeyrand, E., C. Basteau, G. Hilbert, C. van Leeuwen, S. Delrot, and E. Gomes. 2014. Nitrogen supply affects anthocyanin biosynthetic and regulatory genes in grapevine cv. Cabernet-Sauvignon berries. Phytochemistry 103:38–49. doi:10.1016/j.phytochem.2014.03.024.
  • Stracke, R., J. J. Favory, H. Gruber, L. Bartelniewoehner, S. Bartels, M. Binkert, M. Funk, B. Weisshaar, and R. Ulm. 2010. The Arabidopsis bZIP transcription factor HY5 regulates expression of the PFG1/MYB12 gene in response to light and ultraviolet-B radiation. Plant, Cell & Environment 33 (1):88–103. doi:10.1111/j.1365-3040.2009.02061.x.
  • Sun, R. Z., G. Cheng, Q. Li, Y. R. Zhu, X. Zhang, Y. Wang, Y. N. He, S. Y. Li, L. He, W. Chen, et al. 2019. Comparative physiological, metabolomic, and transcriptomic analyses reveal developmental stage-dependent effects of cluster bagging on phenolic metabolism in Cabernet Sauvignon grape berries. BMC Plant Biology 19 (1):583 doi:10.1186/s12870-019-2186-z.
  • Sun, Y., X. Y. Fan, D. M. Cao, W. Tang, K. He, J. Y. Zhu, J. X. He, M. Y. Bai, S. Zhu, E. Oh, et al. 2010. Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Developmental Cell 19 (5):765–77. doi:10.1016/j.devcel.2010.10.010.
  • Sun, L., S. Li, X. Tang, X. Fan, Y. Zhang, J. Jiang, J. Liu, and C. Liu. 2020. Transcriptome analysis reveal the putative genes involved in light-induced anthocyanin accumulation in grape ‘Red Globe’ (V. vinifera L.).). Gene 728:144284 doi:10.1016/j.gene.2019.144284.
  • Sun, J., Y. Wang, X. Chen, X. Gong, N. Wang, L. Ma, Y. Qiu, Y. Wang, and S. Feng. 2017. Effects of methyl jasmonate and abscisic acid on anthocyanin biosynthesis in callus cultures of red-fleshed apple (Malus sieversii f. niedzwetzkyana). Plant Cell, Tissue & Organ Culture (PCTOC) 130 (2):227–37. doi:10.1007/s11240-017-1217-4.
  • Symons, G. M., C. Davies, Y. Shavrukov, I. B. Dry, J. B. Reid, and M. R. Thomas. 2006. Grapes on steroids. Brassinosteroids are involved in grape berry ripening. Plant Physiology 140 (1):150–8. doi:10.1104/pp.105.070706.
  • Takos, A. M., F. W. Jaffé, S. R. Jacob, J. Bogs, S. P. Robinson, and A. R. Walker. 2006. Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiology 142 (3):1216–32. doi:10.1104/pp.106.088104.
  • Tang, W., Z. Deng, and Z. Y. Wang. 2010. Proteomics shed light on the brassinosteroid signaling mechanisms. Current Opinion in Plant Biology 13 (1):27–33. doi:10.1016/j.pbi.2009.10.007.
  • Tao, R., S. Bai, J. Ni, Q. Yang, Y. Zhao, and Y. Teng. 2018. The blue light signal transduction pathway is involved in anthocyanin accumulation in ‘Red Zaosu’ pear. Planta 248 (1):37–48. doi:10.1007/s00425-018-2877-y.
  • Ulm, R., A. Baumann, A. Oravecz, Z. Máté, E. Adám, E. J. Oakeley, E. Schäfer, and F. Nagy. 2004. Genome-wide analysis of gene expression reveals function of the bZIP transcription factor HY5 in the UV-B response of Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 101 (5):1397–402. doi:10.1073/pnas.0308044100.
  • Vardhini, B. V., and S. S. R. Rao. 2002. Acceleration of ripening of tomato pericarp discs by brassinosteroids. Phytochemistry 61 (7):843–7. doi:10.1016/S0031-9422(02)00223-6.
  • Vergara, A. E., K. Díaz, R. Carvajal, L. Espinoza, J. A. Alcalde, and A. G. Pérez-Donos. 2018. Exogenous applications of brassinosteroids improve color of red table grape (Vitis vinifera L. Cv. “ "Redglobe") Berries”). Frontiers in Plant Science 9:363 doi:10.3389/fpls.2018.00363.
  • Wang, Z. Y., M. Y. Bai, E. Oh, and J. Y. Zhu. 2012. Brassinosteroid signaling network and regulation of photomorphogenesis. Annual Review of Genetics 46 (1):701–24. doi:10.1146/annurev-genet-102209-163450.
  • Wang, Z. Y., T. Nakano, J. Gendron, J. He, M. Chen, D. Vafeados, Y. Yang, S. Fujioka, S. Yoshida, T. Asami, et al. 2002. Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Developmental Cell 2 (4):505–13. (02)00153-3. doi:10.1016/s1534-5807.
  • Wang, Y., X. Zhang, Y. Zhao, J. Yang, Y. He, G. Li, W. Ma, X. Huang, and J. Su. 2020. Transcription factor PyHY5 binds to the promoters of PyWD40 and PyMYB10 and regulates its expression in red pear ‘Yunhongli No. 1’.Plant Physiology & Biochemistry 154:665–74. doi:10.1016/j.plaphy.2020.07.008.
  • Wei, T., C. Wang, T. Qi, Z. An, M. Wu, L. Qu, J. Li, Y. Wen, Q. Shi, R. Zhai, et al. 2020. Effect of natural light on the phenolic compounds contents and coloration in the peel of ‘Xiyanghong’ (Pyrus bretschneideri × Pyrus communis). Scientia Horticulturae 266:109052. doi:10.1016/j.scienta.2019.109052.
  • Wu, M., M. Si, X. Li, L. Song, J. Liu, R. Zhai, L. Cong, R. Yue, C. Yang, F. Ma, et al. 2019. PbCOP1.1 Contributes to the negative regulation of anthocyanin biosynthesis in pear. Plants 8 (2):39. doi:10.3390/plants8020039.
  • Xi, W., J. Feng, Y. Liu, S. Zhang, and G. Zhao. 2019. The R2R3-MYB transcription factor PaMYB10 is involved in anthocyanin biosynthesis in apricots and determines red blushed skin. BMC Plant Biology 19 (1):287 doi:10.1186/s12870-019-1898-4.
  • Xi, Z. M., Z. W. Zhang, S. S. Huo, L. Y. Luan, X. Gao, L. N. Ma, and Y. L. Fang. 2013. Regulating the secondary metabolism in grape berry using exogenous 24-epibrassinolide for enhanced phenolics content and antioxidant capacity. Food Chemistry 141 (3):3056–65. doi:10.1016/j.foodchem.2013.05.137.
  • Xie, X.-B., S. Li, R.-F. Zhang, J. Zhao, Y.-C. Chen, Q. Zhao, Y.-X. Yao, C.-X. You, X.-S. Zhang, and Y.-J. Hao. 2012. The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples. Plant, Cell & Environment 35 (11):1884–97. doi:10.1111/j.1365-3040.2012.02523.x.
  • Xu, F., S. Cao, L. Shi, W. Chen, X. Su, and Z. Yang. 2014. Blue light irradiation affects anthocyanin content and enzyme activities involved in postharvest strawberry fruit. Journal of Agricultural & Food Chemistry 62 (20):4778–83. doi:10.1021/jf501120u.
  • Xu, F., X. Gao, Z. M. Xi, H. Zhang, X. Q. Peng, Z. Z. Wang, T. M. Wang, and Y. Meng. 2015a. Application of exogenous 24-epibrassinolide enhances proanthocyanidin biosynthesis in Vitis vinifera ‘Cabernet Sauvignon’ berry skin. Plant Growth Regulation 75 (3):741–50. doi:10.1007/s10725-014-9976-y.
  • Xu, X., I. Paik, L. Zhu, and E. Huq. 2015b. Illuminating progress in phytochrome-mediated light signaling pathways. Trends in Plant Science 20 (10):641–50. doi:10.1016/j.tplants.2015.06.010.
  • Xu, P., C. Zawora, Y. Li, J. Wu, L. Liu, Z. Liu, R. Cai, and H. Lian. 2018. Transcriptome sequencing reveals role of light in promoting anthocyanin accumulation of strawberry fruit. Plant Growth Regulation 86 (1):121–32. doi:10.1007/s10725-018-0415-3.
  • Yang, J., B. Li, W. Shi, Z. Gong, L. Chen, and Z. Hou. 2018. Transcriptional activation of anthocyanin biosynthesis in developing fruit of blueberries ( Vaccinium corymbosum L.) by Preharvest and Postharvest UV Irradiation. Journal of Agricultural & Food Chemistry 66 (42):10931–42. doi:10.1021/acs.jafc.8b03081.
  • Yang, J., W. Shi, B. Li, Y. Bai, and Z. Hou. 2019. Preharvest and postharvest UV radiation affected flavonoid metabolism and antioxidant capacity differently in developing blueberries (Vaccinium corymbosum L.). Food Chemistry 301:125248 doi:10.1016/j.foodchem.2019.125248.
  • Yang, M., and X. Wang. 2017. Multiple ways of BES1/BZR1 degradation to decode distinct developmental and environmental cues in plants. Molecular Plant 10 (7):915–7. doi:10.1016/j.molp.2017.06.005.
  • Yang, C. J., C. Zhang, Y. N. Lu, J. Q. Jin, and X. L. Wang. 2011. The mechanisms of brassinosteroids’ action: From signal transduction to plant development. Molecular Plant 4 (4):588–600. doi:10.1093/mp/ssr020.
  • Ye, H., L. Li, and Y. Yin. 2011. Recent advances in the regulation of brassinosteroid signaling and biosynthesis pathways. Journal of Integrative Plant Biology 53 (6):455–68. doi:10.1111/j.1744-7909.2011.01046.x.
  • Yin, Y., D. Vafeados, Y. Tao, S. Yoshida, T. Asami, and J. Chory. 2005. A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis. Cell 120 (2):249–59. doi:10.1016/j.cell.2004.11.044.
  • Yu, X., L. Li, J. Zola, M. Aluru, H. Ye, A. Foudree, H. Guo, S. Anderson, S. Aluru, P. Liu, et al. 2011. A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana. The Plant Journal : For Cell & Molecular Biology 65 (4):634–46. doi:10.1111/j.1365-313X.2010.04449.x.
  • Yu, M., Y. Man, and Y. Wang. 2019. Light- and temperature-induced expression of an R2R3-MYB gene regulates anthocyanin biosynthesis in red-fleshed kiwifruit. International Journal of Molecular Sciences 20 (20):5228. doi:10.3390/ijms20205228.
  • Yue, P., Q. Lu, Z. Liu, T. Lv, X. Li, H. Bu, W. Liu, Y. Xu, H. Yuan, and A. Wang. 2020. Auxin-activated MdARF5 induces the expression of ethylene biosynthetic genes to initiate apple fruit ripening. The New Phytologist 226 (6):1781–95. doi:10.1111/nph.16500.
  • Zaharah, S. S., Z. Singh, G. M. Symons, and J. B. Reid. 2012. Role of brassinosteroids, ethylene, abscisic acid, and indole-3-acetic acid in mango fruit ripening. Journal of Plant Growth Regulation 31 (3):363–72. doi:10.1007/s00344-011-9245-5.
  • Zhang, Y., L. Jiang, Y. Li, Q. Chen, Y. Ye, Y. Zhang, Y. Luo, B. Sun, X. Wang, and H. Tang. 2018. Effect of red and blue light on anthocyanin accumulation and differential gene expression in strawberry (Fragaria x ananassa). Molecules 23 (4):820. doi:10.3390/molecules23040820.
  • Zhang, H. N., W. C. Li, H. C. Wang, S. Y. Shi, B. Shu, L. Q. Liu, Y. Z. Wei, and J. H. Xie. 2016. Transcriptome profiling of light-regulated anthocyanin biosynthesis in the pericarp of litchi. Frontiers in Plant Science 7:963 doi:10.3389/fpls.2016.00963.
  • Zhang, X., and R. Lin. 2017. Light signaling differentially regulates the expression of group IV of the B-box zinc finger family. Plant Signaling & Behavior 12 (9):e1365213 doi:10.1080/15592324.2017.1365213.
  • Zhao, B., and J. Li. 2012. Regulation of brassinosteroid biosynthesis and inactivationf. Journal of Integrative Plant Biology 54 (10):746–59. doi:10.1111/j.1744-7909.2012.01168.x.
  • Zheng, J., Y. An, and L. Wang. 2018. 24-Epibrassinolide enhances 5-ALA-induced anthocyanin and flavonol accumulation in calli of ‘Fuji’ apple flesh. Plant Cell, Tissue & Organ Culture (PCTOC) 134 (2):319–30. doi:10.1007/s11240-018-1418-5.
  • Zhou, Y., C. Yuan, S. Ruan, Z. Zhang, J. Meng, and Z. Xi. 2018. Exogenous 24-epibrassinolide interacts with light to regulate anthocyanin and proanthocyanidin biosynthesis in Cabernet Sauvignon (Vitis vinifera L.). Molecules 23 (1):93. doi:10.3390/molecules23010093.
  • Zhou, H., L. Zhao, Q. Yang, M. H. Amar, C. Ogutu, Q. Peng, L. Liao, J. Zhang, and Y. Han. 2020. Identification of EIL and ERF genes related to fruit ripening in peach. International Journal of Molecular Sciences 21 (8):2846. doi:10.3390/ijms21082846.
  • Zhu, T., W. R. Tan, X. G. Deng, T. Zheng, D. W. Zhang, and H. H. Lin. 2015. Effects of brassinosteroids on quality attributes and ethylene synthesis in postharvest tomato fruit. Postharvest Biology & Technology 100:196–204. doi:10.1016/j.postharvbio.2014.09.016.
  • Zhu, Z., Z. Zhang, G. Qin, and S. Tian. 2010. Effects of brassinosteroids on postharvest disease and senescence of jujube fruit in storage. Postharvest Biology & Technology 56 (1):50–5. doi:10.1016/j.postharvbio.2009.11.014.
  • Zoratti, L., K. Karppinen, A. L. Escobar, H. Häggman, and L. Jaakola. 2014. Light-controlled flavonoid biosynthesis in fruits. Frontiers in Plant Science 5:534 doi:10.3389/fpls.2014.00534.
  • Zullo, M. A. T., and G. Adam. 2002. Brassinosteroid phytohormones-structure, bioactivity and applications. Brazilian Journal of Plant Physiology 14 (3):143–81. doi:10.1590/S1677-04202002000300001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.