3,193
Views
7
CrossRef citations to date
0
Altmetric
Reviews

Plant protein-based fibers: Fabrication, characterization, and potential food applications

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Aceituno-Medina, M., A. Lopez-Rubio, S. Mendoza, and J. M. Lagaron. 2013a. Development of novel ultrathin structures based in amaranth (Amaranthus hypochondriacus) protein isolate through electrospinning. Food Hydrocolloids 31 (2):289–98. doi: 10.1016/j.foodhyd.2012.11.009.
  • Aceituno-Medina, M., S. Mendoza, J. M. Lagaron, and A. López-Rubio. 2013b. Development and characterization of food-grade electrospun fibers from amaranth protein and pullulan blends. Food Research International 54 (1):667–74. doi: 10.1016/j.foodres.2013.07.055.
  • Aghaei, Z., B. Ghorani, B. Emadzadeh, R. Kadkhodaee, and N. Tucker. 2020. Protein-based halochromic electrospun nanosensor for monitoring trout fish freshness. Food Control 111:107065. doi: 10.1016/j.foodcont.2019.107065.
  • Aguilar-Vázquez, G., G. Loarca-Piña, J. D. Figueroa-Cárdenas, and S. Mendoza. 2018. Electrospun fibers from blends of pea (Pisum sativum) protein and pullulan. Food Hydrocolloids 83:173–81. doi: 10.1016/j.foodhyd.2018.04.051.
  • Akkermans, C., A. J. Van der Goot, P. Venema, E. Van der Linden, and R. M. Boom. 2008. Properties of protein fibrils in whey protein isolate solutions: Microstructure, flow behaviour and gelation. International Dairy Journal 18 (10–11):1034–42. doi: 10.1016/j.idairyj.2008.05.006.
  • Akkermans, C., A. J. Van der Goot, P. Venema, H. Gruppen, J. M. Vereijken, E. Van der Linden, and R. M. Bloom. 2007. Micrometer-sized fibrillar protein aggregates from soy glycinin and soy protein isolate. Journal of Agricultural and Food Chemistry 55 (24):9877–82. doi: 10.1021/jf0718897.
  • Akman, P. K., F. Bozkurt, M. Balubaid, and M. T. Yilmaz. 2019. Fabrication of curcumin-loaded gliadin electrospun nanofibrous structures and bioactive properties. Fibers and Polymers 20 (6):1187–99. doi: 10.1007/s12221-019-8950-8.
  • Alehosseini, A., L. G. Gómez-Mascaraque, M. Martínez-Sanz, and A. López-Rubio. 2019. Electrospun curcumin-loaded protein nanofiber mats as active/bioactive coatings for food packaging applications. Food Hydrocolloids 87:758–71. doi: 10.1016/j.foodhyd.2018.08.056.
  • Altan, A., Z. Aytac, and T. Uyar. 2018. Carvacrol loaded electrospun fibrous films from zein and poly (lactic acid) for active food packaging. Food Hydrocolloids 81:48–59. doi: 10.1016/j.foodhyd.2018.02.028.
  • An, B., X. Wu, M. Li, Y. Chen, F. Li, X. Yan, J. Wang, C. Li, and C. Brennan. 2016. Hydrophobicity-modulating self-assembled morphologies of α-zein in aqueous ethanol. International Journal of Food Science & Technology 51 (12):2621–9. doi: 10.1111/ijfs.13248.
  • Beniwal, A. S., J. Singh, L. Kaur, A. Hardacre, and H. Singh. 2021. Meat analogs: Protein restructuring during thermomechanical processing. Comprehensive Reviews in Food Science and Food Safety 20 (2):1221–49. doi: 10.1111/1541-4337.12721.
  • Blanco-Padilla, A., A. López-Rubio, G. Loarca-Pina, L. G. Gómez-Mascaraque, and S. Mendoza. 2015. Characterization, release and antioxidant activity of curcumin-loaded amaranth-pullulan electrospun fibers. Lwt - Food Science and Technology 63 (2):1137–44. doi: 10.1016/j.lwt.2015.03.081.
  • Boy, R., M. Bourham, and R. Kotek. 2016. Properties of cellulose–soy protein blend biofibers regenerated from an amine/salt solvent system. Cellulose 23 (6):3747–59. doi: 10.1007/s10570-016-1072-1.
  • Brooks, M. M. 2009. Regenerated protein fibres: A preliminary review. Vol. 2 of Handbook of textile fibre structure. 1st ed. Cambridge: Woodhead Publishing.
  • Bruni, G. P., J. P. de Oliveira, L. G. Gómez-Mascaraque, M. J. Fabra, V. G. Martins, E. d Rosa Zavareze, and A. López-Rubio. 2020. Electrospun β-carotene–loaded SPI: PVA fiber mats produced by emulsion-electrospinning as bioactive coatings for food packaging. Food Packaging and Shelf Life 23:100426. doi: 10.1016/j.fpsl.2019.100426.
  • Cao, Y., and R. Mezzenga. 2019. Food protein amyloid fibrils: Origin, structure, formation, characterization, applications and health implications. Advances in Colloid and Interface Science 269:334–56. doi: 10.1016/j.cis.2019.05.002.
  • Chaunier, L., S. Guessasma, S. Belhabib, G. D. Valle, D. Lourdin, and E. Leroy. 2018. Material extrusion of plant biopolymers: Opportunities & challenges for 3D printing. Additive Manufacturing 21:220–33. doi: 10.1016/j.addma.2018.03.016.
  • Chen, D., F. Fang, E. Federici, O. Campanella, and O. G. Jones. 2020b. Rheology, microstructure and phase behavior of potato starch-protein fibril mixed gel. Carbohydrate Polymers 239:116247. doi: 10.1016/j.carbpol.2020.116247.
  • Chen, D., N. Narayanan, E. Federici, Z. Yang, X. Zuo, J. Gao, F. Fang, M. Deng, O. Campanella, and O. G. Jones. 2020a. Electrospinning induced orientation of protein fibrils. Biomacromolecules 21 (7):2772–85. doi: 10.1021/acs.biomac.0c00500.
  • Chiang, J. H., A. K. Hardacre, and M. E. Parker. 2020. Extruded meat alternatives made from Maillard‐reacted beef bone hydrolysate and plant proteins: Part I–Effect of moisture content. International Journal of Food Science & Technology 55 (2):649–59. doi: 10.1111/ijfs.14319.
  • Chiang, J. H., S. M. Loveday, A. K. Hardacre, and M. E. Parker. 2019. Effects of soy protein to wheat gluten ratio on the physicochemical properties of extruded meat analogues. Food Structure 19:100102. doi: 10.1016/j.foostr.2018.11.002.
  • Clemons, C. 2016. Nanocellulose in spun continuous fibers: A review and future outlook. Journal of Renewable Materials 4 (5):327–39. doi: 10.7569/JRM.2016.634112.
  • Colombo, A., P. D. Ribotta, and A. E. LEOn. 2010. Differential scanning calorimetry (DSC) studies on the thermal properties of peanut proteins. Journal of Agricultural and Food Chemistry 58 (7):4434–9. doi: 10.1021/jf903426f.
  • Daristotle, J. L., A. M. Behrens, A. D. Sandler, and P. Kofinas. 2016. A review of the fundamental principles and applications of solution blow spinning. ACS Applied Materials & Interfaces 8 (51):34951–63. doi: 10.1021/acsami.6b12994.
  • Day, L. 2013. Proteins from land plants–potential resources for human nutrition and food security. Trends in Food Science & Technology 32 (1):25–42. doi: 10.1016/j.tifs.2013.05.005.
  • DeFrates, K. G., R. Moore, J. Borgesi, G. Lin, T. Mulderig, V. Beachley, and X. Hu. 2018. Protein-based fiber materials in medicine: A review. Nanomaterials 8 (7):457. doi: 10.3390/nano8070457.
  • Dehle, F. C., H. Ecroyd, I. F. Musgrave, and J. A. Carver. 2010. αB-Crystallin inhibits the cell toxicity associated with amyloid fibril formation by κ-casein and the amyloid-β peptide. Cell Stress & Chaperones 15 (6):1013–26. doi: 10.1007/s12192-010-0212-z.
  • Dekkers, B. L., C. V. Nikiforidis, and A. J. van der Goot. 2016. Shear-induced fibrous structure formation from a pectin/SPI blend. Innovative Food Science & Emerging Technologies 36:193–200. doi: 10.1016/j.ifset.2016.07.003.
  • Dekkers, B. L., R. Hamoen, R. M. Boom, and A. J. van der Goot. 2018. Understanding fiber formation in a concentrated soy protein isolate-pectin blend. Journal of Food Engineering 222:84–92. doi: 10.1016/j.jfoodeng.2017.11.014.
  • del Carmen Fernández-Alonso, M., D. Díaz, M. Á. Berbis, F. Marcelo, J. Cañada, and J. Jiménez-Barbero. 2012. Protein-carbohydrate interactions studied by NMR: From molecular recognition to drug design. Current Protein & Peptide Science 13 (8):816–30. doi: 10.2174/138920312804871175.
  • Deng, L., X. Kang, Y. Liu, F. Feng, and H. Zhang. 2018. Characterization of gelatin/zein films fabricated by electrospinning vs solvent casting. Food Hydrocolloids 74:324–32. doi: 10.1016/j.foodhyd.2017.08.023.
  • do Evangelho, J. A., R. L. Crizel, F. C. Chaves, L. Prietto, V. Z. Pinto, M. Z. de Miranda, A. R. G. Dias, and E. da Rosa Zavareze. 2019. Thermal and irradiation resistance of folic acid encapsulated in zein ultrafine fibers or nanocapsules produced by electrospinning and electrospraying. Food Research International (Ottawa, ON) 124:137–46. doi: 10.1016/j.foodres.2018.08.019.
  • Duque-Estrada, P., C. C. Berton-Carabin, M. Nieuwkoop, B. L. Dekkers, A. E. Janssen, and A. J. Van Der Goot. 2019. Protein oxidation and in vitro gastric digestion of processed soy-based matrices. Journal of Agricultural and Food Chemistry 67 (34):9591–600. doi: 10.1021/acs.jafc.9b02423.
  • Erdogan, I., M. Demir, and O. Bayraktar. 2015. Olive leaf extract as a crosslinking agent for the preparation of electrospun zein fibers. Journal of Applied Polymer Science 132 (4):n/a–/a. doi: 10.1002/app.41338.
  • Erickson, D. P., O. H. Campanella, and B. R. Hamaker. 2012. Functionalizing maize zein in viscoelastic dough systems through fibrous, β-sheet-rich protein networks: An alternative, physicochemical approach to gluten-free breadmaking. Trends in Food Science & Technology 24 (2):74–81. doi: 10.1016/j.tifs.2011.10.008.
  • Estrada, P. D., C. C. Berton-Carabin, M. Schlangen, A. Haagsma, A. P. T. Pierucci, and A. J. van der Goot. 2018. Protein oxidation in plant protein-based fibrous products: Effects of encapsulated iron and process conditions. Journal of Agricultural and Food Chemistry 66 (42):11105–12. doi: 10.1021/acs.jafc.8b02844.
  • Fang, Y., B. Zhang, and Y. Wei. 2014. Effects of the specific mechanical energy on the physicochemical properties of texturized soy protein during high-moisture extrusion cooking. Journal of Food Engineering 121:32–8. doi: 10.1016/j.jfoodeng.2013.08.002.
  • Federici, E., G. W. Selling, O. H. Campanella, and O. G. Jones. 2020. Incorporation of plasticizers and co-proteins in zein electrospun fibers. Journal of Agricultural and Food Chemistry 68 (49):14610–9. doi: 10.1021/acs.jafc.0c03532.
  • Fletcher, D. L., and E. M. Ahmed. 1977. Spinning of peanut protein fibers. Peanut Science 4 (1):17–21. doi: 10.3146/i0095-3679-4-1-5.
  • Fraeye, I., I. Colle, E. Vandevenne, T. Duvetter, S. Van Buggenhout, P. Moldenaers, T. D. Loey, and M. Hendrickx. 2010. Influence of pectin structure on texture of pectin-calcium gels. Innovative Food Science & Emerging Technologies 11 (2):401–9. doi: 10.1016/j.ifset.2009.08.015.
  • Grabowska, K. J., S. Zhu, B. L. Dekkers, N. C. de Ruijter, J. Gieteling, and A. J. van der Goot. 2016. Shear-induced structuring as a tool to make anisotropic materials using soy protein concentrate. Journal of Food Engineering 188:77–86. doi: 10.1016/j.jfoodeng.2016.05.010.
  • Herrero, A. M., F. Jiménez-Colmenero, and P. Carmona. 2009. Elucidation of structural changes in soy protein isolate upon heating by Raman spectroscopy. International Journal of Food Science & Technology 44 (4):711–7. doi: 10.1111/j.1365-2621.2008.01880.x.
  • Huang, H. C., E. G. Hammond, C. A. Reitmeier, and D. J. Myers. 1995. Properties of fibers produced from soy protein isolate by extrusion and wet-spinning. Journal of the American Oil Chemists’ Society 72 (12):1453–60. doi: 10.1007/BF02577837.
  • Jhuang, J. R., S. B. Lin, L. C. Chen, S. N. Lou, S. H. Chen, and H. H. Chen. 2020. Development of immobilized laccase-based time temperature indicator by electrospinning zein fiber. Food Packaging and Shelf Life 23:100436. doi: 10.1016/j.fpsl.2019.100436.
  • Jia, X., Y. Qin, X. Xu, H. Kong, Q. Liu, and H. Wang. 2020. Preparation and characterization of pea protein isolate-pullulan blend electrospun nanofiber films. International Journal of Biological Macromolecules 157:641–7. doi: 10.1016/j.ijbiomac.2019.11.216.
  • Jiang, Q., and Y. Yang. 2011. Water-stable electrospun zein fibers for potential drug delivery. Journal of Biomaterials Science, Polymer Edition 22 (10):1393–408. doi: 10.1163/092050610X508437.
  • Josefsson, L., X. Ye, C. J. Brett, J. Meijer, C. Olsson, A. Sjögren, J. Sundlöf, A. Davydok, M. Langton, Å. Emmer, et al. 2020. Potato protein nanofibrils produced from a starch industry sidestream. ACS Sustainable Chemistry & Engineering 8 (2):1058–67. doi: 10.1021/acssuschemeng.9b05865.
  • Kaewmanee, T., S. Benjakul, and W. Visessanguan. 2011. Effect of NaCl on thermal aggregation of egg white proteins from duck egg. Food Chemistry 125 (2):706–12. doi: 10.1016/j.foodchem.2010.09.072.
  • Khansari, S., S. Sinha-Ray, A. L. Yarin, and B. Pourdeyhimi. 2013. Biopolymer-based nanofiber mats and their mechanical characterization. Industrial & Engineering Chemistry Research 52 (43):15104–13. doi: 10.1021/ie402246x.
  • Kiiru, S. M. 2020. In vitro protein digestibility and textural properties of high moisture extruded cricket-soy meat analogues. Doctoral dissertation., JKUAT-AGRICULTURE.
  • Kimura, A., T. Fukuda, M. Zhang, S. Motoyama, N. Maruyama, and S. Utsumi. 2008. Comparison of physicochemical properties of 7S and 11S globulins from Pea, Fava Bean, Cowpea, and French Bean with those of soybean-French bean 7S globulin exhibits excellent properties. Journal of Agricultural and Food Chemistry 56 (21):10273–9. doi: 10.1021/jf801721b.
  • Klemmer, K. J., L. Waldner, A. Stone, N. H. Low, and M. T. Nickerson. 2012. Complex coacervation of pea protein isolate and alginate polysaccharides. Food Chemistry 130 (3):710–5. doi: 10.1016/j.foodchem.2011.07.114.
  • Kolbasov, A., S. Sinha-Ray, A. Joijode, M. A. Hassan, D. Brown, B. Maze, B. Pourdeyhimi, and A. L. Yarin. 2016. Industrial-scale solution blowing of soy protein nanofibers. Industrial & Engineering Chemistry Research 55 (1):323–33. doi: 10.1021/acs.iecr.5b04277.
  • Koo, C. K., C. Chung, T. Ogren, W. Mutilangi, and D. J. McClements. 2018. Extending protein functionality: Microfluidization of heat denatured whey protein fibrils. Journal of Food Engineering 223:189–96. doi: 10.1016/j.jfoodeng.2017.10.020.
  • Krintiras, G. A., J. G. Diaz, A. J. Van Der Goot, A. I. Stankiewicz, and G. D. Stefanidis. 2016. On the use of the Couette Cell technology for large scale production of textured soy-based meat replacers. Journal of Food Engineering 169:205–13. doi: 10.1016/j.jfoodeng.2015.08.021.
  • Kutzli, I., D. Beljo, M. Gibis, S. K. Baier, and J. Weiss. 2020. Effect of maltodextrin dextrose equivalent on electrospinnability and glycation reaction of blends with pea protein isolate. Food Biophysics 15 (2):206–10. doi: 10.1007/s11483-019-09619-6.
  • Kutzli, I., D. Griener, M. Gibis, C. Schmid, C. Dawid, S. K. Baier, T. Hofmann, and J. Weiss. 2020a. Influence of Maillard reaction conditions on the formation and solubility of pea protein isolate-maltodextrin conjugates in electrospun fibers. Food Hydrocolloids 101:105535. doi: 10.1016/j.foodhyd.2019.105535.
  • Kutzli, I., D. Griener, M. Gibis, L. Grossmann, S. K. Baier, and J. Weiss. 2020b. Improvement of emulsifying behavior of pea proteins as plant-based emulsifiers via Maillard-induced glycation in electrospun pea protein-maltodextrin fibers. Food & Function 11 (5):4049–56. doi: 10.1039/d0fo00292e.
  • Langkilde, A. E., and B. Vestergaard. 2009. Methods for structural characterization of prefibrillar intermediates and amyloid fibrils. FEBS Letters 583 (16):2600–9. doi: 10.1016/j.febslet.2009.05.040.19481541.
  • Lara, C., S. Gourdin-Bertin, J. Adamcik, S. Bolisetty, and R. Mezzenga. 2012. Self-assembly of ovalbumin into amyloid and non-amyloid fibrils. Biomacromolecules 13 (12):4213–21. doi: 10.1021/bm301481v.
  • Lassé, M., D. Ulluwishewa, J. Healy, D. Thompson, A. Miller, N. Roy, K. Chitcholtan, and J. A. Gerrard. 2016. Evaluation of protease resistance and toxicity of amyloid-like food fibrils from whey, soy, kidney bean, and egg white. Food Chemistry 192:491–8. doi: 10.1016/j.foodchem.2015.07.044.
  • Lawton, J. W. 2002. Zein: A history of processing and use. Cereal Chemistry Journal 79 (1):1–18. doi: 10.1094/CCHEM.2002.79.1.1.
  • Lei, D., and X. Ma. 2021. Effect of enzymatic glycosylation on the structure and properties of wheat gluten protein fibers. Journal of Engineered Fibers and Fabrics 16:155892502110003. doi: 10.1177/15589250211000337.
  • Li, S., Y. Yan, X. Guan, and K. Huang. 2020. Preparation of a hordein-quercetin-chitosan antioxidant electrospun nanofibre film for food packaging and improvement of the film hydrophobic properties by heat treatment. Food Packaging and Shelf Life 23:100466. doi: 10.1016/j.fpsl.2020.100466.
  • Li, S., Z. Jiang, F. Wang, J. Wu, Y. Liu, and X. Li. 2020. Characterization of rice glutelin fibrils and their effect on in vitro rice starch digestibility. Food Hydrocolloids 106:105918. doi: 10.1016/j.foodhyd.2020.105918.
  • Li, T., X. N. Guo, K. X. Zhu, and H. M. Zhou. 2018. Effects of alkali on protein polymerization and textural characteristics of textured wheat protein. Food Chemistry 239:579–87. doi: 10.1016/j.foodchem.2017.06.155.
  • Li, Y., J. Li, Q. Xia, B. Zhang, Q. Wang, and Q. Huang. 2012. Understanding the dissolution of α-zein in aqueous ethanol and acetic acid solutions. The Journal of Physical Chemistry. B 116 (39):12057–64. doi: 10.1021/jp305709y.
  • Liu, D., C. Zhu, K. Peng, Y. Guo, P. R. Chang, and X. Cao. 2013. Facile preparation of soy protein/poly (vinyl alcohol) blend fibers with high mechanical performance by wet-spinning. Industrial & Engineering Chemistry Research 52 (18):6177–81. doi: 10.1021/ie400521a.
  • Liu, F., R. J. Avena-Bustillos, R. Woods, B. S. Chiou, T. G. Williams, D. F. Wood, C. Bilbao, ‐W. Sainz, G. M. Yokoyama, T. H. Glenn, et al. 2016. Preparation of zein fibers using solution blow spinning method. Journal of Food Science 81 (12):N3015–N3025. doi: 10.1111/1750-3841.13537.
  • Liu, J., and C. H. Tang. 2013. Heat-induced fibril assembly of vicilin at pH 2.0: Reaction kinetics, influence of ionic strength and protein concentration, and molecular mechanism. Food Research International 51 (2):621–32. doi: 10.1016/j.foodres.2012.12.049.
  • Liu, K., and F. H. Hsieh. 2008. Protein-protein interactions during high-moisture extrusion for fibrous meat analogues and comparison of protein solubility methods using different solvent systems. Journal of Agricultural and Food Chemistry 56 (8):2681–7. doi: 10.1021/jf073343q.
  • López-Barón, N., Y. Gu, T. Vasanthan, and R. Hoover. 2017. Plant proteins mitigate in vitro wheat starch digestibility. Food Hydrocolloids 69:19–27. doi: 10.1016/j.foodhyd.2017.01.015.
  • MacArtain, P., J. C. Jacquier, and K. A. Dawson. 2003. Physical characteristics of calcium induced κ-carrageenan networks. Carbohydrate Polymers 53 (4):395–400. doi: 10.1016/S0144-8617(03)00120-6.
  • Mackintosh, S. H., S. J. Meade, J. P. Healy, K. H. Sutton, N. G. Larsen, A. M. Squires, and J. A. Gerrard. 2009. Wheat glutenin proteins assemble into a nanostructure with unusual structural features. Journal of Cereal Science 49 (1):157–62. doi: 10.1016/j.jcs.2008.08.003.
  • Maftoonazad, N., M. Shahamirian, D. John, and H. Ramaswamy. 2019. Development and evaluation of antibacterial electrospun pea protein isolate-polyvinyl alcohol nanocomposite mats incorporated with cinnamaldehyde. Materials Science & Engineering. C, Materials for Biological Applications 94:393–402. doi: 10.1016/j.msec.2018.09.033.
  • Mattice, K. D., and A. G. Marangoni. 2020. Comparing methods to produce fibrous material from zein. Food Research International (Ottawa, ON) 128:108804. doi: 10.1016/j.foodres.2019.108804.
  • Maung, T. T., B. Y. Gu, M. H. Kim, and G. H. Ryu. 2020. Fermentation of texturized vegetable proteins extruded at different moisture contents: Effect on physicochemical, structural, and microbial properties. Food Science and Biotechnolgy 29 (7):897–907. doi: 10.1007/s10068-020-00737-3.
  • Meier, C., and M. E. Welland. 2011. Wet-spinning of amyloid protein nanofibers into multifunctional high-performance biofibers. Biomacromolecules 12 (10):3453–9. doi: 10.1021/bm2005752.
  • Moomand, K., and L. T. Lim. 2014. Oxidative stability of encapsulated fish oil in electrospun zein fibres. Food Research International 62:523–32. doi: 10.1016/j.foodres.2014.03.054.
  • Moomand, K., and L. T. Lim. 2015. Properties of encapsulated fish oil in electrospun zein fibres under simulated in vitro conditions. Food and Bioprocess Technology 8 (2):431–44. doi: 10.1007/s11947-014-1414-7.
  • Moreno, M. A., M. E. Orqueda, L. G. Gómez-Mascaraque, M. I. Isla, and A. López-Rubio. 2019. Crosslinked electrospun zein-based food packaging coatings containing bioactive chilto fruit extracts. Food Hydrocolloids 95:496–505. doi: 10.1016/j.foodhyd.2019.05.001.
  • Mu, B., H. Xu, W. Li, L. Xu, and Y. Yang. 2019. Spinnability and rheological properties of globular soy protein solution. Food Hydrocolloids 90:443–51. doi: 10.1016/j.foodhyd.2018.12.049.
  • Munialo, C. D., A. H. Martin, E. van Der Linden, and H. H. De Jongh. 2014. Fibril formation from pea protein and subsequent gel formation. Journal of Agricultural and Food Chemistry 62 (11):2418–27. doi: 10.1021/jf4055215.
  • Oboroceanu, D., L. Wang, E. Magner, and M. A. Auty. 2014. Fibrillization of whey proteins improves foaming capacity and foam stability at low protein concentrations. Journal of Food Engineering 121:102–11. doi: 10.1016/j.jfoodeng.2013.08.023.
  • Osen, R., S. Toelstede, F. Wild, P. Eisner, and U. Schweiggert-Weisz. 2014. High moisture extrusion cooking of pea protein isolates: Raw material characteristics, extruder responses, and texture properties. Journal of Food Engineering 127:67–74. doi: 10.1016/j.jfoodeng.2013.11.023.
  • Palanisamy, M., K. Franke, R. G. Berger, V. Heinz, and S. Töpfl. 2019a. High moisture extrusion of lupin protein: Influence of extrusion parameters on extruder responses and product properties. Journal of the Science of Food and Agriculture 99 (5):2175–85. doi: 10.1002/jsfa.9410.
  • Palanisamy, M., S. Töpfl, K. Aganovic, and R. G. Berger. 2018. Influence of iota carrageenan addition on the properties of soya protein meat analogues. LWT-Food Science and Technology 87:546–52. doi: 10.1016/j.lwt.2017.09.029.
  • Patino, J. M. R., and A. M. Pilosof. 2011. Protein–polysaccharide interactions at fluid interfaces. Food Hydrocolloids 25 (8):1925–37. doi: 10.1016/j.foodhyd.2011.02.023.
  • Peng, D., J. Yang, J. Li, C. Tang, and B. Li. 2017. Foams stabilized by β-lactoglobulin amyloid fibrils: Effect of pH. Journal of Agricultural and Food Chemistry 65 (48):10658–65. doi: 10.1021/acs.jafc.7b03669.
  • Pietsch, V. L., F. Schöffel, M. Rädle, H. P. Karbstein, and M. A. Emin. 2019a. High moisture extrusion of wheat gluten: Modeling of the polymerization behavior in the screw section of the extrusion process. Journal of Food Engineering 246:67–74. doi: 10.1016/j.jfoodeng.2018.10.031.
  • Pietsch, V. L., J. M. Bühler, H. P. Karbstein, and M. A. Emin. 2019b. High moisture extrusion of soy protein concentrate: Influence of thermomechanical treatment on protein-protein interactions and rheological properties. Journal of Food Engineering 251:11–8. doi: 10.1016/j.jfoodeng.2019.01.001.
  • Pommet, M., A. Redl, M. H. Morel, S. Domenek, and S. Guilbert. 2003. Thermoplastic processing of protein‐based bioplastics: Chemical engineering aspects of mixing, extrusion and hot molding. Macromolecular Symposia 197 (1):207–36. doi: 10.1002/masy.200350719.
  • Prietto, L., V. Z. Pinto, S. L. M. El Halal, M. G. de Morais, J. A. V. Costa, L. T. Lim, A. R. G. Dias, and E. D. R. Zavareze. 2018. Ultrafine fibers of zein and anthocyanins as natural pH indicator. Journal of the Science of Food and Agriculture 98 (7):2735–41. doi: 10.1002/jsfa.8769.
  • Ramachandraiah, K. 2021. Potential development of sustainable 3D-printed meat analogues: A review. Sustainability 13 (2):938. doi: 10.3390/su13020938.
  • Ramdhan, T., S. H. Ching, S. Prakash, and B. Bhandari. 2019. Time dependent gelling properties of cuboid alginate gels made by external gelation method: Effects of alginate-CaCl2 solution ratios and pH. Food Hydrocolloids 90:232–40. doi: 10.1016/j.foodhyd.2018.12.022.
  • Ramji, K., and R. N. Shah. 2014. Electrospun soy protein nanofiber scaffolds for tissue regeneration. Journal of Biomaterials Applications 29 (3):411–22. doi: 10.1177/0885328214530765.
  • Rampon, V., P. Robert, N. Nicolas, and E. Dufour. 1999. Protein structure and network orientation in edible films prepared by spinning process. Journal of Food Science 64 (2):313–6. doi: 10.1111/j.1365-2621.1999.tb15890.x.
  • Reddy, N., and Y. Yang. 2008. Self-crosslinked gliadin fibers with high strength and water stability for potential medical applications. Journal of Materials Science. Materials in Medicine 19 (5):2055–61. doi: 10.1007/s10856-007-3294-0.
  • Reddy, N., Y. Li, and Y. Yang. 2009. Wet cross-linking gliadin fibers with citric acid and a quantitative relationship between cross-linking conditions and mechanical properties. Journal of Agricultural and Food Chemistry 57 (1):90–8. doi: 10.1021/jf802341u.
  • Ridgley, D. M., and J. R. Barone. 2013. Evolution of the amyloid fiber over multiple length scales. ACS Nano 7 (2):1006–15. doi: 10.1021/nn303489a.
  • Ridgley, D. M., C. M. Rippner, and J. R. Barone. 2015. Design and construction of large amyloid fibers. Fibers 3 (4):90–102. doi: 10.3390/fib3020090.
  • Rowat, S. J., R. L. Legge, and C. Moresoli. 2021. Plant protein in material extrusion 3D printing: Formation, plasticization, prospects, and challenges. Journal of Food Engineering 308:110623. doi: 10.1016/j.jfoodeng.2021.110623.
  • Samard, S., and G. H. Ryu. 2019. A comparison of physicochemical characteristics, texture, and structure of meat analogue and meats. Journal of the Science of Food and Agriculture 99 (6):2708–15. doi: 10.1002/jsfa.9438.
  • Samard, S., B. Y. Gu, and G. H. Ryu. 2019. Effects of extrusion types, screw speed and addition of wheat gluten on physicochemical characteristics and cooking stability of meat analogues. Journal of the Science of Food and Agriculture 99 (11):4922–31. doi: 10.1002/jsfa.9722.
  • Sandoval Murillo, J. S., R. Osen, S. Hiermaier, and G. Ganzenmüller. 2019. Towards understanding the mechanism of fibrous texture formation during high-moisture extrusion of meat substitutes. Journal of Food Engineering 242:8–20. doi: 10.1016/j.jfoodeng.2018.08.009.
  • Schreuders, F. K., B. L. Dekkers, I. Bodnár, P. Erni, R. M. Boom, and A. J. van der Goot. 2019. Comparing structuring potential of pea and soy protein with gluten for meat analogue preparation. Journal of Food Engineering 261:32–9. doi: 10.1016/j.jfoodeng.2019.04.022.
  • Selling, G. W., A. Biswas, A. Patel, D. J. Walls, C. Dunlap, and Y. Wei. 2007. Impact of solvent on electrospinning of zein and analysis of resulting fibers. Macromolecular Chemistry and Physics 208 (9):1002–10. doi: 10.1002/macp.200700056.
  • Shao, P., Y. Liu, C. Ritzoulis, and B. Niu. 2019. Preparation of zein nanofibers with cinnamaldehyde encapsulated in surfactants at critical micelle concentration for active food packaging. Food Packaging and Shelf Life 22:100385. doi: 10.1016/j.fpsl.2019.100385.
  • Sharif, N., M. T. Golmakani, M. Niakousari, B. Ghorani, and A. Lopez-Rubio. 2019. Food-grade gliadin microstructures obtained by electrohydrodynamic processing. Food Research International (Ottawa, ON) 116:1366–73. doi: 10.1016/j.foodres.2018.10.027.
  • Sinha-Ray, S., S. Khansari, A. L. Yarin, and B. Pourdeyhimi. 2012. Effect of Chemical and Physical Cross-Linking on Tensile Characteristics of Solution-Blown Soy Protein Nanofiber Mats. Industrial & Engineering Chemistry Research 51(46):15109–21. doi: 10.1021/ie302359x.
  • Shiau, S. Y., and A. I. Yeh. 2001. Effects of alkali and acid on dough rheological properties and characteristics of extruded noodles. Journal of Cereal Science 33 (1):27–37. doi: 10.1006/jcrs.2000.0344.
  • Sinha-Ray, S., A. L. Yarin, and B. Pourdeyhimi. 2010. Meltblowing: I-basic physical mechanisms and threadline model. Journal of Applied Physics 108 (3):034912. doi: 10.1063/1.3457891.
  • Sinha-Ray, S., Y. Zhang, A. L. Yarin, S. C. Davis, and B. Pourdeyhimi. 2011. Solution blowing of soy protein fibers. Biomacromolecules 12 (6):2357–63. doi: 10.1021/bm200438v.
  • Soto, K. M., M. Hernández-Iturriaga, G. Loarca-Piña, G. Luna-Bárcenas, and S. Mendoza. 2019. Antimicrobial effect of nisin electrospun amaranth: Pullulan nanofibers in apple juice and fresh cheese. International Journal of Food Microbiology 295:25–32. doi: 10.1016/j.ijfoodmicro.2019.02.001.
  • Squires, A. M., G. Devlin, L. L. Gras, S. A. K. Tickler, C. E. MacPhee, and C. M. Dobson. 2006. X-ray scattering study of the effect of hydration on the cross-β structure of amyloid fibrils. Journal of the American Chemical Society 128 (36):11738–9. doi: 10.1021/ja063751v.
  • Sudha, T. B., P. Thanikaivelan, M. Ashokkumar, and B. Chandrasekaran. 2011. Structural and thermal investigations of biomimetically grown casein-soy hybrid protein fibers. Applied Biochemistry and Biotechnology 163 (2):247–57. doi: 10.1007/s12010-010-9034-9.
  • Tang, C. H., and C. S. Wang. 2010. Formation and characterization of amyloid-like fibrils from soy β-conglycinin and glycinin. Journal of Agricultural and Food Chemistry 58 (20):11058–66. doi: 10.1021/jf1021658.
  • Tang, C. H., S. M. Choi, and C. Y. Ma. 2007. Study of thermal properties and heat-induced denaturation and aggregation of soy proteins by modulated differential scanning calorimetry. International Journal of Biological Macromolecules 40 (2):96–104. doi: 10.1016/j.ijbiomac.2006.06.013.
  • Tang, C. H., S. S. Wang, and Q. Huang. 2012. Improvement of heat-induced fibril assembly of soy β-conglycinin (7S Globulins) at pH 2.0 through electrostatic screening. Food Research International 46 (1):229–36. doi: 10.1016/j.foodres.2011.11.030.
  • Tang, C. H., Y. H. Zhang, Q. B. Wen, and Q. Huang. 2010. Formation of amyloid fibrils from kidney bean 7S globulin (Phaseolin) at pH 2.0. Journal of Agricultural and Food Chemistry 58 (13):8061–8. doi: 10.1021/jf101311f.
  • Torres-Giner, S., E. Gimenez, and J. M. Lagaron. 2008. Characterization of the morphology and thermal properties of zein prolamine nanostructures obtained by electrospinning. Food Hydrocolloids. 22 (4):601–14. doi: 10.1016/j.foodhyd.2007.02.005.
  • van der Sman, R. G. M., S. Houlder, S. Cornet, and A. Janssen. 2020. Physical chemistry of gastric digestion of proteins gels. Current Research in Food Science 2:45–60. doi: 10.1016/j.crfs.2019.11.003.
  • Veerman, C., H. Baptist, L. M. Sagis, and E. van der Linden. 2003. A new multistep Ca2+-induced cold gelation process for beta-lactoglobulin. Journal of Agricultural and Food Chemistry 51 (13):3880–5. doi: 10.1021/jf0261396.
  • Vural, M., A. M. Behrens, O. B. Ayyub, J. J. Ayoub, and P. Kofinas. 2015. Sprayable elastic conductors based on block copolymer silver nanoparticle composites. ACS Nano 9 (1):336–44. doi: 10.1021/nn505306h.
  • Wan, Z., X. Yang, and L. M. Sagis. 2016a. Contribution of long fibrils and peptides to surface and foaming behavior of soy protein fibril system. Langmuir: The ACS Journal of Surfaces and Colloids 32 (32):8092–101. doi: 10.1021/acs.langmuir.6b01511.
  • Wan, Z., X. Yang, and L. M. Sagis. 2016b. Nonlinear surface dilatational rheology and foaming behavior of protein and protein fibrillar aggregates in the presence of natural surfactant. Langmuir : The ACS Journal of Surfaces and Colloids 32 (15):3679–90. doi: 10.1021/acs.langmuir.6b00446.
  • Wang, K., C. Li, B Wang, W. Yang, S. Luo, Y Zhao, S. Jiang, D. Mu, and Z. Zheng. 2017. Formation of macromolecules in wheat gluten/starch mixtures during twin-screw extrusion: effect of different additives. Journal of the Science of Food and Agriculture 97 (15):5131–8. doi: 10.1002/jsfa.8392.28429501.
  • Wang, J. M., X. Q. Yang, S. W. Yin, D. B. Yuan, N. Xia, and J. R. Qi. 2011. Growth kinetics of amyloid-like fibrils derived from individual subunits of soy β-conglycinin. Journal of Agricultural and Food Chemistry 59 (20):11270–7. doi: 10.1021/jf202541m.
  • Wang, Q., Y. Du, X. Hu, J. Yang, L. Fan, and T. Feng. 2006. Preparation of alginate/soy protein isolate blend fibers through a novel coagulating bath. Journal of Applied Polymer Science 101 (1):425–31. doi: 10.1002/app.22369.
  • Wang, Y. H., M. Zhao, S. A. Barker, P. S. Belton, and D. Q. M. Craig. 2019. A spectroscopic and thermal investigation into the relationship between composition, secondary structure and physical characteristics of electrospun zein nanofibers. Materials Science and Engineering: C 98:409–18. doi: 10.1016/j.msec.2018.12.134.
  • Wongsasulak, S., N. Puttipaiboon, and T. Yoovidhya. 2013. Fabrication, gastromucoadhesivity, swelling, and degradation of zein–chitosan composite ultrafine fibers. Journal of Food Science 78 (6):N926–N935. doi: 10.1111/1750-3841.12126.
  • Wongsasulak, S., S. Pathumban, and T. Yoovidhya. 2014. Effect of entrapped α-tocopherol on mucoadhesivity and evaluation of the release, degradation, and swelling characteristics of zein–chitosan composite electrospun fibers. Journal of Food Engineering 120:110–7. doi: 10.1016/j.jfoodeng.2013.07.028.
  • Wu, X., Y. Di, Z. Zhao, and W. Wang. 2019. The preparation and performance of okra protein viscose fiber. Integrated Ferroelectrics 198 (1):101–8. doi: 10.1080/10584587.2019.1592582.
  • Xia, W., H. Zhang, J. Chen, H. Hu, F. Rasulov, D. Bi, X. Huang, and S. Pan. 2017. Formation of amyloid fibrils from soy protein hydrolysate: Effects of selective proteolysis on β-conglycinin. Food Research International (Ottawa, ON) 100 (Pt 2):268–76. doi: 10.1016/j.foodres.2017.08.059.
  • Xing, Y., A. Nakamura, T. Chiba, K. Kogishi, T. Matsushita, F. Li, Z. Guo, M. Hosokawa, M. Mori, and K. Higuchi. 2001. Transmission of mouse senile amyloidosis. Laboratory Investigation; a Journal of Technical Methods and Pathology 81 (4):493–9. doi: 10.1038/labinvest.3780257.
  • Xu, W., and Y. Yang. 2009. Drug sorption onto and release from soy protein fibers. Journal of Materials Science. Materials in Medicine 20 (12):2477–86. doi: 10.1007/s10856-009-3821-2.
  • Xu, X., L. Jiang, Z. Zhou, X. Wu, and Y. Wang. 2012. Preparation and properties of electrospun soy protein isolate/polyethylene oxide nanofiber membranes. ACS Applied Materials & Interfaces 4 (8):4331–7. doi: 10.1021/am300991e.
  • Xue, J., T. Wu, Y. Dai, and Y. Xia. 2019. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chemical Reviews 119 (8):5298–415. doi: 10.1021/acs.chemrev.8b00593.
  • Yang, S., L. Dai, C. Sun, and Y. Gao. 2018. Characterization of curcumin loaded gliadin-lecithin composite nanoparticles fabricated by antisolvent precipitation in different blending sequences. Food Hydrocolloids 85:185–94. doi: 10.1016/j.foodhyd.2018.07.015.
  • Yao, C., X. Li, and T. Song. 2009. Preparation and characterization of zein and zein/poly‐L‐lactide nanofiber yarns. Journal of Applied Polymer Science 114 (4):2079–86. doi: 10.1002/app.30807.
  • Yao, Z. C., M. W. Chang, Z. Ahmad, and J. S. Li. 2016. Encapsulation of rose hip seed oil into fibrous zein films for ambient and on demand food preservation via coaxial electrospinning. Journal of Food Engineering 191:115–23. doi: 10.1016/j.jfoodeng.2016.07.012.
  • Yigit, S., N. Dinjaski, and D. L. Kaplan. 2016. Fibrous proteins: At the crossroads of genetic engineering and biotechnological applications. Biotechnology and Bioengineering 113 (5):913–29. doi: 10.1002/bit.25820.
  • Yilmaz, A., F. Bozkurt, P. K. Cicek, E. Dertli, M. Z. Durak, and M. T. Yilmaz. 2016. A novel antifungal surface-coating application to limit postharvest decay on coated apples: Molecular, thermal and morphological properties of electrospun zein–nanofiber mats loaded with curcumin. Innovative Food Science & Emerging Technologies 37:74–83. doi: 10.1016/j.ifset.2016.08.008.
  • Yong, W., A. Lomakin, M. D. Kirkitadze, D. B. Teplow, S. H. Chen, and G. B. Benedek. 2002. Structure determination of micelle-like intermediates in amyloid beta -protein fibril assembly by using small angle neutron scattering. Proceedings of the National Academy of Sciences of the United States of America 99 (1):150–4. doi: 10.1073/pnas.012584899.
  • Zahari, I., F. Ferawati, A. Helstad, C. Ahlström, K. Östbring, M. Rayner, and J. K. Purhagen. 2020. Development of high-moisture meat analogues with hemp and soy protein using extrusion cooking. Foods 9 (6):772. doi: 10.3390/foods9060772.
  • Zhang, J., L. Liu, H. Liu, A. Yoon, S. S. Rizvi, and Q. Wang. 2019. Changes in conformation and quality of vegetable protein during texturization process by extrusion. Critical Reviews in Food Science and Nutrition 59 (20):3267–80. doi: 10.1080/10408398.2018.1487383.
  • Zhang, J., L. Liu, Y. Jiang, F. Shah, Y. Xu, and Q. Wang. 2020. High-moisture extrusion of peanut protein-/carrageenan/sodium alginate/wheat starch mixtures: Effect of different exogenous polysaccharides on the process forming a fibrous structure. Food Hydrocolloids 99:105311. doi: 10.1016/j.foodhyd.2019.105311.
  • Zhang, J., Q. Chen, L. Liu, Y. Zhang, N. He, and Q. Wang. 2021. High-moisture extrusion process of transglutaminase-modified peanut protein: Effect of transglutaminase on the mechanics of the process forming a fibrous structure. Food Hydrocolloids 112:106346. doi: 10.1016/j.foodhyd.2020.106346.
  • Zhang, M., C. A. Reitmeier, E. G. Hammond, and D. J. Myers. 1997. Production of textile fibers from zein and a soy protein‐zein blend. Cereal Chemistry Journal 74 (5):594–8. doi: 10.1094/CCHEM.1997.74.5.594.
  • Zhang, X., B. G. Min, and S. Kumar. 2003. Solution spinning and characterization of poly (vinyl alcohol)/soybean protein blend fibers. Journal of Applied Polymer Science 90 (3):716–21. doi: 10.1002/app.12699.
  • Zhang, Y. H., and L. H. Huang. 2014. Effect of heat-induced formation of rice bran protein fibrils on morphological structure and physicochemical properties in solutions and gels. Food Science and Biotechnology 23 (5):1417–23. doi: 10.1007/s10068-014-0194-1.
  • Zhang, Y. H., C. H. Tang, Q. B. Wen, X. Q. Yang, L. Li, and W. L. Deng. 2010. Thermal aggregation and gelation of kidney bean (Phaseolus vulgaris L.) protein isolate at pH 2.0: Influence of ionic strength. Food Hydrocolloids 24 (4):266–74. doi: 10.1016/j.foodhyd.2009.10.002.
  • Zhang, Y. H., L. H. Huang, and Z. C. Wei. 2014. Effects of additional fibrils on structural and rheological properties of rice bran albumin solution and gel. European Food Research and Technology 239 (6):971–8. doi: 10.1007/s00217-014-2294-9.
  • Zhang, Y., M. W. Lee, S. An, S. Sinha-Ray, S. Khansari, B. Joshi, S. Hong, J. H. Hong, J. J. Kim, B. Pourdeyhimi, et al. 2013. Antibacterial activity of photocatalytic electrospun titania nanofiber mats and solution-blown soy protein nanofiber mats decorated with silver nanoparticles. Catalysis Communications 34:35–40. doi: 10.1016/j.catcom.2013.01.002.
  • Zhao, L., G. Duan, G. Zhang, H. Yang, S. He, and S. Jiang. 2020. Electrospun functional materials toward food packaging applications: A review. Nanomaterials 10 (1):150. doi: 10.3390/nano10010150.
  • Zhou, H., Y. Hu, Y. Tan, Z. Zhang, and D. J. McClements. 2021. Digestibility and gastrointestinal fate of meat versus plant-based meat analogs: An in vitro comparison. Food Chemistry 364:130439. doi: 10.1016/j.foodchem.2021.130439.
  • Zhou, J. Z., H. Zhang, H. Y. Yang, L. Wang, and H. F. Qian. 2014. Formation of heat-induced cottonseed congossypin (7S) fibrils at pH 2.0. Journal of the Science of Food and Agriculture 94 (10):2009–15. doi: 10.1002/jsfa.6517.
  • Zhuang, X., L. Shi, B. Zhang, B. Cheng, and W. Kang. 2013. Coaxial solution blown core-shell structure nanofibers for drug delivery. Macromolecular Research 21 (4):346–8. doi: 10.1007/s13233-013-1039-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.