686
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Diet-mediated metaorganismal relay biotransformation: health effects and pathways

, , , , , & show all

References

  • Abrahamse, S. L., B. L. Pool-Zobel, and G. Rechkemmer. 1999. Potential of short chain fatty acids to modulate the induction of DNA damage and changes in the intracellular calcium concentration by oxidative stress in isolated rat distal colon cells. Carcinogenesis 20 (4):629–34. doi:10.1093/carcin/20.4.629.
  • Agus, A., J. Planchais, and H. Sokol. 2018. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host & Microbe 23 (6):716–24. doi:10.1016/j.chom.2018.05.003.
  • Anderson, J. W., and S. R. Bridges. 1984. Short-chain fatty acid fermentation products of plant fiber affect glucose metabolism of isolated rat hepatocytes. Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.) 177 (2):372–6. doi:10.3181/00379727-177-41958.
  • Andreesen, J. R. 1994. Glycine metabolism in anaerobes. Antonie Van Leeuwenhoek International Leeuwenhoek 66 (1–3):223–37. doi:10.1007/bf00871641.
  • Arumugam, M., J. Raes, E. Pelletier, D. Le Paslier, T. Yamada, D. R. Mende, G. R. Fernandes, J. Tap, T. Bruls, J.-M. Batto, et al. 2011. Enterotypes of the human gut microbiome. Nature 473 (7346):174–80. doi:10.1038/nature09944.
  • Asano, Y., T. Hiramoto, R. Nishino, Y. Aiba, T. Kimura, K. Yoshihara, Y. Koga, and N. Sudo. 2012. Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. American Journal of Physiology Gastrointestinal and Liver Physiology 303 (11):G1288–G1295. doi:10.1152/ajpgi.00341.2012.
  • Augenlicht, L., L. Shi, J. Mariadason, C. Laboisse, and A. Velcich. 2003. Repression of MUC2 gene expression by butyrate, a physiological regulator of intestinal cell maturation. Oncogene 22 (32):4983–92. doi:10.1038/sj.onc.1206521.
  • Bae, S., C. M. Ulrich, M. L. Neuhouser, O. Malysheva, L. B. Bailey, L. Xiao, E. C. Brown, K. L. Cushing-Haugen, Y. Zheng, T.-Y D. Cheng, et al. 2014. Plasma choline metabolites and colorectal cancer risk in the women’s health initiative observational study. Cancer Research 74 (24):7442–52. doi:10.1158/0008-5472.Can-14-1835.
  • Bansal, T., R. C. Alaniz, T. K. Wood, and A. Jayaraman. 2010. The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proceedings of the National Academy of Sciences of Sciences 107 (1):228–33. doi:10.1073/pnas.0906112107.
  • Barreto, F. C., D. V. Barreto, S. Liabeuf, N. Meert, G. Glorieux, M. Temmar, G. Choukroun, R. Vanholder, and Z. A. Massy. 2009. Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients. Clinical Journal of the American Society of Nephrology : CJASN 4 (10):1551–8. doi:10.2215/cjn.03980609.
  • Barrios, C., M. Beaumont, T. Pallister, J. Villar, J. K. Goodrich, A. Clark, J. Pascual, R. E. Ley, T. D. Spector, J. T. Bell, et al. 2015. Gut-microbiota-metabolite axis in early renal function decline. PLoS One 10 (8):e0134311. doi:10.1371/journal.pone.0134311.
  • Bashiardes, S., G. Zilberman-Schapira, and E. Elinav. 2016. Use of metatranscriptomics in microbiome research. Bioinformatics and Biology Insights 10:19–25. doi:10.4137/bbi.S34610.
  • Begley, M., C. G. M. Gahan, and C. Hill. 2005. The interaction between bacteria and bile. FEMS Microbiology Reviews 29 (4):625–51. doi:10.1016/j.femsre.2004.09.003.
  • Bennett, B. J., T. Q. de Aguiar Vallim, Z. Wang, D. M. Shih, Y. Meng, J. Gregory, H. Allayee, R. Lee, M. Graham, R. Crooke, et al. 2013. Trimethylamine-N-Oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metabolism 17 (1):49–60. doi:10.1016/j.cmet.2012.12.011.
  • Bernstein, C. N. 2017. The brain-gut axis and stress in inflammatory bowel disease. Gastroenterology Clinics of North America 46 (4):839–46. doi:10.1016/j.gtc.2017.08.006.
  • Bharwani, A., M. F. Mian, J. A. Foster, M. G. Surette, J. Bienenstock, and P. Forsythe. 2016. Structural & functional consequences of chronic psychosocial stress on the microbiome & host. Psychoneuroendocrinology 63:217–27. doi:10.1016/j.psyneuen.2015.10.001.
  • Bi, J., F. Fang, S. Y. Lu, G. C. Du, and J. Chen. 2013. New insight into the catalytic properties of bile salt hydrolase. Journal of Molecular Catalysis B: Enzymatic 96:46–51. doi:10.1016/j.molcatb.2013.06.010.
  • Bjorndal, B., M. S. Ramsvik, C. Lindquist, J. E. Nordrehaug, I. Bruheim, A. Svardal, O. Nygård, and R. K. Berge. 2015. A phospholipid-protein complex from antarctic krill reduced plasma homocysteine levels and increased plasma trimethylamine-N-oxide (TMAO) and carnitine levels in male wistar rats. Marine Drugs 13(9):5706–21. doi:10.3390/md13095706.
  • Bloemen, J. G., K. Venema, M. C. van de Poll, S. W. Olde Damink, W. A. Buurman, and C. H. Dejong. 2009. Short chain fatty acids exchange across the gut and liver in humans measured at surgery. Clinical Nutrition (Edinburgh, Scotland) 28 (6):657–61. doi:10.1016/j.clnu.2009.05.011.
  • Boini, K. M., T. Hussain, P. L. Li, and S. Koka. 2017. Trimethylamine-N-oxide instigates NLRP3 inflammasome activation and endothelial dysfunction. Cellular Physiology and Biochemistry : International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology 44 (1):152–62. doi:10.1159/000484623.
  • Bosch, T. C., and M. J. McFall-Ngai. 2011. Metaorganisms as the new frontier. Zoology (Jena, Germany) 114 (4):185–90. doi:10.1016/j.zool.2011.04.001.
  • Boutagy, N. E., A. P. Neilson, K. L. Osterberg, A. T. Smithson, T. R. Englund, B. M. Davy, M. W. Hulver, and K. P. Davy. 2015. Probiotic supplementation and trimethylamine-N-oxide production following a high-fat diet. Obesity (Silver Spring, Md.) 23 (12):2357–63. doi:10.1002/oby.21212.
  • Boutagy, N. E., A. P. Neilson, K. L. Osterberg, A. T. Smithson, T. R. Englund, B. M. Davy, M. W. Hulver, and K. P. Davy. 2015. Short-term high-fat diet increases postprandial trimethylamine-N-oxide in humans. Nutrition Research 35 (10):858–64. doi:10.1016/j.nutres.2015.07.002.
  • Brix, L. A., A. C. Barnett, R. G. Duggleby, B. Leggett, and M. E. McManus. 1999. Analysis of the substrate specificity of human sulfotransferases SULT1A1 and SULT1A3: Site-directed mutagenesis and kinetic studies. Biochemistry 38 (32):10474–9. doi:10.1021/bi990795q.
  • Brown, J. M., and S. L. Hazen. 2018. Microbial modulation of cardiovascular disease. Nature Reviews Microbiology 16 (3):171–81. doi:10.1038/nrmicro.2017.149.
  • Brugère, J.-F., G. Borrel, N. Gaci, W. Tottey, P. W. O’Toole, and C. Malpuech-Brugère. 2014. Archaebiotics: Proposed therapeutic use of archaea to prevent trimethylaminuria and cardiovascular disease. Gut Microbes 5 (1):5–10. doi:10.4161/gmic.26749.
  • Buffie, C. G., V. Bucci, R. R. Stein, P. T. McKenney, L. Ling, A. Gobourne, D. No, H. Liu, M. Kinnebrew, A. Viale, et al. 2015. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517 (7533):205–U207. doi:10.1038/nature13828.
  • Burger-van Paassen, N., A. Vincent, P. J. Puiman, M. van der Sluis, J. Bouma, G. Boehm, J. B. van Goudoever, I. van Seuningen, and I. B. Renes. 2009. The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: Implications for epithelial protection. The Biochemical Journal 420 (2):211–9. doi:10.1042/bj20082222.
  • Byndloss, M. X., E. E. Olsan, F. Rivera-Chávez, C. R. Tiffany, S. A. Cevallos, K. L. Lokken, T. P. Torres, A. J. Byndloss, F. Faber, Y. Gao, et al. 2017. Microbiota-activated PPAR-γ signaling inhibits dysbiotic Enterobacteriaceae expansion. Science (New York, N.Y.) 357 (6351):570–5. doi:10.1126/science.aam9949.
  • Carding, S., K. Verbeke, D. T. Vipond, B. M. Corfe, and L. J. Owen. 2015. Dysbiosis of the gut microbiota in disease. Microbial Ecology in Health and Disease 26:26191 doi:10.3402/mehd.v26.26191.
  • Chae, J. P., V. D. Valeriano, G. B. Kim, and D. K. Kang. 2013. Molecular cloning, characterization and comparison of bile salt hydrolases from Lactobacillus johnsonii PF01. Journal of Applied Microbiology 114 (1):121–33. doi:10.1111/jam.12027.
  • Chen, K., H. Chen, M. M. Faas, B. J. de Haan, J. Li, P. Xiao, H. Zhang, J. Diana, P. de Vos, J. Sun, et al. 2017. Specific inulin-type fructan fibers protect against autoimmune diabetes by modulating gut immunity, barrier function, and microbiota homeostasis. Molecular Nutrition & Food Research 61 (8):1601006. doi:10.1002/mnfr.201601006.
  • Chen, X. S., G. Y. Lou, Z. P. Meng, and W. D. Huang. 2011. TGR5: A novel target for weight maintenance and glucose metabolism. Experimental Diabetes Research 2011: 853501. doi:10.1155/2011/853501.
  • Chen, M.‐L, X.‐H. Zhu, L. Ran, H.‐D. Lang, L. Yi, and M.‐T. Mi. 2017. Trimethylamine-N-oxide induces vascular inflammation by activating the NLRP3 inflammasome through the SIRT3-SOD2-mtROS signaling pathway. Journal of the American Heart Association 6 (9):e006347. doi:10.1161/JAHA.117.006347.
  • Chiang, J. Y. L. 2009. Bile acids: Regulation of synthesis. Journal of Lipid Research 50 (10):1955–66. doi:10.1194/jlr.R900010-JLR200.
  • Chimerel, C., E. Emery, D. K. Summers, U. Keyser, F. M. Gribble, and F. Reimann. 2014. Bacterial metabolite indole modulates incretin secretion from intestinal enteroendocrine L cells. Cell Reports 9 (4):1202–8. doi:10.1016/j.celrep.2014.10.032.
  • Chittim, C. L., A. Martinez Del Campo, and E. P. Balskus. 2019. Gut bacterial phospholipase Ds support disease-associated metabolism by generating choline. Nature Microbiology 4 (1):155–63. doi:10.1038/s41564-018-0294-4.
  • Cho, C. E., S. Taesuwan, O. V. Malysheva, E. Bender, N. F. Tulchinsky, J. Yan, J. L. Sutter, and M. A. Caudill. 2017. Trimethylamine-N-oxide (TMAO) response to animal source foods varies among healthy young men and is influenced by their gut microbiota composition: A randomized controlled trial. Molecular Nutrition & Food Research 61 (1):1600324. doi:10.1002/mnfr.201600324.
  • Coleman, J. P. and L. L  Hudson. 1995. Cloning and characterization of a conjugated bile acid hydrolase gene from Clostridium perfringens. Applied and Environmental Microbiology 61 (7):2514–20. doi:10.1128/aem.61.7.2514-2520.1995.
  • Collins, H. L., D. Drazul-Schrader, A. C. Sulpizio, P. D. Koster, Y. Williamson, S. J. Adelman, K. Owen, T. Sanli, and A. Bellamine. 2016. L-Carnitine intake and high trimethylamine N-oxide plasma levels correlate with low aortic lesions in ApoE(-/-) transgenic mice expressing CETP. Atherosclerosis 244:29–37. doi:10.1016/j.atherosclerosis.2015.10.108.
  • Collins, S. M., M. Surette, and P. Bercik. 2012. The interplay between the intestinal microbiota and the brain. Nature Reviews Microbiology 10 (11):735–42. doi:10.1038/nrmicro2876.
  • Corzo, G., and S. E. Gilliland. 1999. Bile salt hydrolase activity of three strains of Lactobacillus acidophilus. Journal of Dairy Science 82 (3):472–80. doi:10.3168/jds.S0022-0302(99)75256-2.
  • Craciun, S., and E. P. Balskus. 2012. Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme. Proceedings of the National Academy of Sciences of the United States of America 109 (52):21307–12. doi:10.1073/pnas.1215689109.
  • Craciun, S., J. A. Marks, and E. P. Balskus. 2014. Characterization of choline trimethylamine-lyase expands the chemistry of glycyl radical enzymes. ACS Chemical Biology 9 (7):1408–13. doi:10.1021/cb500113p.
  • Cryan, J. F., K. J. O’Riordan, C. S. M. Cowan, K. V. Sandhu, T. F. S. Bastiaanssen, M. Boehme, M. G. Codagnone, S. Cussotto, C. Fulling, A. V. Golubeva, et al. 2019. The microbiota-gut-brain axis. Physiological Reviews 99 (4):1877–2013. doi:10.1152/physrev.00018.2018.
  • Dawson, L. F., E. H. Donahue, S. T. Cartman, R. H. Barton, J. Bundy, R. McNerney, N. P. Minton, and B. W. Wren. 2011. The analysis of para-cresol production and tolerance in Clostridium difficile 027 and 012 strains. BMC Microbiology 11:86. doi:10.1186/1471-2180-11-86.
  • De Filippis, F., N. Pellegrini, L. Vannini, I. B. Jeffery, A. La Storia, L. Laghi, D. I. Serrazanetti, R. Di Cagno, I. Ferrocino, C. Lazzi, et al. 2016. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 65 (11):1812–21. doi:10.1136/gutjnl-2015-309957.
  • de la Cuesta-Zuluaga, J., N. Mueller, R. Álvarez-Quintero, E. Velásquez-Mejía, J. Sierra, V. Corrales-Agudelo, J. Carmona, J. Abad, and J. Escobar. 2018. Higher fecal short-chain fatty acid levels are associated with gut microbiome dysbiosis, obesity, hypertension and cardiometabolic disease risk factors. Nutrients 11 (1):51. doi:10.3390/nu11010051.
  • De Preter, V., I. Arijs, K. Windey, W. Vanhove, S. Vermeire, F. Schuit, P. Rutgeerts, and K. Verbeke. 2012. Impaired butyrate oxidation in ulcerative colitis is due to decreased butyrate uptake and a defect in the oxidation pathway. Inflammatory Bowel Diseases 18 (6):1127–36. doi:10.1002/ibd.21894.
  • de Vadder, F., and G. Mithieux. 2018. Gut-brain signaling in energy homeostasis: The unexpected role of microbiota-derived succinate. The Journal of Endocrinology 236 (2):R105–R108. doi:10.1530/JOE-17-0542.
  • De Vadder, F., P. Kovatcheva-Datchary, D. Goncalves, J. Vinera, C. Zitoun, A. Duchampt, F. Bäckhed, and G. Mithieux. 2014. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156 (1–2):84–96. doi:10.1016/j.cell.2013.12.016.
  • De Vadder, F., P. Kovatcheva-Datchary, C. Zitoun, A. Duchampt, F. Bäckhed, and G. Mithieux. 2016. Microbiota-produced succinate improves glucose homeostasis via intestinal gluconeogenesis. Cell Metabolism 24 (1):151–7. doi:10.1016/j.cmet.2016.06.013.
  • Degirolamo, C., S. Rainaldi, F. Bovenga, S. Murzilli, and A. Moschetta. 2014. Microbiota modification with probiotics induces hepatic bile acid synthesis via downregulation of the Fxr-Fgf15 axis in mice. Cell Reports 7 (1):12–8. doi:10.1016/j.celrep.2014.02.032.
  • Delaere, F., A. Duchampt, L. Mounien, P. Seyer, C. Duraffourd, C. Zitoun, B. Thorens, and G. Mithieux. 2013. The role of sodium-coupled glucose co-transporter 3 in the satiety effect of portal glucose sensing. Molecular Metabolism 2 (1):47–53. doi:10.1016/j.molmet.2012.11.003.
  • Donohoe, D. R., N. Garge, X. Zhang, W. Sun, T. M. O’Connell, M. K. Bunger, and S. J. Bultman. 2011. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metabolism 13 (5):517–26. doi:10.1016/j.cmet.2011.02.018.
  • Elamin, E. E., A. A. Masclee, J. Dekker, H.-J. Pieters, and D. M. Jonkers. 2013. Short-chain fatty acids activate AMP-activated protein kinase and ameliorate ethanol-induced intestinal barrier dysfunction in caco-2 cell monolayers. The Journal of Nutrition 143 (12):1872–81. doi:10.3945/jn.113.179549.
  • Elliott, P., J. M. Posma, Q. Chan, I. Garcia-Perez, A. Wijeyesekera, M. Bictash, T. M. D. Ebbels, H. Ueshima, L. Zhao, L. van Horn, et al. 2015. Urinary metabolic signatures of human adiposity. Science Translational Medicine 7 (285):285ra62. doi:10.1126/scitranslmed.aaa5680.
  • Fan, P. X., P. Liu, P. X. Song, X. Y. Chen, and X. Ma. 2017. Moderate dietary protein restriction alters the composition of gut microbiota and improves ileal barrier function in adult pig model. Scientific Reports 7:43412. doi:10.1038/srep43412.
  • Fang, S., J. M. Suh, S. M. Reilly, E. Yu, O. Osborn, D. Lackey, E. Yoshihara, A. Perino, S. Jacinto, Y. Lukasheva, et al. 2015. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat Med 21 (2):159–65. doi:10.1038/nm.3760.
  • Fernandez-Veledo, S., and J. Vendrell. 2019. Gut microbiota-derived succinate: Friend or foe in human metabolic diseases? Reviews in Endocrine & Metabolic Disorders 20 (4):439–47. doi:10.1007/s11154-019-09513-z.
  • Fukami, K., S-i Yamagishi, K. Sakai, Y. Kaida, M. Yokoro, S. Ueda, Y. Wada, M. Takeuchi, M. Shimizu, H. Yamazaki, et al. 2015. Oral L-carnitine supplementation increases trimethylamine-N-oxide but reduces markers of vascular injury in hemodialysis patients. Journal of Cardiovascular Pharmacology 65 (3):289–95. doi:10.1097/fjc.0000000000000197.
  • Gaudier, E., M. Rival, M. P. Buisine, I. Robineau, and C. Hoebler. 2009. Butyrate enemas upregulate Muc genes expression but decrease adherent mucus thickness in mice colon. Physiological Research 58 (1):111–9. doi:10.33549/physiolres.931271.
  • Genoni, A., C. T. Christophersen, J. Lo, M. Coghlan, M. C. Boyce, A. R. Bird, P. Lyons-Wall, and A. Devine. 2019. Long-term Paleolithic diet is associated with lower resistant starch intake, different gut microbiota composition and increased serum TMAO concentrations. European Journal of Nutrition 59 (5):1845–58. doi:10.1007/s00394-019-02036-y.
  • Gryp, T., R. Vanholder, M. Vaneechoutte, and G. Glorieux. 2017. p-Cresyl sulfate. Toxins 9 (2):52. doi:10.3390/toxins9020052.
  • Gupta, N., J. A. Buffa, A. B. Roberts, N. Sangwan, S. M. Skye, L. Li, K. J. Ho, J. Varga, J. A. DiDonato, W. H W. Tang, et al. 2020. Targeted inhibition of gut microbial TMAO production reduces renal tubulointerstitial fibrosis and functional impairment in a murine model of chronic kidney disease. Arteriosclerosis, Thrombosis, and Vascular Biology 40 (5):1239–55. doi:10.1161/ATVBAHA.120.314139.
  • Hatayama, H., J. Washita, A. Kuwajima, and T. Abe. 2007. The short chain fatty acid, butyrate, stimulates MUC2 mucin production in the human colon cancer cell line, LS174T. Biochemical and Biophysical Research Communications 356 (3):599–603. doi:10.1016/j.bbrc.2007.03.025.
  • Heianza, Y., W. J. Ma, J. E. Manson, K. M. Rexrode, and L. Qi. 2017. Gut microbiota metabolites and risk of major adverse cardiovascular disease events and death: A systematic review and meta-analysis of prospective studies. Journal of the American Heart Association 6 (7):e004947. doi:10.1161/JAHA.116.004947.
  • Hida, M., Y. Aiba, S. Sawamura, N. Suzuki, T. Satoh, and Y. Koga. 1996. Inhibition of the accumulation of uremic toxins in the blood and their precursors in the feces after oral administration of Lebenin, a lactic acid bacteria preparation, to uremic patients undergoing hemodialysis. Nephron 74 (2):349–55. doi:10.1159/000189334.
  • Hoebler, C., E. Gaudier, P. De Coppet, M. Rival, and C. Cherbut. 2006. MUC genes are differently expressed during onset and maintenance of inflammation in dextran sodium sulfate-treated mice. Digestive Diseases and Sciences 51 (2):381–9. doi:10.1007/s10620-006-3142-y.
  • Holmes, Z. C., J. D. Silverman, H. K. Dressman, Z. Wei, E. P. Dallow, S. C. Armstrong, P. C. Seed, J. F. Rawls, and L. A. David. 2020. Short-chain fatty acid production by gut microbiota from children with obesity differs according to prebiotic choice and bacterial community composition. mBio 11 (4):e00914-20. doi:10.1128/mBio.00914-20.
  • Hoyles, L., M. L. Jiménez-Pranteda, J. Chilloux, F. Brial, A. Myridakis, T. Aranias, C. Magnan, G. R. Gibson, J. D. Sanderson, J. K. Nicholson, et al. 2018. Metabolic retroconversion of trimethylamine N-oxide and the gut microbiota. Microbiome 6:73. doi:10.1186/s40168-018-0461-0.
  • Huc, T., A. Drapala, M. Gawrys, M. Konop, K. Bielinska, E. Zaorska, E. Samborowska, A. Wyczalkowska-Tomasik, L. Pączek, M. Dadlez, et al. 2018. Chronic, low-dose TMAO treatment reduces diastolic dysfunction and heart fibrosis in hypertensive rats. American Journal of Physiology Heart and Circulatory Physiology 315 (6):H1805–H1820. doi:10.1152/ajpheart.00536.2018.
  • Hylemon, P. B., H. Zhou, W. M. Pandak, S. Ren, G. Gil, and P. Dent. 2009. Bile acids as regulatory molecules. Journal of Lipid Research 50 (8):1509–20. doi:10.1194/jlr.R900007-JLR200.
  • Inagaki, T., A. Moschetta, Y. K. Lee, L. Peng, G. Zhao, M. Downes, R. T. Yu, J. M. Shelton, J. A. Richardson, J. J. Repa, et al. 2006. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proceedings of the National Academy of Sciences of the United States of America 103 (10):3920–5. doi:10.1073/pnas.0509592103.
  • Jaglin, M., M. Rhimi, C. Philippe, N. Pons, A. Bruneau, B. Goustard, V. Daugé, E. Maguin, L. Naudon, and S. Rabot. 2018. Indole, a signaling molecule produced by the gut microbiota, negatively impacts emotional behaviors in rats. Frontiers in Neuroscience 12:216. doi:10.3389/fnins.2018.00216.
  • Jia, W., G. Xie, and W. Jia. 2018. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nature Reviews Gastroenterology & Hepatology 15 (2):111–28. doi:10.1038/nrgastro.2017.119.
  • Joyce, S. A., and C. G. M. Gahan. 2014. The gut microbiota and the metabolic health of the host. Current Opinion in Gastroenterology 30 (2):120–7. doi:10.1097/mog.0000000000000039.
  • Joyce, S., and C. Gahan. 2016. Bile acid modifications at the microbe-host interface: Potential for nutraceutical and pharmaceutical interventions in host health. Annual Review of Food Science and Technology 7:313–33. doi:10.1146/annurev-food-041715-033159.
  • Kang, J. D., C. J. Myers, S. C. Harris, G. Kakiyama, I.-K. Lee, B.-S. Yun, K. Matsuzaki, M. Furukawa, H.-K. Min, J. S. Bajaj, et al. 2019. Bile acid 7α-dehydroxylating gut bacteria secrete antibiotics that inhibit clostridium difficile: Role of secondary bile acids . Cell Chemical Biology 26 (1):27–34. e24,doi:10.1016/j.chembiol.2018.10.003.
  • Karstens, A. J., L. Tussing-Humphreys, L. Zhan, N. Rajendran, J. Cohen, C. Dion, X. J. Zhou, and M. Lamar. 2019. Associations of the Mediterranean diet with cognitive and neuroimaging phenotypes of dementia in healthy older adults. The American Journal of Clinical Nutrition 109 (2):361–8. doi:10.1093/ajcn/nqy275.
  • Kim, H., L. E. Caulfield, V. Garcia‐Larsen, L. M. Steffen, J. Coresh, and C. M. Rebholz. 2019. Plant‐based diets are associated with a lower risk of incident cardiovascular disease, cardiovascular disease mortality, and all‐cause mortality in a general population of middle‐aged adults. Journal of the American Heart Association 8 (16):e012865. doi:10.1161/JAHA.119.012865.
  • Kim, G. B., C. M. Miyamoto, E. A. Meighen and B. H. Lee. 2004. Cloning and characterization of the bile salt hydrolase genes (bsh) from bifidobacterium bifidum strains. Applied and Environmental Microbiology 70 (9):5603–12. doi:10.1128/AEM.70.9.5603-5612.2004.
  • King, C. D., G. R. Rios, M. D. Green, and T. R. Tephly. 2000. UDP-glucuronosyltransferases. Current Drug Metabolism 1 (2):143–61. doi:10.2174/1389200003339171.
  • Koeth, R. A., B. S. Levison, M. K. Culley, J. A. Buffa, Z. Wang, J. C. Gregory, E. Org, Y. Wu, L. Li, J. D. Smith, et al. 2014. γ-Butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of L-carnitine to TMAO. Cell Metabolism 20 (5):799–812. doi:10.1016/j.cmet.2014.10.006.
  • Koeth, R. A., Z. Wang, B. S. Levison, J. A. Buffa, E. Org, B. T. Sheehy, E. B. Britt, X. Fu, Y. Wu, L. Li, et al. 2013. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nature Medicine 19 (5):576–85. doi:10.1038/nm.3145.
  • Kolodziejczyk, A. A., D. Zheng, and E. Elinav. 2019. Diet-microbiota interactions and personalized nutrition. Nature Reviews Microbiology 17 (12):742–53. doi:10.1038/s41579-019-0256-8.
  • Lekawanvijit, S., A. R. Kompa, B. H. Wang, D. J. Kelly, and H. Krum. 2012. Cardiorenal syndrome: The emerging role of protein-bound uremic toxins. Circulation Research 111 (11):1470–83. doi:10.1161/circresaha.112.278457.
  • Levin, B. J., Y. Y. Huang, S. C. Peck, Y. Wei, A. Martínez-del Campo, J. A. Marks, E. A. Franzosa, C. Huttenhower, and E. P. Balskus. 2017. A prominent glycyl radical enzyme in human gut microbiomes metabolizes trans-4-hydroxy-l-proline. Science 355 (6325):eaai8386. doi:10.1126/science.aai8386.
  • Liabeuf, S., D. V. Barreto, F. C. Barreto, N. Meert, G. Glorieux, E. Schepers, M. Temmar, G. Choukroun, R. Vanholder, and Z. A. Massy. 2010. Free p-cresylsulphate is a predictor of mortality in patients at different stages of chronic kidney disease. Nephrology, Dialysis, Transplantation : Official Publication of the European Dialysis and Transplant Association - European Renal Association 25 (4):1183–91. doi:10.1093/ndt/gfp592.
  • Liang, Y., C. Lin, Y. Zhang, Y. Deng, C. Liu, and Q. Yang. 2018. Probiotic mixture of Lactobacillus and Bifidobacterium alleviates systemic adiposity and inflammation in non-alcoholic fatty liver disease rats through Gpr109a and the commensal metabolite butyrate. Inflammopharmacology 26 (4):1051–1055.
  • Lidbury, I., J. C. Murrell, and Y. Chen, 2015. Trimethylamine and trimethylamine N-oxide are supplementary energy sources for a marine heterotrophic bacterium: Implications for marine carbon and nitrogen cycling. The ISME Journal 9 (3):760–9. doi:10.1038/ismej.2014.149.
  • Lidbury, I., J. C. Murrell, and Y. Chen. 2014. Trimethylamine N-oxide metabolism by abundant marine heterotrophic bacteria. Proceedings of the National Academy of Sciences of the United States of America 111 (7):2710–5. doi:10.1073/pnas.1317834111.
  • Li, F., C. Jiang, K. W. Krausz, Y. Li, I. Albert, H. Hao, K. M. Fabre, J. B. Mitchell, A. D. Patterson, F. J. Gonzalez, et al. 2013. Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity. Nature Communications 4:2384 doi:10.1038/ncomms3384.
  • Lin, C.-J., V. Wu, P.-C. Wu, and C.-J. Wu. 2015. Meta-analysis of the associations of p-cresyl sulfate (PCS) and indoxyl sulfate (IS) with cardiovascular events and all-cause mortality in patients with chronic renal failure. PLoS One 10 (7):e0132589. doi:10.1371/journal.pone.0132589.
  • Li, X. S., Z. Wang, T. Cajka, J. A. Buffa, I. Nemet, A. G. Hurd, X. Gu, S. M. Skye, A. B. Roberts, Y. Wu, et al. 2018. Untargeted metabolomics identifies trimethyllysine, a TMAO-producing nutrient precursor, as a predictor of incident cardiovascular disease risk. JCI Insight 3 (6):e99096. doi:10.1172/jci.insight.99096.
  • Li, Q., T. Wu, R. Liu, M. Zhang, and R. Wang. 2017. Soluble dietary fiber reduces trimethylamine metabolism via gut microbiota and co-regulates host AMPK pathways. Molecular Nutrition & Food Research 61 (12):1700473. doi:10.1002/mnfr.201700473.
  • Li, P., C. Zhong, S. Li, T. Sun, H. Huang, X. Chen, Y. Zhu, X. Hu, X. Peng, X. Zhang, et al. 2018. Plasma concentration of trimethylamine-N-oxide and risk of gestational diabetes mellitus. The American Journal of Clinical Nutrition 108 (3):603–10. doi:10.1093/ajcn/nqy116.
  • Louis, P., G. L. Hold, and H. J. Flint. 2014. The gut microbiota, bacterial metabolites and colorectal cancer. Nature Reviews Microbiology 12 (10):661–72. doi:10.1038/nrmicro3344.
  • Ma, N., T. He, L. J. Johnston, and X. Ma. 2020. Host-microbiome interactions: The aryl hydrocarbon receptor as a critical node in tryptophan metabolites to brain signaling. Gut Microbes 11 (5):1203–19. doi:10.1080/19490976.2020.1758008.
  • Makishima, M., A. Y. Okamoto, J. J. Repa, H. Tu, R. M. Learned, A. Luk, M. V. Hull, K. D. Lustig, D. J. Mangelsdorf, and B. Shan. 1999. Identification of a nuclear receptor for bile acids. Science (New York, N.Y.) 284 (5418):1362–5. doi:10.1126/science.284.5418.1362.
  • Martinez-del Campo, A., S. Bodea, H. A. Hamer, J. A. Marks, H. J. Haiser, P. J. Turnbaugh, and E. P. Balskus. 2015. Characterization and detection of a widely distributed gene cluster that predicts anaerobic choline utilization by human gut bacteria. Mbio 6 (2):e00042-15. doi:10.1128/mBio.00042-15.
  • Martoni, C. J., A. Labbe, J. G. Ganopolsky, S. Prakash, and M. L. Jones. 2015. Changes in bile acids, FGF-19 and sterol absorption in response to bile salt hydrolase active L. reuteri NCIMB 30242. Gut Microbes 6 (1):57–65. doi:10.1080/19490976.2015.1005474.
  • Maruyama, T., Y. Miyamoto, T. Nakamura, Y. Tamai, H. Okada, E. Sugiyama, T. Nakamura, H. Itadani, and K. Tanaka. 2002. Identification of membrane-type receptor for bile acids (M-BAR). Biochemical and Biophysical Research Communications 298 (5):714–9. doi:10.1016/S0006-291X(02)02550-0.
  • Meijers, B. K. I., K. Claes, B. Bammens, H. de Loor, L. Viaene, K. Verbeke, D. Kuypers, Y. Vanrenterghem, and P. Evenepoel. 2010. p-Cresol and cardiovascular risk in mild-to-moderate kidney disease. Clinical Journal of the American Society of Nephrology 5 (7):1182–9. doi:10.2215/CJN.07971109.
  • Meijers, B. K. I., V. De Preter, K. Verbeke, Y. Vanrenterghem, and P. Evenepoel. 2010. p-Cresyl sulfate serum concentrations in haemodialysis patients are reduced by the prebiotic oligofructose-enriched inulin. Nephrology, Dialysis, Transplantation : Official Publication of the European Dialysis and Transplant Association - European Renal Association 25 (1):219–24. doi:10.1093/ndt/gfp414.
  • Meijers, B. K. I., S. Van Kerckhoven, K. Verbeke, W. Dehaen, Y. Vanrenterghem, M. F. Hoylaerts, and P. Evenepoel. 2009. The uremic retention solute p-cresyl sulfate and markers of endothelial damage. American Journal of Kidney Diseases 54 (5):891–901. doi:10.1053/j.ajkd.2009.04.022.
  • Meyer, T. W., and T. H. Hostetter. 2012. Uremic solutes from colon microbes. Kidney International 81 (10):949–54. doi:10.1038/ki.2011.504.
  • Miao, J., A. V. Ling, P. V. Manthena, M. E. Gearing, M. J. Graham, R. M. Crooke, K. J. Croce, R. M. Esquejo, C. B. Clish, D. Vicent, et al. 2015. Flavin-containing monooxygenase 3 as a potential player in diabetes-associated atherosclerosis. Nature Communications 6:6498. doi:10.1038/ncomms7498.
  • Miller, T. L., and M. J. Wolin. 1979. Fermentations by saccharolytic intestinal bacteria. The American Journal of Clinical Nutrition 32 (1):164–72. doi:10.1093/ajcn/32.1.164.
  • Miller, T., and M. Wolin. 1996. Pathways of acetate, propionate, and butyrate formation by the human fecal microbial flora. Applied and Environmental Microbiology 62 (5):1589–92. doi:10.1128/AEM.62.5.1589-1592.1996.
  • Mithieux, G. 2014. Metabolic effects of portal vein sensing. Diabetes, Obesity and Metabolism 16 (S1):56–60. doi:10.1111/dom.12338.
  • Moeller, A. H., T. A. Suzuki, M. Phifer-Rixey, and M. W. Nachman. 2018. Transmission modes of the mammalian gut microbiota. Science (New York, N.Y.) 362 (6413):453–6. doi:10.1126/science.aat7164.
  • Molinaro, A., A. Wahlstrom, and H. U. Marschall. 2018. Role of bile acids in metabolic control. Trends in Endocrinology and Metabolism: TEM 29 (1):31–41. doi:10.1016/j.tem.2017.11.002.
  • Moludi, J., S. Saiedi, B. Ebrahimi, M. Alizadeh, Y. Khajebishak, and S. S. Ghadimi. 2021. Probiotics supplementation on cardiac remodeling following myocardial infarction: A single-center double-blind clinical study. Journal of Cardiovascular Translational Research 14 (2):299–307. doi:10.1007/s12265-020-10052-1.
  • Nakabayashi, I., M. Nakamura, K. Kawakami, T. Ohta, I. Kato, K. Uchida, and M. Yoshida. 2011. Effects of synbiotic treatment on serum level of p-cresol in haemodialysis patients: A preliminary study. Nephrology, Dialysis, Transplantation 26 (3):1094–8. doi:10.1093/ndt/gfq624.
  • Natarajan, R., B. Pechenyak, U. Vyas, P. Ranganathan, A. Weinberg, P. Liang, M. C. Mallappallil, A. J. Norin, E. A. Friedman, and S. J. Saggi. 2014. Randomized controlled trial of strain-specific probiotic formulation (Renadyl) in dialysis patients. Biomed Research International 2014:568571. doi:10.1155/2014/568571(2014).
  • Nemet, I., P. P. Saha, N. Gupta, W. Zhu, K. A. Romano, S. M. Skye, T. Cajka, M. L. Mohan, L. Li, Y. Wu, et al. 2020. A cardiovascular disease-linked gut microbial metabolite acts via adrenergic receptors. Cell 180 (5):862–77. doi:10.1016/j.cell.2020.02.016.
  • Oellgaard, J., S. Winther, P. Rossing, and B. J. von Scholten. 2017. Trimethylamine N-oxide (TMAO) as a new potential therapeutic target for insulin resistance and cancer. Current Pharmaceutical Design 23 (25):3699–712. doi:10.2174/1381612823666170622095324
  • Orman, M., S. Bodea, M. A. Funk, A. M.-D. Campo, M. Bollenbach, C. L. Drennan, and E. P. Balskus. 2019. Structure-guided identification of a small molecule that inhibits anaerobic choline metabolism by human gut bacteria. Journal of the American Chemical Society 141 (1):33–7. doi:10.1021/jacs.8b04883.
  • Parks, D. J., S. G. Blanchard, R. K. Bledsoe, G. Chandra, T. G. Consler, S. A. Kliewer, J. B. Stimmel, T. M. Willson, A. M. Zavacki, D. D. Moore, et al. 1999. Bile acids: Natural ligands for an orphan nuclear receptor. Science (New York, N.Y.) 284 (5418):1365–8. doi:10.1126/science.284.5418.1365.
  • Pascal, M. C., J. F. Burini, and M. Chippaux. 1984. Regulation of the trimethylamine N-oxide (TMAO) reductase in Escherichia coli:Analysis of tor::Mud1 operon fusion. Molecular & General Genetics : MGG 195 (1–2):351–5. doi:10.1007/bf00332770.
  • Peng, L. Y., Z. R. Li, R. S. Green, I. R. Holzman, and J. Lin. 2009. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in caco-2 cell monolayers. The Journal of Nutrition 139 (9):1619–25. doi:10.3945/jn.109.104638.
  • Perry, R. J., L. Peng, N. A. Barry, G. W. Cline, D. Zhang, R. L. Cardone, K. F. Petersen, R. G. Kibbey, A. L. Goodman, and G. I. Shulman. 2016. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome. Nature 534 (7606):213–7. doi:10.1038/nature18309.
  • Petermann-Rocha, F., S. Parra-Soto, S. Gray, J. Anderson, P. Welsh, J. Gill, N. Sattar, F. K. Ho, C. Celis-Morales, and J. P. Pell. 2020. Vegetarians, fish, poultry, and meat-eaters: Who has higher risk of cardiovascular disease incidence and mortality? A prospective study from UK Biobank. European Heart Journal 42 (12):1136–43. doi:10.1093/eurheartj/ehaa939.
  • Piroddi, M., D. Bartolini, S. Ciffolilli, and F. Galli. 2013. Nondialyzable uremic toxins. Blood Purification 35 (s2):30–41. doi:10.1159/000350846.
  • Poesen, R., K. Claes, P. Evenepoel, H. de Loor, P. Augustijns, D. Kuypers, and B. Meijers. 2016. Microbiota-derived phenylacetylglutamine associates with overall mortality and cardiovascular disease in patients with CKD. Journal of the American Society of Nephrology 27 (11):3479–87. doi:10.1681/ASN.2015121302.
  • Poesen, R., P. Evenepoel, H. de Loor, J. A. Delcour, C. M. Courtin, D. Kuypers, P. Augustijns, K. Verbeke, and B. Meijers. 2016. The influence of prebiotic arabinoxylan oligosaccharides on microbiota derived uremic retention solutes in patients with chronic kidney disease: A randomized controlled trial. PLoS One 11 (4):e0153893. doi:10.1371/journal.pone.0153893.
  • Qi, J., T. You, J. Li, T. Pan, L. Xiang, Y. Han, and L. Zhu. 2018. Circulating trimethylamine N-oxide and the risk of cardiovascular diseases: A systematic review and meta-analysis of 11 prospective cohort studies. Journal of Cellular and Molecular Medicine 22 (1):185–94. doi:10.1111/jcmm.13307.
  • Qiu, L., D. Yang, X. Tao, J. Yu, H. Xiong, and H. Wei. 2017. Enterobacter aerogenes ZDY01 attenuates choline-induced trimethylamine N-oxide levels by remodeling gut microbiota in mice. Journal of Microbiology and Biotechnology 27 (8):1491–9. doi:10.4014/jmb.1703.03039.
  • Quinn, R. A., A. V. Melnik, A. Vrbanac, T. Fu, K. A. Patras, M. P. Christy, Z. Bodai, P. Belda-Ferre, A. Tripathi, L. K. Chung, et al. 2020. Global chemical effects of the microbiome include new bile-acid conjugations. Nature 579 (7797):123–9. doi:10.1038/s41586-020-2047-9.
  • Ramezani, A., T. D. Nolin, I. R. Barrows, M. G. Serrano, G. A. Buck, R. Regunathan-Shenk, R. E. West, P. S. Latham, R. Amdur, D. S. Raj, et al. 2018. Gut colonization with methanogenic archaea lowers plasma trimethylamine N-oxide concentrations in apolipoprotein e-/- mice. Scientific Reports 8:14752. doi:10.1038/s41598-018-33018-5.
  • Reichardt, N., S. H. Duncan, P. Young, A. Belenguer, C. McWilliam Leitch, K. P. Scott, H. J. Flint, and P. Louis. 2014. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. The ISME Journal 8 (6):1323–35. doi:10.1038/ismej.2014.14.
  • Rivera-Chavez, F., L. F. Zhang, F. Faber, C. A. Lopez, M. X. Byndloss, E. E. Olsan, G. Xu, E. M. Velazquez, C. B. Lebrilla, S. E. Winter, et al. 2016. Depletion of butyrate-producing clostridia from the gut microbiota drives an aerobic luminal expansion of salmonella. Cell Host & Microbe 19(4):443–54. doi:10.1016/j.chom.2016.03.004.
  • Roager, H. M., and T. R. Licht. 2018. Microbial tryptophan catabolites in health and disease. Nature Communications 9: 3294. doi:10.1038/s41467-018-05470-4.
  • Roberts, A. B., X. Gu, J. A. Buffa, A. G. Hurd, Z. Wang, W. Zhu, N. Gupta, S. M. Skye, D. B. Cody, B. S. Levison, et al. 2018. Development of a gut microbe-targeted nonlethal therapeutic to inhibit thrombosis potential. Nature Medicine 24 (9):1407–17. doi:10.1038/s41591-018-0128-1.
  • Roediger, W. E. 1982. Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterology 83 (2):424–9. doi:10.1016/S0016-5085(82)80339-9.
  • Rosignoli, P., R. Fabiani, A. De Bartolomeo, F. Spinozzi, E. Agea, M. A. Pelli, and G. Morozzi 2001. Protective activity of butyrate on hydrogen peroxide-induced DNA damage in isolated human colonocytes and HT29 tumour cells. Carcinogenesis 22 (10):1675–80. doi:10.1093/carcin/22.10.1675.
  • Salas-Salvado, J., M. Bullo, N. Babio, M. A. Martinez-Gonzalez, N. Ibarrola-Jurado, J. Basora, R. Estruch, M. I. Covas, D. Corella, F. Aros, et al. 2011. Reduction in the incidence of type 2 diabetes with the mediterranean diet results of the PREDIMED-Reus nutrition intervention randomized trial. Diabetes Care 34 (1):14–9. doi:10.2337/dc10-1288.
  • Salas-Salvadó, J., N. Becerra-Tomás, J. García-Gavilán, M. Bulló, and L. Barrubés. 2018. Mediterranean diet and cardiovascular disease prevention: What do we know? Progress in Cardiovascular Diseases 61 (1):62–7. doi:10.1016/j.pcad.2018.04.006.
  • Sanchez-Villegas, A., M. A. Martínez-González, R. Estruch, J. Salas-Salvadó, D. Corella, M. I. Covas, F. Arós, D. Romaguera, E. Gómez-Gracia, J. Lapetra, et al. 2013. Mediterranean dietary pattern and depression: The PREDIMED randomized trial. BMC Medicine 11:208. doi:10.1186/1741-7015-11-208.
  • Sayin, S. I., A. Wahlström, J. Felin, S. Jäntti, H.-U. Marschall, K. Bamberg, B. Angelin, T. Hyötyläinen, M. Orešič, and F. Bäckhed. 2013. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metabolism 17 (2):225–35. doi:10.1016/j.cmet.2013.01.003.
  • Schwingshackl, L., C. Schwedhelm, C. Galbete, and G. Hoffmann. 2017. Adherence to mediterranean diet and risk of cancer: An updated systematic review and meta-analysis. Nutrients 9 (10):1063. doi:10.3390/nu9101063.
  • Seldin, M. M., Y. Meng, H. Qi, WFei Zhu, Z. Wang, S. L. Hazen, A. J. Lusis, and D. M. Shih. 2016. Trimethylamine N-Oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-kappa B. Journal of the American Heart Association 5 (2):e002767. doi:10.1161/JAHA.115.002767.
  • Sender, R., S. Fuchs, and R. Milo. 2016. Revised estimates for the number of human and bacteria cells in the body. PLoS Biology 14 (8):e1002533. doi:10.1371/journal.pbio.1002533.
  • Shan, Z. L., T. Sun, H. Huang, S. Chen, L. Chen, C. Luo, W. Yang, X. Yang, P. Yao, J. Cheng, et al. 2017. Association between microbiota-dependent metabolite trimethylamine-N-oxide and type 2 diabetes. American Journal of Clinical Nutrition 106(3):888–94. doi:10.3945/ajcn.117.157107.
  • Shih, D. M., Z. Wang, R. Lee, Y. Meng, N. Che, S. Charugundla, H. Qi, J. Wu, C. Pan, J. M. Brown, et al. 2015. Flavin containing monooxygenase 3 exerts broad effects on glucose and lipid metabolism and atherosclerosis. Journal of Lipid Research 56 (1):22–37. doi:10.1194/jlr.M051680.
  • Shimada, Y., M. Kinoshita, K. Harada, M. Mizutani, K. Masahata, H. Kayama, and K. Takeda. 2013. Commensal bacteria-dependent indole production enhances epithelial barrier function in the colon. PLoS One 8(11):e80604.
  • Shimazu, T., M. D. Hirschey, J. Newman, W. He, K. Shirakawa, N. Le Moan, C. A. Grueter, H. Lim, L. R. Saunders, R. D. Stevens, et al. 2013. Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science (New York, N.Y.) 339 (6116):211–4. doi:10.1126/science.1227166.
  • Simenhoff, M. L., S. R. Dunn, G. P. Zollner, M. E. Fitzpatrick, S. M. Emery, W. E. Sandine, and J. W. Ayres. 1996. Biomodulation of the toxic and nutritional effects of small bowel bacterial overgrowth in end-stage kidney disease using freeze-dried Lactobacillus acidophilus. Mineral and Electrolyte Metabolism 22 (1-3):92–6.
  • Song, Z., Y. Cai, W. Xue, X. Lin, and L. Jing. 2019. Taxonomic profiling and populational patterns of bacterial bile salt hydrolase (BSH) genes on worldwide human gut microbiome. Microbiome 7:9. doi:10.1186/s40168-019-0628-3.
  • Soty, M., A. Gautier-Stein, F. Rajas, and G. Mithieux. 2017. Gut-brain glucose signaling in energy homeostasis. Cell Metabolism 25 (6):1231–42. doi:10.1016/j.cmet.2017.04.032.
  • Stacchiotti, V., S. Rezzi, M. Eggersdorfer, and F. Galli. 2021. Metabolic and functional interplay between gut microbiota and fat-soluble vitamins. Critical Reviews in Food Science and Nutrition 61 (19):3211–32. doi:10.1080/10408398.2020.1793728.
  • Stellwag, E. J., and P. B. Hylemon. 1976. Purification and characterization of bile salt hydrolase from Bacteroides fragilis subsp. fragilis. Biochimica et Biophysica Acta 452 (1):165–76. doi:10.1016/0005-2744(76)90068-1.
  • Sterner, R., G. Vidali, and V. G. Allfrey. 1981. Studies of acetylation and deacetylation in high mobility group proteins. Identification of the sites of acetylation in high mobility group proteins 14 and 17. The Journal of Biological Chemistry 256 (17):8892–5.
  • Sun, C. Y., S. C. Chang, and M. S. Wu. 2012. Uremic toxins induce kidney fibrosis by activating intrarenal renin-angiotensin-aldosterone system associated epithelial-to-mesenchymal transition. PLoS One 7 (3):e34026. doi:10.1371/journal.pone.0034026.
  • Sun, X., X. Jiao, Y. Ma, Y. Liu, L. Zhang, Y. He, and Y. Chen. 2016. Trimethylamine N-oxide induces inflammation and endothelial dysfunction in human umbilical vein endothelial cells via activating ROS-TXNIP-NLRP3 inflammasome. Biochemical and Biophysical Research Communications 481 (1–2):63–70. doi:10.1016/j.bbrc.2016.11.017.
  • Takayama, F., K. Taki, and T. Niwa. 2003. Bifidobacterium in gastro-resistant seamless capsule reduces serum levels of indoxyl sulfate in patients on hemodialysis. American Journal of Kidney Diseases 41 (3):S142–S145. doi:10.1053/ajkd.2003.50104.
  • Tan, P., H. Liu, J. Zhao, X. Gu, X. Wei, X. Zhang, N. Ma, L. J. Johnston, Y. Bai, W. Zhang, et al. 2021. Amino acids metabolism by rumen microorganisms: Nutrition and ecology strategies to reduce nitrogen emissions from the inside to the outside. Science of the Total Environment 800:149596. doi:10.1016/j.scitotenv.2021.149596.
  • Tang, W. H., Z. Wang, D. J. Kennedy, Y. Wu, J. A. Buffa, B. Agatisa-Boyle, X. S. Li, B. S. Levison, and S. L. Hazen. 2015. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circulation Research 116 (3):448-55. doi:10.1161/CIRCRESAHA.116.305360.
  • Tong, T. Y. N., P. N. Appleby, K. E. Bradbury, A. Perez-Cornago, R. C. Travis, R. Clarke, and T. J. Key. 2019. Risks of ischaemic heart disease and stroke in meat eaters, fish eaters, and vegetarians over 18 years of follow-up: Results from the prospective EPIC-Oxford study. BMJ 366:l4897. doi:10.1136/bmj.l4897.
  • Torres-Fuentes, C., H. Schellekens, T. G. Dinan, and J. F. Cryan. 2017. The microbiota-gut-brain axis in obesity. The Lancet Gastroenterology & Hepatology 2 (10):747–56. doi:10.1016/S2468-1253(17)30147-4.
  • Treacy, E. P., B. R. Akerman, L. M. Chow, R. Youil, C. Bibeau, J. Lin, A. G. Bruce, M. Knight, D. M. Danks, J. R. Cashman, et al. 1998. Mutations of the flavin-containing monooxygenase gene (FMO3) cause trimethylaminuria, a defect in detoxication. Human Molecular Genetics 7 (5):839–45. doi:10.1093/hmg/7.5.839.
  • Tremaroli, V., and F. Backhed. 2012. Functional interactions between the gut microbiota and host metabolism. Nature 489 (7415):242–9. doi:10.1038/nature11552.
  • Tsai, M. L., I. C. Hsieh, C. C. Hung, and C. C. Chen. 2015. Serum free indoxyl sulfate associated with in-stent restenosis after coronary artery stentings. Cardiovascular Toxicology 15 (1):52–60. doi:10.1007/s12012-014-9270-2.
  • Tumur, Z., and T. Niwa. 2009. Indoxyl sulfate inhibits nitric oxide production and cell viability by inducing oxidative stress in vascular endothelial cells. American Journal of Nephrology 29 (6):551–7. doi:10.1159/000191468.
  • Tumur, Z., H. Shimizu, A. Enomoto, H. Miyazaki, and T. Niwa. 2010. Indoxyl sulfate upregulates expression of ICAM-1 and MCP-1 by oxidative stress-induced NF-kappaB activation . American Journal of Nephrology 31 (5):435–41. doi:10.1159/000299798.
  • Ulman, C. A., J. J. Trevino, M. Miller, and R. K. Gandhi. 2014. Fish odor syndrome: A case report of trimethylaminuria. Dermatology Online Journal 20 (1):21260. doi:10.5070/D3201021260.
  • Urpi-Sarda, M., E. Almanza-Aguilera, R. Llorach, R. Vázquez-Fresno, R. Estruch, D. Corella, J. V. Sorli, F. Carmona, A. Sanchez-Pla, J. Salas-Salvadó, et al. 2019. Non-targeted metabolomic biomarkers and metabotypes of type 2 diabetes: A cross-sectional study of PREDIMED trial participants. Diabetes & Metabolism 45 (2):167–74. doi:10.1016/j.diabet.2018.02.006.
  • Vallim, T. Q. D., E. J. Tarling, and P. A. Edwards. 2013. Pleiotropic roles of bile acids in metabolism. Cell Metabolism 17 (5):657–69. doi:10.1016/j.cmet.2013.03.013.
  • Vanholder, R., A. Pletinck, E. Schepers, and G. Glorieux. 2018. Biochemical and clinical impact of organic uremic retention solutes: A comprehensive update. Toxins 10 (1):33. doi:10.3390/toxins10010033.
  • Vazquez-Fresno, R., R. Llorach, M. Urpi-Sarda, A. Lupianez-Barbero, R. Estruch, D. Corella, M. Fitó, F. Arós, M. Ruiz-Canela, J. Salas-Salvadó, et al. 2015. Metabolomic pattern analysis after mediterranean diet intervention in a nondiabetic population: A 1- and 3-year follow-up in the PREDIMED study. Journal of Proteome Research 14 (1):531–40. doi:10.1021/pr5007894.
  • Velasquez, M. T., P. Centron, I. Barrows, R. Dwivedi, and D. S. Raj. 2018. Gut microbiota and cardiovascular uremic toxicities. Toxins 10 (7):287. doi:10.3390/toxins10070.
  • Vily-Petit, J., M. Soty-Roca, M. Silva, M. Raffin, A. Gautier-Stein, F. Rajas, and G. Mithieux. 2020. Intestinal gluconeogenesis prevents obesity-linked liver steatosis and non-alcoholic fatty liver disease. Gut 69 (12):2193–202. doi:10.1136/gutjnl-2019-319745.
  • Vital, M., A. C. Howe, and J. M. Tiedje. 2014. Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data. mBio 5 (2):e00889 doi:10.1128/mBio.00889-14.
  • Wahlstrom, A., S. I. Sayin, H. U. Marschall, and F. Backhed. 2016. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metabolism 24 (1):41–50. doi:10.1016/j.cmet.2016.05.005.
  • Wang, H. B., J. Chen, K. Hollister, L. C. Sowers, and B. M. Forman. 1999. Endogenous bile acids are ligands for the nuclear receptor FXR BAR. Molecular Cell 3 (5):543–53. doi:10.1016/S1097-2765(00)80348-2.
  • Wang, Z., E. Klipfell, B. J. Bennett, R. Koeth, B. S. Levison, B. Dugar, A. E. Feldstein, E. B. Britt, X. Fu, Y.-M. Chung, et al. 2011. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472 (7341):57–63. doi:10.1038/nature09922.
  • Wang, K., M. Liao, N. Zhou, L. Bao, K. Ma, Z. Zheng, Y. Wang, C. Liu, W. Wang, J. Wang, et al. 2019. Parabacteroides distasonis alleviates obesity and metabolic dysfunctions via production of succinate and secondary bile acids. Cell Reports 26 (1):222–35. e225,doi:10.1016/j.celrep.2018.12.028.
  • Wang, Z., A. B. Roberts, J. A. Buffa, B. S. Levison, W. Zhu, E. Org, X. Gu, Y. Huang, M. Zamanian-Daryoush, M. K. Culley, et al. 2015. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 163 (7):1585–95. doi:10.1016/j.cell.2015.11.055.
  • Wang, Z., W. H. W. Tang, J. A. Buffa, X. Fu, E. B. Britt, R. A. Koeth, B. S. Levison, Y. Fan, Y. Wu, and S. L. Hazen. 2014. Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. European Heart Journal 35 (14):904–10. doi:10.1093/eurheartj/ehu002.
  • Wang, Z., X. Zeng, Y. Mo, K. Smith, Y. Guo, and J. Lin. 2012. Identification and characterization of a bile salt hydrolase from Lactobacillus salivarius for development of novel alternatives to antibiotic growth promoters. Applied and Environmental Microbiology. 78 (24):8795–802 doi:10.1128/AEM.02519-12.
  • Wang, Z., and Y. Zhao. 2018. Gut microbiota derived metabolites in cardiovascular health and disease. Protein & Cell 9 (5):416–31. doi:10.1007/s13238-018-0549-0.
  • Warrier, M., D. M. Shih, A. C. Burrows, D. Ferguson, A. D. Gromovsky, A. L. Brown, S. Marshall, A. McDaniel, R. C. Schugar, Z. Wang, et al. 2015. The TMAO-generating enzyme flavin monooxygenase 3 is a central regulator of cholesterol balance. Cell Reports 10 (3):326–38. doi:10.1016/j.celrep.2014.12.036.
  • Willemsen, L. E. M., M. A. Koetsier, S. J. H. van Deventer, and E. A. F. van Tol. 2003. Short chain fatty acids stimulate epithelial mucin 2 expression through differential effects on prostaglandin E(1) and E(2) production by intestinal myofibroblasts. Gut 52 (10):1442–7. doi:10.1136/gut.52.10.1442.
  • Wu, J., N. Ma, L. J. Johnston, and X. Ma. 2020. Dietary nutrients mediate intestinal host defense peptide expression. Advances in Nutrition 11 (1):92–102. doi:10.1093/advances/nmz057.
  • Yao, M. E., P. D. Liao, X. J. Zhao, and L. Wang. 2020. Trimethylamine-N-oxide has prognostic value in coronary heart disease: A meta-analysis and dose-response analysis. BMC Cardiovascular Disorders 20 (1):7 doi:10.1186/s12872-019-01310-5.
  • Yisireyili, M., H. Shimizu, S. Saito, A. Enomoto, F. Nishijima, and T. Niwa. 2013. Indoxyl sulfate promotes cardiac fibrosis with enhanced oxidative stress in hypertensive rats. Life Sciences 92 (24-26):1180–5. doi:10.1016/j.lfs.2013.05.008.
  • Zeisel, S. H., and K. A. da Costa. 2009. Choline: An essential nutrient for public health. Nutrition Reviews 67 (11):615–23. doi:10.1111/j.1753-4887.2009.00246.x.
  • Zhang, X. P., S. S. Yang, J. L. Chen, and Z. G. Su. 2019. Unraveling the regulation of hepatic gluconeogenesis. Frontiers in Endocrinology 9:802. doi:10.3389/fendo.2018.00802.
  • Zhao, L., F. Zhang, X. Ding, G. Wu, Y. Y. Lam, X. Wang, H. Fu, X. Xue, C. Lu, J. Ma, et al. 2018. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science (New York, N.Y.) 359 (6380):1151–6. doi:10.1126/science.aao5774.
  • Zheng, X., T. Chen, R. Jiang, A. Zhao, Q. Wu, J. Kuang, D. Sun, Z. Ren, M. Li, M. Zhao, et al. 2021. Hyocholic acid species improve glucose homeostasis through a distinct TGR5 and FXR signaling mechanism. Cell Metabolism 33 (4):791–803. doi:10.1016/j.cmet.2020.11.017.
  • Zhu, W., J. C. Gregory, E. Org, J. A. Buffa, N. Gupta, Z. Wang, L. Li, X. Fu, Y. Wu, M. Mehrabian, et al. 2016. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 165 (1):111–24. doi:10.1016/j.cell.2016.02.011.
  • Zhu, Y., E. Jameson, M. Crosatti, H. Schäfer, K. Rajakumar, T. D. H. Bugg, and Y. Chen. 2014. Carnitine metabolism to trimethylamine by an unusual rieske-type oxygenase from human microbiota. Proceedings of the National Academy of Sciences of the United States of America 111 (11):4268–73. doi:10.1073/pnas.1316569111.
  • Zhu, F., W. Wang, Q. Ma, Z. Yang, Y. Fan, Y. Ju, R. Guo, Q. Wang, X. Mu, B. Zhao, et al. 2020. Role of short-chain fatty acids in the gut-brain axis in schizophrenia: Contribution to immune activation and pathophysiology in humans and mice. bioRxiv Preprint. doi:10.1101/2020.04.11.021915.
  • Zumbrun, S. D., A. R. Melton-Celsa, M. A. Smith, J. J. Gilbreath, D. S. Merrell, and A. D. O’Brien. 2013. Dietary choice affects Shiga toxin-producing Escherichia coli (STEC) O157:H7 colonization and disease. Proceedings of the National Academy of Sciences of the United States of America 110 (23):E2126–E2133. doi:10.1073/pnas.1222014110.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.