1,264
Views
7
CrossRef citations to date
0
Altmetric
Reviews

Effect of high hydrostatic pressure on the edible quality, health and safety attributes of plant-based foods represented by cereals and legumes: a review

, , , , , , & ORCID Icon show all

References

  • Abera, G. 2019. Review on high-pressure processing of foods. Cogent Food & Agriculture 5 (1):1568725. doi:10.1080/23311932.2019.1568725.
  • Alsalman, F. B., and H. Ramaswamy. 2020. Reduction in soaking time and anti-nutritional factors by high pressure processing of chickpeas. Journal of Food Science and Technology 57 (7):2572–85. doi:10.1007/s13197-020-04294-9.
  • Bai, T.-G., L. Zhang, J.-Y. Qian, W. Jiang, M. Wu, S.-Q. Rao, Q. Li, C. Zhang, and C. Wu. 2021. Pulsed electric field pretreatment modifying digestion, texture, structure and flavor of rice. LWT 138:110650. doi:10.1016/j.lwt.2020.110650.
  • Balakrishna, A. K., and M. Farid. 2020. Enrichment of rice with natural thiamine using high-pressure processing (HPP). Journal of Food Engineering 283:110040. doi:10.1016/j.jfoodeng.2020.110040.
  • Balakrishna, A. K., M. A. Wazed, and M. Farid. 2020. A review on the effect of high pressure processing (HPP) on gelatinization and infusion of nutrients. Molecules 25 (10):2369. doi:10.3390/molecules25102369.
  • Barba, F. J., N. S. Terefe, R. Buckow, D. Knorr, and V. Orlien. 2015. New opportunities and perspectives of high pressure treatment to improve health and safety attributes of foods. A review. Food Research International 77:725–42. doi:10.1016/j.foodres.2015.05.015.
  • Belmiro, R. H., A. A. L. Tribst, and M. Cristianini. 2018. Impact of high pressure processing in hydration and drying curves of common beans (Phaseolus vulgaris L.). Innovative Food Science & Emerging Technologies 47:279–85. doi:10.1016/j.ifset.2018.03.013.
  • Belmiro, R. H., A. A. L. Tribst, and M. Cristianini. 2020. Effects of high pressure processing on common beans (Phaseolus Vulgaris L.): Cotyledon structure. Starch Characteristics, and Phytates and Tannins Contents. Starch-Starke 72:3–4. doi:10.1002/star.201900212.
  • Boluda-Aguilar, M., A. Taboada-Rodriguez, A. Lopez-Gomez, F. Marin-Iniesta, and G. V. Barbosa-Canovas. 2013. Quick cooking rice by high hydrostatic pressure processing. LwtFood Science and Technology 51 (1):196–204. doi:10.1016/j.lwt.2012.09.021.
  • Borsato, V. M., L. M. M. Jorge, A. L. Mathias, and R. M. M. Jorge. 2019. Ultrasound assisted hydration improves the quality of the malt barley. Journal of Food Process Engineering 42 (6):13208. doi:10.1111/jfpe.13208.
  • Bu, G. H., T. H. Li, Y. F. Zhao, and F. S. Chen. 2020. Effects of high hydrostatic pressure combined with heat treatment on the antigenicity and conformation of β-conglycinin. European Food Research and Technology 246 (5):1065–72. doi:10.1007/s00217-020-03472-5.
  • Buta, M. B., S. A. Emire, C. Poste, S. Andree, and R. Greiner. 2019. Reduction of β-ODAP and IP6 contents in Lathyrus sativus L. seed by high hydrostatic pressure. Food Research International (Ottawa, Ont.) 120:73–82. doi:10.1016/j.foodres.2019.02.011.
  • Castro, L. M. G., E. M. C. Alexandre, J. A. Saraiva, and M. Pintado. 2020. Impact of high pressure on starch properties: A review. Food Hydrocolloids. 106:105877. doi:10.1016/j.foodhyd.2020.105877.
  • Chao, D., S. Jung, and R. E. Aluko. 2018. Physicochemical and functional properties of high pressure-treated isolated pea protein. Innovative Food Science & Emerging Technologies 45:179–85. doi:10.1016/j.ifset.2017.10.014.
  • Chauhan, O. P. 2019. Non-thermal processing of foods, 17–55. 1st ed. Boca Raton: CRC Press. doi:10.1201/b22017.
  • Chawla, R., G. R. Patil, and A. K. Singh. 2011. High hydrostatic pressure technology in dairy processing: A review. Journal of Food Science and Technology 48 (3):260–8. doi:10.1007/s13197-010-0180-4.
  • Chung, S. Y., M. Houska, and S. Reed. 2013. Reducing peanut allergens by high pressure combined with polyphenol oxidase. High Pressure Research 33 (4):813–21. doi:10.1080/08957959.2013.828716.
  • Coelho, C. M. M., C. D. Bellato, J. C. P. Santos, E. M. M. Ortega, and S. M. Tsai. 2007. Effect of phytate and storage conditions on the development of the ‘hard-to-cook’ phenomenon in common beans. Journal of the Science of Food and Agriculture 87 (7):1237–43. doi:10.1002/jsfa.2822.
  • Deng, Y., Y. Zhong, W. J. Yu, J. Yue, Z. M. Liu, Y. R. Zheng, and Y. Y. Zhao. 2013. Effect of hydrostatic high pressure pretreatment on flavor volatile profile of cooked rice. Journal of Cereal Science 58 (3):479–87. doi:10.1016/j.jcs.2013.09.010.
  • Dhital, S., C. Brennan, and M. J. Gidley. 2019. Location and interactions of starches in planta: Effects on food and nutritional functionality. Trends in Food Science & Technology 93:158–66. doi:10.1016/j.tifs.2019.09.011.
  • Ferreira, C. D., G. H. Lang, I. D. S. Lindemann, N. D. S. Timm, J. F. Hoffmann, V. Ziegler, and M. de Oliveira. 2021. Postharvest UV-C irradiation for fungal control and reduction of mycotoxins in brown, black, and red rice during long-term storage. Food Chemistry 339:127810. doi:10.1016/j.foodchem.2020.127810.
  • Garcia-Mora, P., E. Peñas, J. Frias, H. Zieliński, W. Wiczkowski, D. Zielińska, and C. Martínez-Villaluenga. 2016. High-pressure-assisted enzymatic release of peptides and phenolics increases angiotensin converting enzyme I inhibitory and antioxidant activities of pinto bean hydrolysates. Journal of Agricultural and Food Chemistry 64 (8):1730–40. doi:10.1021/acs.jafc.5b06080.
  • Gharibzahedi, S. M. T., and B. Smith. 2021. Effects of high hydrostatic pressure on the quality and functionality of protein isolates, concentrates, and hydrolysates derived from pulse legumes: A review. Trends in Food Science & Technology 107:466–79. doi:10.1016/j.tifs.2020.11.016.
  • Guan, H. N., X. Q. Diao, F. Jiang, J. C. Han, and B. H. Kong. 2018. The enzymatic hydrolysis of soy protein isolate by Corolase PP under high hydrostatic pressure and its effect on bioactivity and characteristics of hydrolysates. Food Chemistry 245:89–96. doi:10.1016/j.foodchem.2017.08.081.
  • Gulati, P., S. Brahma, and D. J. Rose. 2020. Impacts of extrusion processing on nutritional components in cereals and legumes: Carbohydrates, proteins, lipids, vitamins, and minerals. In Extrusion cooking, ed. G. M. Ganjyal, 415–43. Cambridge, MA: Woodhead Publishing.
  • Guo, Z. B., X. Z. Jia, S. Miao, B. Y. Chen, X. Lu, and B. D. Zheng. 2018. Structural and thermal properties of amylose-fatty acid complexes prepared via high hydrostatic pressure. Food Chemistry 264:172–9. doi:10.1016/j.foodchem.2018.05.032.
  • Han, Z., R. Shi, and D. W. Sun. 2020. Effects of novel physical processing techniques on the multi-structures of starch. Trends in Food Science & Technology 97:126–35. doi:10.1016/j.tifs.2020.01.006.
  • Hashimoto, M., S. Hossain, K. Matsuzaki, O. Shido, and K. Yoshino. 2020. The journey from white rice to ultra-high hydrostatic pressurized brown rice: An excellent endeavor for ideal nutrition from staple food. Critical Reviews in Food Science and Nutrition. 28: 1–19. doi:10.1080/10408398.2020.1844138.
  • Huang, H. W., B. B. Yang, and C. Y. Wang. 2014. Effects of high pressure processing on immunoreactivity and microbiological safety of crushed peanuts. Food Control. 42:290–5. doi:10.1016/j.foodcont.2014.02.030.
  • Huang, H. W., C. P. Hsu, and C. Y. Wang. 2020. Healthy expectations of high hydrostatic pressure treatment in food processing industry. Journal of Food and Drug Analysis 28 (1):1–13. doi:10.1016/j.jfda.2019.10.002.
  • Huang, H. W., C. P. Hsu, B. B. Yang, and C. Y. Wang. 2014. Potential utility of high-pressure processing to address the risk of food allergen concerns. Comprehensive Reviews in Food Science and Food Safety 13 (1):78–90. doi:10.1111/1541-4337.12045.
  • Huang, H. W., S. J. Wu, J. K. Lu, Y. T. Shyu, and C. Y. Wang. 2017. Current status and future trends of high-pressure processing in food industry. Food Control. 72:1–8. doi:10.1016/j.foodcont.2016.07.019.
  • Inanoglu, S., G. V. Barbosa-Cánovas, J. Patel, M.-J. Zhu, S. S. Sablani, F. Liu, Z. Tang, and J. Tang. 2021. Impact of high-pressure and microwave-assisted thermal pasteurization on inactivation of Listeria innocua and quality attributes of green beans. Journal of Food Engineering 288:110162. doi:10.1016/j.jfoodeng.2020.110162.
  • Joshi, V. K., and S. Kumar. 2015. Meat Analogues: Plant based alternatives to meat products – A review. International Journal of Food and Fermentation Technology 5 (2):107–19. doi:10.5958/2277-9396.2016.00001.5.
  • Kalagatur, N. K., J. R. Kamasani, V. Mudili, K. Krishna, O. P. Chauhan, and M. H. Sreepathi. 2018. Effect of high pressure processing on growth and mycotoxin production of Fusarium graminearum in maize. Food Bioscience 21:53–9. doi:10.1016/j.fbio.2017.11.005.
  • Khattab, R. Y., and S. D. Arntfield. 2009. Nutritional quality of legume seeds as affected by some physical treatments 2. Antinutritional factors. LwtFood Science and Technology 42 (6):1113–8. doi:10.1016/j.lwt.2009.02.004.
  • Khodaei, D., F. Javanmardi, and A. M. Khaneghah. 2021. The global overview of the occurrence of mycotoxins in cereals: A three-year survey. Current Opinion in Food Science 39:36–42. doi:10.1016/j.cofs.2020.12.012.
  • Kim, J. U., H. M. Shahbaz, J. Cho, H. Lee, and J. Park. 2021. Inactivation of Bacillus cereus spores using a combined treatment of UV-TiO2 photocatalysis and high hydrostatic pressure. Innovative Food Science & Emerging Technologies 70:102676. doi:10.1016/j.ifset.2021.102676.
  • Kim, M. Y., G. Y. Jang, Y. J. Lee, K. S. Woo, B. Y. Hwang, J. Lee, and H. S. Jeong. 2018. Identification of anti-inflammatory active peptide from black soybean treated by high hydrostatic pressure after germination. Phytochemistry Letters 27:167–73. doi:10.1016/j.phytol.2018.07.008.
  • Kim, M. Y., G. Y. Jang, N. S. Oh, S. Y. Baek, S. H. Lee, K. M. Kim, T. M. Kim, J. Lee, and H. S. Jeong. 2017. Characteristics and in vitro anti-inflammatory activities of protein extracts from pre-germinated black soybean [Glycine max (L.)] treated with high hydrostatic pressure. Innovative Food Science & Emerging Technologies 43:84–91. doi:10.1016/j.ifset.2017.07.027.
  • Kim, M. Y., S. H. Lee, G. Y. Jang, M. Li, Y. R. Lee, J. Lee, and H. Jeong. 2015. Influence of applied pressure on bioactive compounds of germinated rough rice (Oryza sativa L.). Food and Bioprocess Technology 8 (10):2176–81. doi:10.1007/s11947-015-1565-1.
  • Kim, M. Y., S. H. Lee, G. Y. Jang, M. Li, Y. R. Lee, J. Lee, and H. S. Jeong. 2017. Changes of phenolic-acids and vitamin E profiles on germinated rough rice (Oryza sativa L.) treated by high hydrostatic pressure. Food Chemistry 217:106–11. doi:10.1016/j.foodchem.2016.08.069.
  • Kim, M. Y., S. H. Lee, G. Y. Jang, H. J. Park, M. Li, S. Kim, Y. R. Lee, Y. H. Noh, J. Lee, and H. S. Jeong. 2015. Effects of high hydrostatic pressure treatment on the enhancement of functional components of germinated rough rice (Oryza sativa L.). Food Chemistry 166:86–92. doi:10.1016/j.foodchem.2014.05.150.
  • Kim, N. 2017. Production of wheat gluten hydrolyzates by enzymatic process at high pressure. Food Science and Biotechnology 26 (6):1587–93. doi:10.1007/s10068-017-0152-9.
  • Kinnersley, A. M., and F. J. Turano. 2000. Gamma aminobutyric acid (GABA) and plant responses to stress. Critical Reviews in Plant Sciences 19 (6):479–509. doi:10.1080/07352680091139277.
  • Koutchma, T. 2014a. Introduction. In Adapting high hydrostatic pressure for food processing operations, ed. T. Koutchma, 1–3. San Diego: Academic Press.
  • Koutchma, T. 2014b. Fundamentals of HPP technology. In Adapting high hydrostatic pressure for food processing operations, ed. T. Koutchma, 5–10. San Diego: Academic Press.
  • Koutchma, T. 2014c. HPP commercial and pilot equipment. In Adapting high hydrostatic pressure for food processing operations, ed. T. Koutchma, 41–56. San Diego: Academic Press.
  • Kutzli, I., J. Weiss, and M. Gibis. 2021. Glycation of plant proteins via maillard reaction: Reaction chemistry, technofunctional properties, and potential food application. Foods 10 (2):376. doi:10.3390/foods1002037d.
  • Kyriakopoulou, K., B. Dekkers, and A. J. van der Goot. 2019. Plant-based meat analogues. In Sustainable meat production and processing, ed. C. M. Galanakis, 103–26. London: Academic Press.
  • Lavilla, M., E. Puértolas, and J. Orcajo. 2020. HPP impact to reduce allergenicity of foods. In Present and future of high pressure processing, eds. F. J. Barba, C. Tonello-Samson, E. Puértolas, and M. Lavilla, 113–38. Amsterdam: Elsevier.
  • Lee, C., W. Lee, Y. Han, and S. Oh. 2017. Effect of proteolysis with alkaline protease following high hydrostatic pressure treatment on IgE binding of buckwheat protein. Journal of Food Science 82 (3):834–9. doi:10.1111/1750-3841.13627.
  • Lee, H., M. J. Ha, H. M. Shahbaz, J. U. Kim, H. Jang, and J. Park. 2018. High hydrostatic pressure treatment for manufacturing of red bean powder: A comparison with the thermal treatment. Journal of Food Engineering 238:141–7. doi:10.1016/j.jfoodeng.2018.06.016.
  • Lee, J. H., K. S. Woo, C. Jo, H. S. Jeong, S. K. Lee, B. W. Lee, Y.-Y. Lee, B. Lee, and H.-J. Kim. 2019. Quality evaluation of rice treated by high hydrostatic pressure and atmospheric pressure plasma. Journal of Food Quality 2019:1–9. doi:10.1155/2019/4253701.
  • Li, H. J., Y. M. Jia, W. Peng, K. X. Zhu, H. M. Zhou, and X. N. Guo. 2018. High hydrostatic pressure reducing allergenicity of soy protein isolate for infant formula evaluated by ELISA and proteomics via Chinese soy-allergic children’s sera. Food Chemistry 269:311–7. doi:10.1016/j.foodchem.2018.07.001.
  • Li, W., X. Tian, P. Wang, A. S. M. Saleh, Q. Luo, J. Zheng, S. Ouyang, and G. Zhang. 2016. Recrystallization characteristics of high hydrostatic pressure gelatinized normal and waxy corn starch. International Journal of Biological Macromolecules 83:171–7. doi:10.1016/j.ijbiomac.2015.11.057.
  • Li, Y., Y. Li, Z. Chen, L. Bu, F. Shi, and J. Huang. 2021. High-temperature air fluidization improves cooking and eating quality and storage stability of brown rice. Innovative Food Science & Emerging Technologies 67:102536. doi:10.1016/j.ifset.2020.102536.
  • Lin, T., S. O’Keefe, S. Duncan, and C. Fernandez-Fraguas. 2020. Manipulation of the dry bean (Phaseolus vulgaris L.) matrix by hydrothermal and high-pressure treatments: Impact on in vitro bile salt-binding ability. Food Chemistry 310:125699. doi:10.1016/j.foodchem.2019.125699.
  • Linsberger-Martin, G., K. Weiglhofer, P. T. P. Thao, and E. Berghofer. 2013. High hydrostatic pressure influences antinutritional factors and in vitro protein digestibility of split peas and whole white beans. LWTFood Science and Technology 51 (1):331–6. doi:10.1016/j.lwt.2012.11.008.
  • Liu, C. C., M. M. Zhao, W. Z. Sun, and J. Y. Ren. 2013. Effects of high hydrostatic pressure treatments on haemagglutination activity and structural conformations of phytohemagglutinin from red kidney bean (Phaseolus vulgaris). Food Chemistry 136 (3–4):1358–63. doi:10.1016/j.foodchem.2012.09.082.
  • Liu, H., X. D. Guo, Y. L. Li, H. M. Li, H. H. Fan, and M. Wang. 2016. In vitro digestibility and changes in physicochemical and textural properties of tartary buckwheat starch under high hydrostatic pressure. Journal of Food Engineering 189:64–71. doi:10.1016/j.jfoodeng.2016.05.015.
  • Liu, P. L., X. S. Hu, and Q. Shen. 2010. Effect of high hydrostatic pressure on starches: A review. Starch/Starke 62 (12):615–28. doi:10.1002/star.201000001.
  • Long, F. Y., X. Yang, J. Sun, Q. Y. Zhong, J. P. Wei, P. Qu, and T. L. Yue. 2016. Effects of combined high pressure and thermal treatment on the allergenic potential of peanut in a mouse model of allergy. Innovative Food Science & Emerging Technologies 35:133–8. doi:10.1016/j.ifset.2016.04.003.
  • Marciniak, A., S. Suwal, N. Naderi, Y. Pouliot, and M. Doyen. 2018. Enhancing enzymatic hydrolysis of food proteins and production of bioactive peptides using high hydrostatic pressure technology. Trends in Food Science & Technology 80:187–98. doi:10.1016/j.tifs.2018.08.013.
  • Meng, L., W. Zhang, X. Zhou, Z. Wu, A. Hui, Y. He, H. Gao, and P. Chen. 2019. Effect of high hydrostatic pressure on the bioactive compounds, antioxidant activity and in vitro digestibility of cooked black rice during refrigerated storage. Journal of Cereal Science 86:54–9. doi:10.1016/j.jcs.2019.01.005.
  • Meng, L., W. C. Zhang, A. L. Hui, and Z. Y. Wu. 2020. Effect of high hydrostatic pressure on pasting properties, volatile flavor components, and water distribution of cooked black rice. Journal of Food Processing and Preservation 44 (11):1–6. doi:10.1111/jfpp.14900.
  • Meng, L., W. C. Zhang, Z. Y. Wu, A. L. Hui, H. Gao, P. P. Chen, and Y. W. He. 2018. Effect of pressure-soaking treatments on texture and retrogradation properties of black rice. LWT 93:485–90. doi:10.1016/j.lwt.2018.03.079.
  • Miano, A. C., and P. E. D. Augusto. 2018. The hydration of grains: A critical review from description of phenomena to process improvements. Comprehensive Reviews in Food Science and Food Safety 17 (2):352–70. doi:10.1111/1541-4337.12328.
  • Mirza Alizadeh, A., F. Hashempour-Baltork, A. Mousavi Khaneghah, and H. Hosseini. 2021. New perspective approaches in controlling fungi and mycotoxins in food using emerging and green technologies. Current Opinion in Food Science 39:7–15. doi:10.1016/j.cofs.2020.12.006.
  • Nasrabadi, M. N., A. S. Doost, and R. Mezzenga. 2021. Modification approaches of plant-based proteins to improve their techno-functionality and use in food products. Food Hydrocolloids. 118:106789. doi:10.1016/j.foodhyd.2021.106789.
  • Ningtyas, D. W., B. Bhandari, and S. Prakash. 2021. Modulation fat globules of the plant-based cream emulsion: Influence of the source of plant proteins. Innovative Food Science & Emerging Technologies 74:102852. doi:10.1016/j.ifset.2021.102852.
  • Pan, D., B. Tang, H. Liu, Z. Li, R. Ma, Y. Peng, X. Wu, L. Che, N. He, X. Ling, et al. 2020. Effect of high hydrostatic pressure (HHP) processing on immunoreactivity and spatial structure of peanut major allergen Ara h 1. Food and Bioprocess Technology 13 (1):132–44. doi:10.1007/s11947-019-02382-z.
  • Park, H., P. Puligundla, and C. Mok. 2020. Cold plasma decontamination of brown rice grains: Impact on biochemical and sensory qualities of their corresponding seedlings and aqueous tea infusions. LWT 131:109508. doi:10.1016/j.lwt.2020.109508.
  • Penas, E., R. Gomez, J. Frias, M. L. Baeza, and C. Vidal-Valverde. 2011. High hydrostatic pressure effects on immunoreactivity and nutritional quality of soybean products. Food Chemistry 125 (2):423–9. doi:10.1016/j.foodchem.2010.09.023.
  • Piccini, L., A. Scilingo, and F. Speroni. 2019. Thermal versus high hydrostatic pressure treatments on calcium-added soybean proteins. Protein solubility, colloidal stability and cold-set gelation. Food Biophysics 14 (1):69–79. doi:10.1007/s11483-018-9558-z.
  • Poojary, M. M., N. Dellarosa, S. Roohinejad, M. Koubaa, U. Tylewicz, F. Gómez-Galindo, J. A. Saraiva, M. D. Rosa, and F. J. Barba. 2017. Influence of innovative processing on γ-aminobutyric acid (GABA) contents in plant food materials. Comprehensive Reviews in Food Science and Food Safety 16 (5):895–905. doi:10.1111/1541-4337.12285.
  • Proctor, A. 2018. High hydrostatic pressure food processing: Potential and limitations. In Alternatives to conventional food processing, ed. A. Proctor, 294–297 + 300. 2nd ed. London: Royal Society of Chemistry.
  • Queirós, R. P., J. A. Saraiva, and J. A. L. da Silva. 2018. Tailoring structure and technological properties of plant proteins using high hydrostatic pressure. Critical Reviews in Food Science and Nutrition 58 (9):1538–56. doi:10.1080/10408398.2016.1271770.
  • Ravichandran, C., S. R. Purohit, and P. S. Rao. 2018. High pressure induced water absorption and gelatinization kinetics of paddy. Innovative Food Science & Emerging Technologies 47:146–52. doi:10.1016/j.ifset.2018.02.012.
  • Schmidt, M., E. Zannini, and E. K. Arendt. 2019. Screening of post-harvest decontamination methods for cereal grains and their impact on grain quality and technological performance. European Food Research and Technology 245 (5):1061–74. doi:10.1007/s00217-018-3210-5.
  • Sehrawat, R., B. P. Kaur, P. K. Nema, S. Tewari, and L. Kumar. 2021. Microbial inactivation by high pressure processing: Principle, mechanism and factors responsible. Food Science and Biotechnology 30 (1):19–35. doi:10.1007/s10068-020-00831-6.
  • Shahbaz, H. M., S. Yoo, B. Seo, K. Ghafoor, J. U. Kim, D. U. Lee, and J. Park. 2016. Combination of TiO2-UV photocatalysis and high hydrostatic pressure to inactivate bacterial pathogens and yeast in commercial apple juice. Food and Bioprocess Technology 9 (1):182–90. doi:10.1007/s11947-015-1614-9.
  • Sharma, N., S. K. Goyal, T. Alam, S. Fatma, A. Chaoruangrit, and K. Niranjan. 2018. Effect of high pressure soaking on water absorption, gelatinization, and biochemical properties of germinated and non-germinated foxtail millet grains. Journal of Cereal Science 83:162–70. doi:10.1016/j.jcs.2018.08.013.
  • Sim, S. Y. J., X. Y. Hua, and C. J. Henry. 2020. A novel approach to structure plant-based yogurts using high pressure processing. Foods 9 (8):1126. doi:10.3390/foods9081126.
  • Sun, C., J. Ge, J. He, R. Gan, and Y. Fang. 2021. Processing, quality, safety, and acceptance of meat analogue products. Engineering 7 (5):674–8. doi:10.1016/j.eng.2020.10.011.
  • Tan, M., J. Xu, H. Gao, Z. Yu, J. Liang, D. Mu, X. Li, X. Zhong, S. Luo, Y. Zhao, et al. 2021. Effects of combined high hydrostatic pressure and pH-shifting pretreatment on the structure and emulsifying properties of soy protein isolates. Journal of Food Engineering 306:110622. doi:10.1016/j.jfoodeng.2021.110622.
  • Tian, Y., D. Li, J. Zhao, X. Xu, and Z. Jin. 2014. Effect of high hydrostatic pressure (HHP) on slowly digestible properties of rice starches. Food Chemistry 152:225–9. doi:10.1016/j.foodchem.2013.11.162.
  • Tian, Y. Q., J. W. Zhao, Z. J. Xie, J. P. Wang, X. M. Xu, and Z. Y. Jin. 2014. Effect of different pressure-soaking treatments on color, texture, morphology and retrogradation properties of cooked rice. LWT – Food Science and Technology 55 (1):368–73. doi:10.1016/j.lwt.2013.09.020.
  • Ueno, S., T. Shigematsu, M. Karo, M. Hayashi, and T. Fujii. 2015. Effects of high hydrostatic pressure on water absorption of Adzuki beans. Foods (Basel, Switzerland) 4 (2):148–58. doi:10.3390/foods4020148.
  • Ueno, S., T. Shigematsu, T. Watanabe, K. Nakajima, M. Murakami, M. Hayashi, and T. Fujii. 2010. Generation of free amino acids and gamma-aminobutyric acid in water-soaked soybean by high-hydrostatic pressure processing. Journal of Agricultural and Food Chemistry 58 (2):1208–13. doi:10.1021/jf903102t.
  • Ulug, S. K., F. Jahandideh, and J. P. Wu. 2021. Novel technologies for the production of bioactive peptides. Trends in Food Science & Technology 108:27–39. doi:10.1016/j.tifs.2020.12.002.
  • Vanga, S. K., J. Wang, A. Singh, and V. Raghavan. 2019. Simulations of temperature and pressure unfolding in soy allergen Gly m 4 using molecular modeling. Journal of Agricultural and Food Chemistry 67 (45):12547–57. doi:10.1021/acs.jafc.9b05140.
  • Vásquez, U., R. Siche, and A. C. Miano. 2021. Ultrasound-assisted hydration with sodium bicarbonate solution enhances hydration-cooking of pigeon pea. LWT 144:111191. doi:10.1016/j.lwt.2021.111191.
  • Viljanen, K., M. Lille, R. L. Heinio, and J. Buchert. 2011. Effect of high-pressure processing on volatile composition and odour of cherry tomato puree. Food Chemistry 129 (4):1759–65. doi:10.1016/j.foodchem.2011.06.046.
  • Wu, Z., Y. He, W. Yan, W. Zhang, X. Liu, A. Hui, H. Wang, and H. Li. 2021. Effect of high-pressure pre-soaking on texture and retrogradation properties of parboiled rice. Journal of the Science of Food and Agriculture 101 (10):4201–6. doi:10.1002/jsfa.11058.
  • Xia, Q., B. D. Green, Z. Z. Zhu, Y. F. Li, S. M. T. Gharibzahedi, S. Roohinejad, and F. J. Barba. 2019. Innovative processing techniques for altering the physicochemical properties of wholegrain brown rice (Oryza sativa L.) – opportunities for enhancing food quality and health attributes. Critical Reviews in Food Science and Nutrition 59 (20):3349–70. doi:10.1080/10408398.2018.1491829.
  • Xia, Q., and Y. F. Li. 2018a. Mild high hydrostatic pressure pretreatments applied before soaking process to modulate wholegrain brown rice germination: An examination on embryo growth and physicochemical properties. Food Research International (Ottawa, Ont.) 106:817–24. doi:10.1016/j.foodres.2018.01.052.
  • Xia, Q., and Y. F. Li. 2018b. Ultra-high pressure effects on color, volatile organic compounds and antioxidants of wholegrain brown rice (Oryza sativa L.) during storage: A comparative study with high-intensity ultrasound and germination pretreatments. Innovative Food Science & Emerging Technologies 45:390–400. doi:10.1016/j.ifset.2017.12.003.
  • Xia, Q., H. Tao, P. Huang, L. P. Wang, J. Mei, and Y. F. Li. 2017. Minerals in vitro bioaccessibility and changes in textural and structural characteristics of uncooked pre-germinated brown rice influenced by ultra-high pressure. Food Control. 71:336–45. doi:10.1016/j.foodcont.2016.07.018.
  • Xia, Q., J. Mei, W. J. Yu, and Y. F. Li. 2017. High hydrostatic pressure treatments enhance volatile components of pre-germinated brown rice revealed by aromatic fingerprinting based on HS-SPME/GC-MS and chemometric methods. Food Research International (Ottawa, Ont.) 91:103–14. doi:10.1016/j.foodres.2016.12.001.
  • Xia, Q., L. P. Wang, C. C. Xu, J. Mei, and Y. F. Li. 2017. Effects of germination and high hydrostatic pressure processing on mineral elements, amino acids and antioxidants in vitro bioaccessibility, as well as starch digestibility in brown rice (Oryza sativa L.). Food Chemistry 214:533–42. doi:10.1016/j.foodchem.2016.07.114.
  • Xia, Q., L. P. Wang, and Y. F. Li. 2018. Exploring high hydrostatic pressure-mediated germination to enhance functionality and quality attributes of wholegrain brown rice. Food Chemistry 249:104–10. doi:10.1016/j.foodchem.2018.01.007.
  • Xi, J., and M. X. He. 2018. High hydrostatic pressure (HHP) effects on antigenicity and structural properties of soybean β-conglycinin. Journal of Food Science and Technology 55 (2):630–7. doi:10.1007/s13197-017-2972-2.
  • Xi, J., M. X. He, and J. Y. Pi. 2019. Identification of antigenic sites destructed by high hydrostatic pressure (HHP) of the β subunit of β-conglycinin. International Journal of Biological Macromolecules 141:1287–92. doi:10.1016/j.ijbiomac.2019.09.042.
  • Xu, X. N., W. L. Yan, Z. K. Yang, X. N. Wang, Y. Xiao, and X. F. Du. 2019. Effect of ultra-high pressure on quality characteristics of parboiled rice. Journal of Cereal Science 87:117–23. doi:10.1016/j.jcs.2019.03.014.
  • Yamamoto, K. 2017. Food processing by high hydrostatic pressure. Bioscience, Biotechnology, and Biochemistry 81 (4):672–9. doi:10.1080/09168451.2017.1281723.
  • Yamamoto, K., K. Fukami, K. Kawai, and S. Koseki. 2006. Pressure gelatinization of starch. Food and Packing (Shokuhintoyouki) 47:448–56. (in Janpanese).
  • Yang, H., J. Y. Gao, A. S. Yang, J. Lu, and H. B. Chen. 2015. Allergenicity characteristics of germinated soybean proteins in a BALB/c mouse model. Regulatory Toxicology and Pharmacology: RTP 72 (2):249–55. doi:10.1016/j.yrtph.2015.04.021.
  • Yu, Y., L. Y. Ge, S. M. Zhu, Y. Zhan, and Q. T. Zhang. 2015. Effect of presoaking high hydrostatic pressure on the cooking properties of brown rice. Journal of Food Science and Technology 52 (12):7904–13. doi:10.1007/s13197-015-1901-5.
  • Yu, L., S. Muralidharan, N. A. Lee, R. Lo, J. R. Stokes, M. A. Fitzgerald, and M. S. Turner. 2018. The impact of variable high pressure treatments and/or cooking of rice on bacterial populations after storage using culture-independent analysis. Food Control. 92:232–9. doi:10.1016/j.foodcont.2018.04.027.
  • Zhang, B., E. P. Gilbert, D. Qiao, F. Xie, D. K. Wang, S. Zhao, and F. Jiang. 2019. A further study on supramolecular structure changes of waxy maize starch subjected to alkaline treatment by extended-q small-angle neutron scattering. Food Hydrocolloids. 95:133–42. doi:10.1016/j.foodhyd.2019.04.031.
  • Zhao, G. C., M. X. Xie, Y. C. Wang, and J. Y. Li. 2017. Molecular mechanisms underlying γ-aminobutyric acid (GABA) accumulation in giant embryo rice seeds. Journal of Agricultural and Food Chemistry 65 (24):4883–9. doi:10.1021/acs.jafc.7b00013.
  • Zhu, S. M., F. F. Hu, H. S. Ramaswamy, Y. Yu, L. Yu, and Q. T. Zhang. 2016. Effect of high pressure treatment and degree of milling on gelatinization and structural properties of brown rice. Food and Bioprocess Technology 9 (11):1844–53. doi:10.1007/s11947-016-1770-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.