469
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Digestibility and oxidative stability of plant lipid assemblies: An underexplored source of potentially bioactive surfactants?

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abdullah, J. W., and H. Zhang. 2020. Recent advances in the composition, extraction and food applications of plant-derived oleosomes. Trends in Food Science & Technology 106:322–32.
  • Albertsson, P.-A., R. Köhnke, S. C. Emek, J. Mei, J. F. Rehfeld, H.-E. Akerlund, and C. Erlanson-Albertsson. 2007. Chloroplast membranes retard fat digestion and induce satiety: Effect of biological membranes on pancreatic lipase/co-lipase. The Biochemical Journal 401 (3):727–33. doi: 10.1042/BJ20061463.
  • Amara, S., N. Barouh, J. Lecomte, D. Lafont, S. Robert, P. Villeneuve, A. De Caro, and F. Carrière. 2010. Lipolysis of natural long chain and synthetic medium chain galactolipids by pancreatic lipase-related protein 2. Biochimica et Biophysica Acta 1801 (4):508–16. doi: 10.1016/j.bbalip.2010.01.003.
  • Amara, S., D. Lafont, B. Fiorentino, P. Boullanger, F. Carrière, and A. De Caro. 2009. Continuous measurement of galactolipid hydrolysis by pancreatic lipolytic enzymes using the pH-stat technique and a medium chain monogalactosyl diglyceride as substrate. Biochimica et Biophysica Acta 1791 (10):983–90. doi: 10.1016/j.bbalip.2009.05.002.
  • Anderson, M. M., R. E. McCarty, and E. A. Zimmer. 1974. The role of galactolipids in spinach chloroplast lamellar membranes: I. Partial purification of a bean leaf galactolipid lipase and its action on subchloroplast particles. Plant Physiology 53 (5):699–704. doi: 10.1104/pp.53.5.699.
  • Andersson, L., C. Bratt, K. C. Arnoldsson, B. Herslöf, N. U. Olsson, B. Sternby, and A. Nilsson. 1995. Hydrolysis of galactolipids by human pancreatic lipolytic enzymes and duodenal contents. Journal of Lipid Research 36 (6):1392–400. doi: 10.1016/S0022-2275(20)41146-0.
  • Anomynous. 2011. Saisine n° 2006-SA-0359, ANC AG, ANSES, Editor, Avis de l’Agence française de sécurité sanitaire des aliments relatif à l’actualisation des apports nutritionnels conseillés pour les acides gras. https://www.anses.fr/fr/system/files/NUT2006sa0359.pdf
  • Barre, A., M. Simplicien, G. Cassan, H. Benoist, and P. Rougé. 2018. Oil bodies (oleosomes): Occurrence, structure, allergenicity. Revue Française D’Allergologie 58 (8):574–80. doi: 10.1016/j.reval.2018.10.005.
  • Beisson, F., N. Ferté, S. Bruley, R. Voultoury, R. Verger, and V. Arondel. 2001. Oil-bodies as substrates for lipolytic enzymes. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1531 (1-2):47–58. doi: 10.1016/S1388-1981(01)00086-5.
  • Berry, S. E. E., and T. A. B. Sanders. 2005. Influence of triacylglycerol structure of stearic acid-rich fats on postprandial lipaemia. The Proceedings of the Nutrition Society 64 (2):205–12. doi: 10.1079/pns2005422.
  • Berton‐Carabin, C. C., M.-H. Ropers, and C. Genot. 2014. Lipid oxidation in oil-in-water emulsions: Involvement of the interfacial layer. Comprehensive Reviews in Food Science and Food Safety 13 (5):945–77. doi: 10.1111/1541-4337.12097.
  • Block, M. A., A. J. Dorne, J. Joyard, and R. Douce. 1983. Preparation and characterization of membrane fractions enriched in outer and inner envelope membranes from spinach chloroplasts. II. Biochemical characterization. Journal of Biological Chemistry 258 (21):13281–6. doi: 10.1016/S0021-9258(17)44113-5.
  • Borgström, B. 1993. Phosphatidylcholine as substrate for human pancreatic phospholipase A2. Importance of the physical state of the substrate. Lipids 28 (5):371–5. doi: 10.1007/BF02535932.
  • Bottier, C., J. Géan, F. Artzner, B. Desbat, M. Pézolet, A. Renault, D. Marion, and V. Vié. 2007. Galactosyl headgroup interactions control the molecular packing of wheat lipids in Langmuir films and in hydrated liquid-crystalline mesophases. Biochimica et Biophysica Acta 1768 (6):1526–40. doi: 10.1016/j.bbamem.2007.02.021.
  • Bourlieu, C., O. Ménard, K. Bouzerzour, G. Mandalari, A. Macierzanka, A. R. Mackie, and D. Dupont. 2014. Specificity of infant digestive conditions: Some clues for developing relevant in vitro models. Critical Reviews in Food Science and Nutrition 54 (11):1427–57. doi: 10.1080/10408398.2011.640757.
  • Browse, J., and C. Somerville. 1991. Glycerolipid synthesis: Biochemistry and regulation. Annual Review of Plant Physiology and Plant Molecular Biology 42 (1):467–506. doi: 10.1146/annurev.pp.42.060191.002343.
  • Chen, B., D. J. McClements, D. A. Gray, and E. A. Decker. 2012. Physical and oxidative stability of pre-emulsified oil bodies extracted from soybeans. Food Chemistry 132 (3):1514–20. doi: 10.1016/j.foodchem.2011.11.144.
  • Chen, Y., Y. Cao, L. Zhao, X. Kong, and Y. Hua. 2014. Macronutrients and micronutrients of soybean oil bodies extracted at different pH. Journal of Food Science 79 (7):C1285–C1291. doi: 10.1111/1750-3841.12516.
  • Chen, Y., and T. Ono. 2010. Simple extraction method of non-allergenic intact soybean oil bodies that are thermally stable in an aqueous medium. Journal of Agricultural and Food Chemistry 58 (12):7402–7. doi: 10.1021/jf1006159.
  • Chu, B.-S., G. T. Rich, M. J. Ridout, R. M. Faulks, M. S. J. Wickham, and P. J. Wilde. 2009. Modulating pancreatic lipase activity with galactolipids: Effects of emulsion interfacial composition. Langmuir: The ACS Journal of Surfaces and Colloids 25 (16):9352–60. doi: 10.1021/la9008174.
  • Couëdelo, L., S. Amara, M. Lecomte, E. Meugnier, J. Monteil, L. Fonseca, G. Pineau, M. Cansell, F. Carrière, M. C. Michalski, et al. 2015. Impact of various emulsifiers on ALA bioavailability and chylomicron synthesis through changes in gastrointestinal lipolysis. Food & Function 6 (5):1726–35. doi: 10.1039/C5FO00070J.
  • Cui, L., and E. A. Decker. 2016. Phospholipids in foods: Prooxidants or antioxidants? Journal of the Science of Food and Agriculture 96 (1):18–31. doi: 10.1002/jsfa.7320.
  • De Caro, J., C. Eydoux, S. Chérif, R. Lebrun, Y. Gargouri, F. Carrière, and A. De Caro. 2008. Occurrence of pancreatic lipase-related protein-2 in various species and its relationship with herbivore diet. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology 150 (1):1–9. doi: 10.1016/j.cbpb.2008.01.007.
  • De Caro, J., B. Sias, P. Grandval, F. Ferrato, H. Halimi, F. Carrière, and A. De Caro. 2004. Characterization of pancreatic lipase-related protein 2 isolated from human pancreatic juice. Biochimica et Biophysica Acta 1701 (1-2):89–99. doi: 10.1016/j.bbapap.2004.06.005.
  • Decker, E. A., D. J. McClements, C. Bourlieu-Lacanal, E. Durand, M. C. Figueroa-Espinoza, J. Lecomte, and P. Villeneuve. 2017. Hurdles in predicting antioxidant efficacy in oil-in-water emulsions. Trends in Food Science & Technology 67:183–94. doi: 10.1016/j.tifs.2017.07.001.
  • Deckers, H.M., G. Van Rooijen, J. Boothe, J. Goll, M. M. Moloney. 2002. Products for topical applications comprising oil bodies. United States Patent Application 20020106337.
  • Demé, B., C. Cataye, M. A. Block, E. Maréchal, and J. Jouhet. 2014. Contribution of galactoglycerolipids to the 3-dimensional architecture of thylakoids. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 28 (8):3373–83. doi: 10.1096/fj.13-247395.
  • Ding, J., Z. Xu, B. Qi, Z. Liu, L. Yu, Z. Yan, L. Jiang, and X. Sui. 2020. Thermally treated soya bean oleosomes: The changes in their stability and associated proteins. International Journal of Food Science & Technology 55 (1):229–38. doi: 10.1111/ijfs.14266.
  • Dorne, A. J., J. Joyard, and R. Douce. 1990. Do thylakoids really contain phosphatidylcholine? Proceedings of the National Academy of Sciences of the United States of America 87 (1):71–4. doi: 10.1073/pnas.87.1.71.
  • Douce, R., R. B. Holtz, and A. A. Benson. 1973. Isolation and properties of the envelope of spinach chloroplasts. Journal of Biological Chemistry 248 (20):7215–22. doi: 10.1016/S0021-9258(19)43381-4.
  • El Hadi, H., A. Di Vincenzo, R. Vettor, and M. Rossato. 2019. Cardio-metabolic disorders in non-alcoholic fatty liver disease. International Journal of Molecular Sciences 20 (9):2215. doi: 10.3390/ijms20092215.
  • Enos, R. T., K. T. Velázquez, J. L. McClellan, T. L. Cranford, M. D. Walla, and E. A. Murphy. 2014. Reducing the dietary omega-6:omega-3 utilizing α-linolenic acid; not a sufficient therapy for attenuating high-fat-diet-induced obesity development nor related detrimental metabolic and adipose tissue inflammatory outcomes. PLoS One 9 (4):e94897. doi: 10.1371/journal.pone.0094897.
  • Eydoux, C., S. Spinelli, T. L. Davis, J. R. Walker, A. Seitova, S. Dhe-Paganon, A. De Caro, C. Cambillau, and F. Carrière. 2008. Structure of human pancreatic lipase-related protein 2 with the lid in an open conformation. Biochemistry 47 (36):9553–64. doi: 10.1021/bi8005576.
  • Fisk, I. D., D. A. White, A. Carvalho, and D. A. Gray. 2006. Tocopherol—An intrinsic component of sunflower seed oil bodies. Journal of the American Oil Chemists’ Society 83 (4):341–4. doi: 10.1007/s11746-006-1210-2.
  • Fisk, I. D., D. A. White, M. Lad, and D. A. Gray. 2008. Oxidative stability of sunflower oil bodies. European Journal of Lipid Science and Technology 110 (10):962–8. doi: 10.1002/ejlt.200800051.
  • Frandsen, G. I., J. Mundy, and J. T. C. Tzen. 2001. Oil bodies and their associated proteins, oleosin and caleosin. Physiologia Plantarum 112 (3):301–7. doi: 10.1034/j.1399-3054.2001.1120301.x.
  • Frentzen, M., E. Heinz, T. A. McKeon, and P. K. Stumpf. 1983. Specificities and selectivities of glycerol-3-phosphate acyltransferase and monoacylglycerol-3-phosphate acyltransferase from pea and spinach chloroplasts. European Journal of Biochemistry 129 (3):629–36. doi: 10.1111/j.1432-1033.1983.tb07096.x.
  • Furt, F., F. Simon-Plas, and S. Mongrand. 2011. Lipids of the plant plasma membrane. In The plant plasma membrane, ed. A. S. Murphy, B. Schulz, and W. Peer, 3–30. Berlin: Springer.
  • Gallier, S., and H. Singh. 2012. Behavior of almond oil bodies during in vitro gastric and intestinal digestion. Food & Function 3 (5):547–55. doi: 10.1039/c2fo10259e.
  • Gallier, S., H. Tate, and H. Singh. 2013. In vitro gastric and intestinal digestion of a walnut oil body dispersion. Journal of Agricultural and Food Chemistry 61 (2):410–7. doi: 10.1021/jf303456a.
  • Gargouri, Y., G. Pieroni, C. Riviere, J.-F. Sauniere, P. A. Lowe, L. Sarda, and R. Verger. 1986. Kinetics assay of human gastric lipase on short and long chain triacylglycerol emulsions. Gastroenterology 91 (4):919–25. doi: 10.1016/0016-5085(86)90695-5.
  • Golding, M., and T. J. Wooster. 2010. The influence of emulsion structure and stability on lipid digestion. Current Opinion in Colloid & Interface Science 15 (1-2):90–101. doi: 10.1016/j.cocis.2009.11.006.
  • Gounaris, K., and J. Barber. 1983. Monogalactosyldiacylglycerol: The most abundant polar lipid in nature. Trends in Biochemical Sciences 8 (10):378–81. doi: 10.1016/0968-0004(83)90366-3.
  • Gray, D. A., G. Payne, D. J. McClements, E. A. Decker, and M. Lad. 2010. Oxidative stability of Echium plantagineum seed oil bodies. European Journal of Lipid Science and Technology 112 (7):741–9. doi: 10.1002/ejlt.200900280.
  • Grundy, M. M.-L., K. Lapsley, and P. R. Ellis. 2016. A review of the impact of processing on nutrient bioaccessibility and digestion of almonds. International Journal of Food Science & Technology 51 (9):1937–46. doi: 10.1111/ijfs.13192.
  • Gurevich, V., B. B. Bondarenko, K. J. Gundermann, R. Schumacher, T. Astashkina, V. Ivanov, Y. Popov, L. Shatilina, and N. Kazennova. 1997. Polyunsaturated phospholipids increase the hypolipidemic effect of Lovastatin. European Journal of Internal Medicine 8:13–8.
  • Han, S. K., B. I. Lee, and W. Cho. 1997. Bacterial expression and characterization of human pancreatic phospholipase A2. Biochimica et Biophysica Acta 1346 (2):185–92. doi: 10.1016/S0005-2760(97)00034-9.
  • Hassan, Z., S. Ali, R. Ahmad, M. Rizwan, F. Abbas, T. Yasmeen, and M. Iqbal. 2017. Biochemical and molecular responses of oilseed crops to heavy metal stress. In Oilseed crops, ed. P. Ahmad, 236–48. John Wiley & Sons, Ltd.doi: 10.1002/9781119048800
  • Hazahari, N. Y. B., M. Hosokawa, and K. Miyashita. 2018. Comparison of oxidative stability of monogalactosyl diacylglycerol, digalactosyl diacylglycerol, and triacylglycerol containing polyunsaturated fatty acids. Food and Nutrition Sciences 9: 221–234. doi: 10.4236/fns.2018.93017.
  • He, X., Y. Sun, and R.-L. Zhu. 2013. The oil bodies of liverworts: Unique and important organelles in land plants. Critical Reviews in Plant Sciences 32 (5):293–302. doi: 10.1080/07352689.2013.765765.
  • Hildebrand, D. H., J. Terao, and M. Kito. 1984. Phospholipids plus tocopherols increase soybean oil stability. Journal of the American Oil Chemists’ Society 61 (3):552–5. doi: 10.1007/BF02677029.
  • Huang, A. H. C. 1992. Oil bodies and oleosins in seeds. Annual Review of Plant Physiology and Plant Molecular Biology 43 (1):177–200. doi: 10.1146/annurev.pp.43.060192.001141.
  • Huang, C.-Y., and A. H. C. Huang. 2017. Unique motifs and length of hairpin in oleosin target the cytosolic side of endoplasmic reticulum and budding lipid droplet. Plant Physiology 174 (4):2248–60. doi: 10.1104/pp.17.00366.
  • Huang, M.-D., and A. H. C. Huang. 2015. Bioinformatics reveal five lineages of oleosins and the mechanism of lineage evolution related to structure/function from green algae to seed plants. Plant Physiology 169 (1):453–70. doi: 10.1104/pp.15.00634.
  • James, M. 2002. Recombinant oleosins from cacao and their use as flavoring or emulsifying agents. Nestec SA. EP1235919B1.
  • Judde, A., P. Villeneuve, A. Rossignol-Castera, and A. Le Guillou. 2003. Antioxidant effect of soy lecithins on vegetable oil stability and their synergism with tocopherols. Journal of the American Oil Chemists’ Society 80 (12):1209–15. doi: 10.1007/s11746-003-0844-4.
  • Kapchie, V. N., L. Yao, C. C. Hauck, T. Wang, and P. A. Murphy. 2013. Oxidative stability of soybean oil in oleosomes as affected by pH and iron. Food Chemistry 141 (3):2286–93. doi: 10.1016/j.foodchem.2013.05.018.
  • Karkani, O. A., N. Nenadis, C. V. Nikiforidis, and V. Kiosseoglou. 2013. Effect of recovery methods on the oxidative and physical stability of oil body emulsions. Food Chemistry 139 (1-4):640–8. doi: 10.1016/j.foodchem.2012.12.055.
  • Kashima, M., G.-S. Cha, Y. Isoda, J. Hirano, and T. Miyazawa. 1991. The antioxidant effects of phospholipids on perilla oil. Journal of the American Oil Chemists’ Society 68 (2):119–22. doi: 10.1007/BF02662331.
  • Kergomard, J., G. Paboeuf, N. Barouh, P. Villeneuve, O. Schafer, T. J. Wooster, C. Bourlieu, and V. Vié. 2021. Stability to oxidation and interfacial behavior at the air/water interface of minimally-processed versus processed walnut oil-bodies. Food Chemistry 360:129880. doi: 10.1016/j.foodchem.2021.129880.
  • Khor, V. K., W.-J. Shen, and F. B. Kraemer. 2013. Lipid droplet metabolism. Current Opinion in Clinical Nutrition and Metabolic Care 16 (6):632–7.
  • Kobayashi, K. 2016. Role of membrane glycerolipids in photosynthesis, thylakoid biogenesis and chloroplast development. Journal of Plant Research 129 (4):565–80. doi: 10.1007/s10265-016-0827-y.
  • Köhnke, R., A. Lindbo, T. Larsson, A. Lindqvist, M. Rayner, S. C. Emek, P.-A. Albertsson, J. F. Rehfeld, M. Landin-Olsson, and C. Erlanson-Albertsson. 2009. Thylakoids promote release of the satiety hormone cholecystokinin while reducing insulin in healthy humans. Scandinavian Journal of Gastroenterology 44 (6):712–9. doi: 10.1080/00365520902803499.
  • Köhnke, R., A. Lindqvist, N. Göransson, S. C. Emek, P.-A. Albertsson, J. F. Rehfeld, A. Hultgårdh-Nilsson, and C. Erlanson-Albertsson. 2009. Thylakoids suppress appetite by increasing cholecystokinin resulting in lower food intake and body weight in high-fat fed mice. Phytotherapy Research: PTR 23 (12):1778–83. doi: 10.1002/ptr.2855.
  • Konopka, I., S. Czaplicki, and D. Rotkiewicz. 2006. Differences in content and composition of free lipids and carotenoids in flour of spring and winter wheat cultivated in Poland. Food Chemistry 95 (2):290–300. doi: 10.1016/j.foodchem.2005.01.011.
  • Krumova, S. B., C. Dijkema, P. de Waard, H. Van As, G. Garab, and H. van Amerongen. 2008. Phase behavior of phosphatidylglycerol in spinach thylakoid membranes as revealed by 31P-NMR. Biochimica et Biophysica Acta 1778 (4):997–1003. doi: 10.1016/j.bbamem.2008.01.004.
  • Lane, K., E. Derbyshire, W. Li, and C. Brennan. 2014. Bioavailability and potential uses of vegetarian sources of omega-3 fatty acids: A review of the literature. Critical Reviews in Food Science and Nutrition 54 (5):572–9. doi: 10.1080/10408398.2011.596292.
  • Lee, H. S., Y. Nam, Y. H. Chung, H. R. Kim, E. S. Park, S. J. Chung, J. H. Kim, U. D. Sohn, H.-C. Kim, K. W. Oh, et al. 2014. Beneficial effects of phosphatidylcholine on high-fat diet-induced obesity, hyperlipidemia and fatty liver in mice. Life Sciences 118 (1):7–14. doi: 10.1016/j.lfs.2014.09.027.
  • Li, J., and Z. Guo. 2016. Identification and quantification of phenolic compounds in rapeseed originated lecithin and antioxidant activity evaluation. LWT 73:397–405. doi: 10.1016/j.lwt.2016.06.039.
  • Li, M., D. J. Murphy, K.-H. K. Lee, R. Wilson, L. J. Smith, D. C. Clark, and J.-Y. Sung. 2002. Purification and structural characterization of the central hydrophobic domain of oleosin. The Journal of Biological Chemistry 277 (40):37888–95. doi: 10.1074/jbc.M202721200.
  • Makkhun, S., A. Khosla, T. Foster, D. J. McClements, M. M. L. Grundy, and D. A. Gray. 2015. Impact of extraneous proteins on the gastrointestinal fate of sunflower seed (Helianthus annuus) oil bodies: A simulated gastrointestinal tract study. Food & Function 6 (1):125–34. doi: 10.1039/c4fo00422a.
  • Márquez-Ruiz, G., M. C. García-Martínez, and F. Holgado. 2008. Changes and effects of dietary oxidized lipids in the gastrointestinal tract. Lipid Insights 2:LPI.S904. doi: 10.4137/LPI.S904.
  • Maurer, S., G. Waschatko, D. Schach, B. I. Zielbauer, J. Dahl, T. Weidner, M. Bonn, and T. A. Vilgis. 2013. The role of intact oleosin for stabilization and function of oleosomes. The Journal of Physical Chemistry. B 117 (44):13872–83. doi: 10.1021/jp403893n.
  • Maurice, M., B. Joseph, and V. R. Gijs. 2000. Oil bodies and associated proteins as affinity matrices. Sembiosys Genetics Inc. US5856452A. https://patents.google.com/patent/US5856452A/en
  • Michalski, M. C., C. Genot, C. Gayet, C. Lopez, F. Fine, F. Joffre, J. L. Vendeuvre, J. Bouvier, J. M. Chardigny, and K. Raynal-Ljutovac. 2013. Multiscale structures of lipids in foods as parameters affecting fatty acid bioavailability and lipid metabolism. Progress in Lipid Research 52 (4):354–73. doi: 10.1016/j.plipres.2013.04.004.
  • Millichip, M., A. S. Tatham, F. Jackson, G. Griffiths, P. R. Shewry, and A. K. Stobart. 1996. Purification and characterization of oil-bodies (oleosomes) and oil-body boundary proteins (oleosins) from the developing cotyledons of sunflower (Helianthus annuus L.). Biochemical Journal 314 (1):333–7. doi: 10.1042/bj3140333.
  • N’Goma, J.-C. B., S. Amara, K. Dridi, V. Jannin, and F. Carrière. 2012. Understanding the lipid-digestion processes in the GI tract before designing lipid-based drug-delivery systems. Therapeutic Delivery 3 (1):105–24. doi: 10.4155/tde.11.138.
  • Nalbone, G., D. Lairon, M. Charbonnier-Augeire, J.-L. Vigne, J. Leonardi, C. Chabert, J. C. Hauton, and R. Verger. 1980. Pancreatic phospholipase A2 hydrolysis of phosphatidylcholines in various physicochemical states. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism 620 (3):612–25. doi: 10.1016/0005-v2760(80)90153-8.
  • Nantiyakul, N., S. Furse, I. Fisk, T. J. Foster, G. Tucker, and D. A. Gray. 2012. Phytochemical composition of Oryza sativa (Rice) bran oil bodies in crude and purified isolates. Journal of the American Oil Chemists’ Society 89 (10):1867–72. doi: 10.1007/s11746-012-2078-y.
  • Nikiforidis, C. V. 2019. Structure and functions of oleosomes (oil bodies). Advances in Colloid and Interface Science 274:102039.
  • Nikiforidis, C. V., C. Ampatzidis, S. Lalou, E. Scholten, T. D. Karapantsios, and V. Kiosseoglou. 2013. Purified oleosins at air–water interfaces. Soft Matter 9 (4):1354–63. doi: 10.1039/C2SM27118D.
  • Nikiforidis, C. V., V. Kiosseoglou, and E. Scholten. 2013. Oil bodies: An insight on their microstructure — maize germ vs sunflower seed. Food Research International 52 (1):136–41. doi: 10.1016/j.foodres.2013.02.052.
  • Nikiforidis, C. V., A. Matsakidou, and V. Kiosseoglou. 2014. Composition, properties and potential food applications of natural emulsions and cream materials based on oil bodies. RSC Advances. 4 (48):25067–78. doi: 10.1039/C4RA00903G.
  • Noll, F., C. May, and H. Kindl. 2000. Phospholipid monolayer of plant lipid bodies attacked by phospholipase A2 shows 80 nm holes analyzed by atomic force microscopy. Biophysical Chemistry 86 (1):29–35. doi: 10.1016/S0301-4622(00)00156-3.
  • Ohlsson, L. 2000. Digestion and absorption of galactolipids. Lund: Institute of Medicine, University Hospital of Lund.
  • Piironen, V., D. G. Lindsay, T. A. Miettinen, J. Toivo, and A.-M. Lampi. 2000. Plant sterols: Biosynthesis, biological function and their importance to human nutrition. Journal of the Science of Food and Agriculture 80 (7):939–66. doi: 10.1002/(SICI)1097-0010(20000515)80:7<939::AID-JSFA644>3.0.CO;2-C.
  • Pourteymour Fard Tabrizi, F., and M. Abbasalizad Farhangi. 2020. A systematic review of the potential effects of thylakoids in the management of obesity and its related issues. Food Reviews International 37 (5):469–90.
  • Pribil, M., M. Labs, and D. Leister. 2014. Structure and dynamics of thylakoids in land plants. Journal of Experimental Botany 65 (8):1955–72. doi: 10.1093/jxb/eru090.
  • Rayner, M., H. Ljusberg, S. C. Emek, E. Sellman, C. Erlanson-Albertsson, and P.-Å. Albertsson. 2011. Chloroplast thylakoid membrane-stabilised emulsions. Journal of the Science of Food and Agriculture 91 (2):315–21. doi: 10.1002/jsfa.4187.
  • Reis, A., and C. M. Spickett. 2012. Chemistry of phospholipid oxidation. Biochimica et Biophysica Acta 1818 (10):2374–87. doi: 10.1016/j.bbamem.2012.02.002.
  • Robert, C., C. Buisson, F. Laugerette, H. Abrous, D. Rainteau, L. Humbert, J. Vande Weghe, E. Meugnier, E. Loizon, F. Caillet, et al. 2021. Impact of rapeseed and soy lecithin on postprandial lipid metabolism, bile acid profile, and gut bacteria in mice. Molecular Nutrition & Food Research 65 (9):2001068. doi: 10.1002/mnfr.202001068.
  • Robert, C., L. Couëdelo, C. Knibbe, L. Fonseca, C. Buisson, E. Errazuriz-Cerda, E. Meugnier, E. Loizon, C. Vaysse, and M.-C. Michalski. 2020. Rapeseed lecithin increases lymphatic lipid output and α-linolenic acid bioavailability in rats. The Journal of Nutrition 150 (11):2900–11. doi: 10.1093/jn/nxaa244.
  • Robert, C., L. Couëdelo, C. Vaysse, and M.-C. Michalski. 2020. Vegetable lecithins: A review of their compositional diversity, impact on lipid metabolism and potential in cardiometabolic disease prevention. Biochimie 169:121–32. doi: 10.1016/j.biochi.2019.11.017.
  • Sahaka, M., S. Amara, J. Wattanakul, M. A. Gedi, N. Aldai, G. Parsiegla, J. Lecomte, J. T. Christeller, D. Gray, B. Gontero, et al. 2020. The digestion of galactolipids and its ubiquitous function in Nature for the uptake of the essential α-linolenic acid. Food & Function 11 (8):6710–44. doi: 10.1039/D0FO01040E.
  • Saini, R. K., and Y.-S. Keum. 2018. Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance - A review. Life Sciences 203:255–67. doi: 10.1016/j.lfs.2018.04.049.
  • Salhi, A., S. Amara, P. Mansuelle, R. Puppo, R. Lebrun, B. Gontero, A. Aloulou, and F. Carrière. 2020. Characterization of all the lipolytic activities in pancreatin and comparison with porcine and human pancreatic juices. Biochimie 169:106–20. doi: 10.1016/j.biochi.2019.07.004.
  • Shahidi, F., and Y. Zhong. 2010. Lipid oxidation and improving the oxidative stability. Chemical Society Reviews 39 (11):4067–79. doi: 10.1039/b922183m.
  • Shanbhag, A. 2018. Utilization of modified lecithin to control lipid oxidation in bulk oils. Masters theses. University of Massachusetts. https://scholarworks.umass.edu/cgi/viewcontent.cgi?article=1648&context=masters_theses_2
  • Simpson, T. D., and L. K. Nakamura. 1989. Phospholipid degradation in membranes of isolated soybean lipid bodies. Journal of the American Oil Chemists’ Society 66 (8):1093–6. doi: 10.1007/BF02670091.
  • Sintra, T. E., S. P. M. Ventura, and J. A. P. Coutinho. 2014. Superactivity induced by micellar systems as the key for boosting the yield of enzymatic reactions. Journal of Molecular Catalysis B: Enzymatic 107:140–51. doi: 10.1016/j.molcatb.2014.06.001.
  • Stenkula, K. G., E.-L. Stenblom, C. Montelius, E. Egecioglu, and C. Erlanson-Albertsson. 2017. Thylakoids reduce body fat and fat cell size by binding to dietary fat making it less available for absorption in high-fat fed mice. Nutrition & Metabolism 14:4. doi: 10.1186/s12986-016-0160-4.
  • Sternby, B., A. Nilsson, T. Melin, and B. Borgström. 1991. Pancreatic lipolytic enzymes in human duodenal contents radioimmunoassay compared with enzyme activity. Scandinavian Journal of Gastroenterology 26 (8):859–66. doi: 10.3109/00365529109037023.
  • St‐Pierre, A., D. Blondeau, M. Boivin, V. Beaupré, N. Boucher, and I. Desgagné‐Penix. 2019. Study of antioxidant properties of thylakoids and application in UV protection and repair of UV-induced damage. Journal of Cosmetic Dermatology 18 (6):1980–91. doi: 10.1111/jocd.12936.
  • Takenaka, A., M. Hosokawa, and K. Miyashita. 2007. Unsaturated Phosphatidylethanolamine as effective synergist in combination with alpha-tocopherol. Journal of Oleo Science 56 (10):511–6. doi: 10.5650/jos.56.511.
  • Tzen, J. T. C., Y. Cao, P. Laurent, C. Ratnayake, and A. H. C. Huang. 1993. Lipids, proteins, and structure of seed oil bodies from diverse species. Plant Physiology 101 (1):267–76. doi: 10.1104/pp.101.1.267.
  • Tzen, J. T., Y. K. Lai, K. L. Chan, and A. H. Huang. 1990. Oleosin isoforms of high and low molecular weights are present in the oil bodies of diverse seed species. Plant Physiology 94 (3):1282–9. doi: 10.1104/pp.94.3.1282.
  • Vergara, D., O. López, M. Bustamante, and C. Shene. 2020. An in vitro digestion study of encapsulated lactoferrin in rapeseed phospholipid–based liposomes. Food Chemistry 321:126717. doi: 10.1016/j.foodchem.2020.126717.
  • Vindigni, J.-D., F. Wien, A. Giuliani, Z. Erpapazoglou, R. Tache, F. Jagic, T. Chardot, Y. Gohon, and M. Froissard. 2013. Fold of an oleosin targeted to cellular oil bodies. Biochimica et Biophysica Acta 1828 (8):1881–8. doi: 10.1016/j.bbamem.2013.04.009.
  • Vors, C., P. Capolino, C. Guérin, E. Meugnier, S. Pesenti, M.-A. Chauvin, J. Monteil, N. Peretti, M. Cansell, F. Carrière, et al. 2012. Coupling in vitro gastrointestinal lipolysis and Caco-2 cell cultures for testing the absorption of different food emulsion. Food & Function 3 (5):537–46. doi: 10.1039/c2fo10248j.
  • Vors, C., J. Drai, G. Pineau, M. Laville, H. Vidal, F. Laugerette, and M.-C. Michalski. 2017. Emulsifying dietary fat modulates postprandial endotoxemia associated with chylomicronemia in obese men: A pilot randomized crossover study. Lipids in Health and Disease 16 (1):97. doi: 10.1186/s12944-017-0486-6.
  • Vors, C., L. Joumard-Cubizolles, M. Lecomte, E. Combe, L. Ouchchane, J. Drai, K. Raynal, F. Joffre, L. Meiller, M. Le Barz, et al. 2020. Milk polar lipids reduce lipid cardiovascular risk factors in overweight postmenopausal women: Towards a gut sphingomyelin-cholesterol interplay. Gut 69 (3):487–501. doi: 10.1136/gutjnl-2018-318155.
  • Vors, C., G. Pineau, L. Gabert, J. Drai, C. Louche-Pélissier, C. Defoort, D. Lairon, M. Désage, S. Danthine, S. Lambert-Porcheron, et al. 2013. Modulating absorption and postprandial handling of dietary fatty acids by structuring fat in the meal: A randomized crossover clinical trial. The American Journal of Clinical Nutrition 97 (1):23–36. doi: 10.3945/ajcn.112.043976.
  • Walther, T. C., and R. V. Farese. 2012. Lipid droplets and cellular lipid metabolism. Annual Review of Biochemistry 81 (1):687–714. doi: 10.1146/annurev-biochem-061009-102430.
  • Waraho, T., D. J. McClements, and E. A. Decker. 2011. Mechanisms of lipid oxidation in food dispersions. Trends in Food Science & Technology 22 (1):3–13. doi: 10.1016/j.tifs.2010.11.003.
  • Wattanakul, J., M. Sahaka, S. Amara, S. Mansor, B. Gontero, F. Carrière, and D. Gray. 2019. In vitro digestion of galactolipids from chloroplast-rich fraction (CRF) of postharvest, pea vine field residue (haulm) and spinach leaves. Food & Function 10 (12):7806–17. doi: 10.1039/c9fo01867k.
  • Yamaguchi, T., R. Sugimura, J. Shimajiri, M. Suda, M. Abe, M. Hosokawa, and K. Miyashita. 2012. Oxidative stability of glyceroglycolipids containing polyunsaturated fatty acids. Journal of Oleo Science 61 (9):505–13. doi: 10.5650/jos.61.505.
  • Yamauchi, R., M. Kojima, K. Kato, and Y. Ueno. 1983. Autoxidation products of polyunsaturated galactolipids. Agricultural and Biological Chemistry 47 (11):2625–30. doi: 10.1080/00021369.1983.10866000.
  • Yi, O.-S., D. Han, and H.-K. Shin. 1991. Synergistic antioxidative effects of tocopherol and ascorbic acid in fish oil/lecithin/water system. Journal of the American Oil Chemists’ Society 68 (11):881–3. doi: 10.1007/BF02660606.
  • Zhou, L.‐z., F.‐s. Chen, L.‐h. Hao, Y. Du, and C. Liu. 2019. Peanut oil body composition and stability. Journal of Food Science 84 (10):2812–9. doi: 10.1111/1750-3841.14801.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.