2,074
Views
22
CrossRef citations to date
0
Altmetric
Reviews

Lipid oxidation in emulsions and bulk oils: a review of the importance of micelles

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Arsene, M. A., I. Răut, M. Călin, M. L. Jecu, M. H. Doni, and A. M. Gurban. 2021. Versatility of reverse micelles: From biomimetic models to nano (bio)sensor design. Processes 9 (2):345. doi: 10.3390/pr9020345.
  • Azuma, G., N. Kimura, M. Hosokawa, and K. Miyashita. 2009. Effect of droplet size on the oxidative stability of soybean oil TAG and fish oil TAG in oil-in-water emulsion. Journal of Oleo Science 58 (6):329–38.
  • Bąkowska, E., A. Siger, M. Rudzińska, and K. Dwiecki. 2021. Water content, critical micelle concentration of phospholipids and formation of association colloids as factors influencing autoxidation of rapeseed oil. Journal of the Science of Food and Agriculture. doi: 10.1002/jsfa.11376.
  • Balducci, V., S. Incerpi, P. Stano, and D. Tofani. 2018. Antioxidant activity of hydroxytyrosyl esters studied in liposome models. Biochimica et Biophysica Acta. Biomembranes 1860 (2):600–10. doi: 10.1016/j.bbamem.2017.11.012.
  • Bandarra, N., R. Campos, I. Batista, M. Nunes, and J. Empis. 1999. Antioxidant synergy of α-tocopherol and phospholipids. Journal of the American Oil Chemists’ Society 76 (8):905–13. doi: 10.1007/s11746-999-0105-4.
  • Banerjee, C., T. Breitenbach, and P. R. Ogilby. 2018. Spatially resolved experiments to monitor the singlet oxygen initiated oxidation of lipid droplets in emulsions. Chemphotochem 2 (7):586–95. doi: 10.1002/cptc.201800005.
  • Banerjee, C., M. Westberg, T. Breitenbach, M. Bregnhoj, and P. R. Ogilby. 2017. Monitoring interfacial lipid oxidation in oil-in-water emulsions using spatially resolved optical techniques. Analytical Chemistry 89 (11):6239–47. doi: 10.1021/acs.analchem.7b01228.
  • Barclay, L. R. C., C. D. Edwards, K. Mukai, Y. Egawa, and T. Nishi. 1995. Chain-breaking naphtholic antioxidants: Antioxidant activities of a polyalkylbenzochromanol, polyalkylbenzochromenol, and 2,3-dihydro-5-hydroxy-2,2,4-trimethylnaphtho[1,2-b]furan compared to an α-tocopherol model in sodium dodecyl sulfate micelles. The Journal of Organic Chemistry 60 (9):2739–44. doi: 10.1021/jo00114a022.
  • Barclay, L. R. C., S. J. Locke, and J. M. MacNeil. 1983. The autoxidation of unsaturated in micelles. Synergism of inhibitors vitamin C and E. Canadian Journal of Chemistry 61 (6):1288–90. doi: 10.1139/v83-225.
  • Barclay, L. R. C., S. J. Locke, and J. M. MacNeil. 1985. Autoxidation in micelles. Synergism of vitamin C with lipid soluble vitamin E and water-soluble Trolox. Canadian Journal of Chemistry 63 (2):366–74. doi: 10.1139/v85-062.
  • Barden, L., N. Barouh, P. Villeneuve, and E. A. Decker. 2015. Impact of hydrophobicity on antioxidant efficacy in low-moisture food. Journal of Agricultural and Food Chemistry 63 (24):5821–7.
  • Barouh, N., C. Bourlieu-Lacanal, M. C. Figueroa-Espinoza, E. Durand, and P. Villeneuve. 2021. Tocopherols as antioxidants in lipid-based systems: The combination of chemical and physicochemical interactions determines their efficiency. Comprehensive Review in Food Science & Food Safety, in press. doi: 10.1111/1541-4337.12867.
  • Berton-Carabin, C., J. N. Coupland, C. Qian, D. J. McClements, and R. J. Elias. 2012. Reactivity of a lipophilic ingredient solubilized in anionic or cationic surfactant micelles. Colloids and Surfaces A: Physicochemical and Engineering Aspects 412:135–42. doi: 10.1016/j.colsurfa.2012.07.029.
  • Berton-Carabin, C., M.-H. Ropers, and C. Genot. 2014. Lipid oxidation in oil-in-water emulsions: Involvement of the interfacial layer. Comprehensive Reviews in Food Science and Food Safety 13 (5):945–77. doi: 10.1111/1541-4337.12097.
  • Berton-Carabin, C., L. Sagis, and K. Schroën. 2018. Formation, structure, and functionality of interfacial layers in food emulsions. Annual Review of Food Science and Technology 9:551–87.
  • Berton-Carabin, C., A. Schröder, K. Schroën, and M. Laguerre. 2021. Lipid oxidation in Pickering emulsions. In Omega-3 delivery systems: Production, physical characteriztion and oxidative stability, ed. P. J. Garcia Moreno, C. Jacobsen, A. D. Moltke Sorensen, B. Yesiltas, 275–93. Cambridge, UK: Academic Press Elsevier.
  • Bin Sintang, M. D., S. Danthine, I. Tavernier, D. Van de Walle, C. D. Doan, D. R. A. Muhammad, T. Rimaux, and K. Dewettinck. 2021. Polymer coated fat crystals as oil structuring agents: Fabrication and oil-structuring properties. Food Hydrocolloids 115:106623. doi: 10.1016/j.foodhyd.2021.106623.
  • Binks, B. P., J. H. Clint, P. D. I. Fletcher, S. Rippon, S. D. Lubetkin, and P. J. Mulqueen. 1998. Kinetics of swelling of oil-in-water emulsions. Langmuir 14 (19):5402–11. doi: 10.1021/la980522g.
  • Bizeau, J., and D. Mertz. 2021. Design and applications of protein delivery systems in nanomedicine andtissue engineering. Advances in Colloid and Interface Science 287:102334. doi: 10.1016/j.cis.2020.102334.
  • Bourassa, P., R. Côté, S. Hutchandani, G. Samson, and H. A. Tajmir-Riahi. 2013. The effect of milk alpha-casein on the antioxidant activity of tea polyphenols. Journal of Photochemistry and Photobiology B: Biology 128:43–9. doi: 10.1016/j.jphotobiol.2013.07.021.
  • Bourlieu, C., K. Bouzerzour, S. Ferret-Bernard, C. Le Bourgot, S. Chever, O. Ménard, A. Deglaire, I. Cuinet, P. Le Ruyet, C. Bonhomme, et al. 2015. Infant formula interface and fat source impact on neonatal digestion and gut microbiota. European Journal of Lipid Science and Technology 117 (10):1500–12. doi: 10.1002/ejlt.201500025.
  • Bowry, V. W., and R. Stocker. 1993. Tocopherol-mediated peroxidation. The prooxidant effect of vitamin E on the radical-initiated oxidation of human low-density lipoprotein. Journal of the American Chemical Society 115 (14):6029–44. doi: 10.1021/ja00067a019.
  • Brimberg, U. I. 1993. On the kinetics of the autoxidation of fats. Journal of the American Oil Chemists’ Society 70 (3):249–54. doi: 10.1007/BF02545304.
  • Brimberg, U. I., and A. Kamal-Eldin. 2003. On the kinetics of the autooxidation of fats: Influence of pro-oxidants, antioxidants and synergists. European Journal of Lipid Science and Technology 105 (2):83–91. doi: 10.1002/ejlt.200390021.
  • Bruna, E., E. Petit, M. Beljean-Leymarie, S. Huynh, and A. Nouvelot. 1989. Specific susceptibility of docosahexaenoic acid and eicosapentaenoic acid to peroxidation in aqueous solution. Lipids 24 (11):970–5. doi: 10.1007/BF02544543.
  • Budilarto, E. S., and A. Kamal-Eldin. 2015a. The supramolecular chemistry of lipid oxidation and antioxidation in bulk oils. European Journal of Lipid Science and Technology 117 (8):1095–137. doi: 10.1002/ejlt.201400200.
  • Budilarto, E. S., and A. Kamal-Eldin. 2015b. Water content and micelle size change during oxidation of sunflower and canola oils. European Journal of Lipid Science and Technology 117 (12):1971–7. doi: 10.1002/ejlt.201400632.
  • Carlotti, M. E., M. R. Gasco, M. Trotta, and S. Morel. 1991. Auto-oxidation of linoleic acid in cosmetic formulations. Journal of the Society of Cosmetic Chemists 42:285–98.
  • Castle, L., and J. Perkins. 1986. Inhibition kinetics of chain-B breaking phenolic antioxidant in SDS micelles. Evidence that intermicellar diffusion rates may be rate-limiting for hydrophobic inhibitors such as α-tocopherol. Journal of the American Chemical Society 108 (20):6381–2. doi: 10.1021/ja00280a041.
  • Chaiyasit, C., R. J. Elias, D. J. McClements, and E. A. Decker. 2007. Role of physical structures in bulk oils on lipid oxidation. Critical Reviews in Food Science and Nutrition 47 (3):299–317. doi: 10.1080/10408390600754248.
  • Chaiyasit, C., D. J. McClements, J. Weiss, and E. A. Decker. 2008. Impact of surface-active compounds on physicochemical and oxidative properties of edible oil. Journal of Agricultural and Food Chemistry 56 (2):550–6. doi: 10.1021/jf072071o.
  • Chaiyasit, C., C. B. Stanley, H. H. Strey, D. J. McClements, and E. A. Decker. 2007. Impact of surface active compounds on iron catalyzed oxidation of methyl linolenate in AOT-water-hexadecane systems. Food Biophysics 2 (2-3):57–66. doi: 10.1007/s11483-007-9031-x.
  • Charvolin, J. 1983. Agrégats de molécules amphiphiles en solution. In Colloides et interfaces, ed. A. M. Cazabat and M. Veyssie, 33–53. Les Ullis, France: Les éditions de Physiques.
  • Chen, B., A. Han, D. J. McClements, and E. A. Decker. 2010. Physical structures in soybean oil and their impact on lipid oxidation. Journal of Agricultural and Food Chemistry 58 (22):11993–9.
  • Chen, B., A. Han, M. Laguerre, D. J. McClements, and E. A. Decker. 2011. Role of reverse micelles on lipid oxidation in bulk oils: Impact of phospholipids on antioxidant activity of α-tocopherol and Trolox. Food & Function 2 (6):302–9. doi: 10.1039/c1fo10046g.
  • Chen, B., D. J. McClements, and E. A. Decker. 2011. Minor components in food oils: A critical review of their roles on lipid oxidation chemistry in bulk oils and emulsions. Critical Reviews in Food Science and Nutrition 51 (10):901–16. doi: 10.1080/10408398.2011.606379.
  • Chen, B., A. Panya, D. J. McClements, and E. A. Decker. 2012. New insights into the role of iron in the promotion of lipid oxidation in bulk oils containing reverse micelles. Journal of Agricultural and Food Chemistry 60 (13):3524–32.
  • Chen, J., Y. Kimura, and S. Adachi. 2007. Surface activities of monoacyl trehaloses in aqueous solution. LWT - Food Science and Technology 40 (3):412–7. doi: 10.1016/j.lwt.2005.11.006.
  • Cheng, M., Q. M. Liu, W. Liu, F. Y. Yuan, J. F. Feng, Y. Jin, and L. X. Tu. 2021. Engineering micelles for the treatment and diagnosis of atherosclerosis. Journal of Drug Delivery Science and Technology 63:102473. doi: 10.1016/j.jddst.2021.102473.
  • Chityala, P. K., H. Khouryieh, K. Williams, and E. Conte. 2016. Effect of xanthan/enzyme-modified guar gum mixtures on the stability of whey protein isolate stabilized fish oil-in-water emulsions. Food Chemistry 212:332–40. doi: 10.1016/j.foodchem.2016.05.187.
  • Cho, Y. J., S. S. Chun, and E. A. Decker. 2002. Effect of surfactant micelles on lipid oxidation in oil-in-water emulsions containing soybean oil. Korean Journal of Food Science and Technology 34:770–4.
  • Cieśla, J., M. Koczańska, J. Narkiewicz-Michałek, M. Szymula, and A. Bieganowski. 2016. The physicochemical properties of CTAB solutions in the presence of α-tocopherol. Journal of Molecular Liquids 222:463–70. doi: 10.1016/j.molliq.2016.07.058.
  • Cillard, J., and P. Cillard. 1986. Inhibitors of the prooxidant activity of α-tocopherol. Journal of the American Oil Chemists’ Society 63 (9):1165–9. doi: 10.1007/BF02663943.
  • Clausse, D., and J. P. Dumas. 2016. Mass transfers inside emulsions. In Supercooling, crystallization and melting within emulsions and divided systems: Mass, heat transfers and stability, ed. D. Clausse and J. P. Dumas, 95–134. Sharjah, UAE: Bentham Books, Bentham Science Publisher.
  • Costa, M., S. Losada-Barreiro, F. Paiva-Martins, and C. Bravo-Díaz. 2021. Polyphenolic antioxidants in lipid emulsions: Partitioning effects and interfacial phenomena. Foods 10 (3):539. doi: 10.3390/foods10030539.
  • Coupland, J. N., Z. Zhu, H. Wan, D. McClements, W. Nawar, and P. Chinachoti. 1996. Droplet composition affects the rate of oxidation of emulsified ethyl linoleate. Journal of the American Oil Chemists’ Society 73 (6):795–801. doi: 10.1007/BF02517957.
  • Cui, L., K. Kittipongpittaya, D. J. McClements, and E. A. Decker. 2014. Impact of phosphoethanolamine reverse micelles on lipid oxidation in bulk oils. Journal of the American Oil Chemists’ Society 91 (11):1931–7. doi: 10.1007/s11746-014-2544-9.
  • Cui, L., D. J. McClements, and E. A. Decker. 2015. Impact of phosphatidylethanolamine on the antioxidant activity of α-tocopherol and Trolox in bulk oil. Journal of Agricultural and Food Chemistry 63 (12):3288–94.
  • Cui, L., P. Shen, Z. Gao, J. Yi, and B. Chen. 2019. New insights into the impact of sodium chloride on the lipid oxidation of oil-in-water emulsion. Journal of Agricultural and Food Chemistry 67 (15):4321–7.
  • Dangles, O. 2012. Antioxidant activity of plant phenols: Chemical mechanisms and biological significance. Current Organic Chemistry 16 (6):692–714. doi: 10.2174/138527212799957995.
  • De Saussure, N. T. 1804. Recherches chimiques sur la végétation, 153–5. Paris: V. Nyon.
  • Decker, E. A., A. D. Crum, and J. T. Calvert. 1992. Differences in the antioxidant mechanism of carnosine in the presence of copper and iron. Journal of Agricultural and Food Chemistry 40 (5):756–9. doi: 10.1021/jf00017a009.
  • Decker, E. A., D. J. McClements, C. Bourlieu-Lacanal, E. Durand, M. C. Figueroa-Espinoza, J. Lecomte, and P. Villeneuve. 2017. Hurdles in predicting antioxidant efficacy in oil-in-water emulsions. Trends in Food Science & Technology 67:183–94. doi: 10.1016/j.tifs.2017.07.001.
  • Di Mattia, C., V. M. Paradiso, L. Andrich, M. Giarnetti, F. Caponio, and P. Pittia. 2014. Effect of olive oil phenolic compounds and maltodextrins on the physical properties and oxidative stability of olive oil O/W emulsions. Food Biophysics 9 (4):396–405. doi: 10.1007/s11483-014-9373-0.
  • Dickinson, E. 2009. Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocolloids 23 (6):1473–82. doi: 10.1016/j.foodhyd.2008.08.005.
  • Dickinson, E. 2017. Biopolymer-based particles as stabilizing agents for emulsions and foams. Food Hydrocolloids 68:219–31. doi: 10.1016/j.foodhyd.2016.06.024.
  • Dimakou, C. P., S. N. Kiokias, I. V. Tsaprouni, and V. Oreopoulou. 2007. Effect of processing and storage parameters on the oxidative deterioration of oil-in-water emulsions. Food Biophysics 2 (1):38–45. doi: 10.1007/s11483-007-9027-6.
  • Donnelly, J. L., E. A. Decker, and D. J. McClements. 2006. Iron-catalyzed oxidation of Menhaden oil as affected by emulsifiers. Journal of Food Science 63 (6):997–1000. doi: 10.1111/j.1365-2621.1998.tb15841.x.
  • Drelich, A., J. L. Grossiord, F. Gomez, D. Clausse, and I. Pezron. 2012. Mixed O/W emulsions stabilized by solid particles: A model system for controlled mass transfer triggered by surfactant addition. Journal of Colloid and Interface Science 386 (1):218–27. doi: 10.1016/j.jcis.2012.07.072.
  • Durand, E., S. Beaubier, I. Ilic, F. Fine, R. Kapel, and P. Villeneuve. 2021. Production and antioxidant capacity of bioactive peptides from plant biomass to counteract lipid oxidation. Current Research in Food Science 4:365–97.
  • Durand, E., Y. Zhao, M. Ruesgas-Ramón, M. C. Figueroa-Espinoza, S. Lamy, J. N. Coupland, R. J. Elias, and P. Villeneuve. 2019. Evaluation of antioxidant activity and interaction with radical species using the vesicle conjugated autoxidizable triene (VesiCAT) assay. European Journal of Lipid Science and Technology 121 (5):1800419. doi: 10.1002/ejlt.201800419.
  • Elias, R. J., J. D. Bridgewater, R. W. Vachet, T. Waraho, D. J. McClements, and E. A. Decker. 2006. Antioxidant mechanisms of enzymatic hydrolysates of beta-lactoglobulin in food lipid dispersions . Journal of Agricultural and Food Chemistry 54 (25):9565–72. doi: 10.1021/jf062178w.
  • Fang, J.-G., M. Lu, Z.-H. Chen, H.-H. Zhu, Y. Li, L. Yang, L.-M. Wu, and Z.-L. Liu. 2002. Antioxidant effet of resveratrol and its analogues against the free-radical induced peroxidation of linoleic acid in micelles. Chemistry - A European Journal 8 (18):4191–7. doi: 10.1002/1521-3765(20020916)8:18<4191::AID-CHEM4191>3.0.CO;2-S.
  • Farooq, S., Abdullah, H. Zhang, and J. Weiss. 2021. A comprehensive review on polarity, partitioning, and interactions of phenolic antioxidants at oil-water interface of food emulsions. Comprehensive Reviews in Food Science and Food Safety, 4250–77.
  • Farvin, K. H. S., L. L. Andersen, J. Otte, H. H. Nielsen, F. Jessen, and C. Jacobsen. 2016. Antioxidant activity of cod (Gadus morhua) protein hydrolysates: Fractionation and characterisation of peptide fractions. Food Chemistry 204:409–19. doi: 10.1016/j.foodchem.2016.02.145.
  • Ferreira da Silveira, T. F., L. M. Cajaíba, L. Valentin, B. Baréa, P. Villeneuve, and I. A. Castro. 2020. Effect of sinapic acid ester derivatives on the oxidative stability of omega-3 fatty acids rich oil-in-water emulsions. Food Chemistry 309:125586. doi: 10.1016/j.foodchem.2019.125586.
  • Ferreira da Silveira, T. F., M. Laguerre, C. Bourlieu-Lacanal, J. Lecomte, E. Durand, M. C. Figueroa-Espinoza, B. Baréa, N. Barouh, I. A. Castro, and P. Villeneuve. 2021. Impact of surfactant concentration and antioxidant mode of incorporation on the oxidative stability of oil-in-water nanoemulsions. LWT Food Science and Technology 141:110892. doi: 10.1016/j.lwt.2021.110892.
  • Fomuso, L. B., M. Corredig, and C. C. Akoh. 2002. Effect of emulsifier on oxidation properties of fish oil-based structured lipid emulsions. Journal of Agricultural and Food Chemistry 50 (10):2957–61.
  • Frankel, E. N., S. W. Huang, J. Kanner, and J. B. German. 1994. Interfacial phenomena in the evaluation of antioxidants: Bulk oils vs emulsions. Journal of Agricultural and Food Chemistry 42 (5):1054–9. doi: 10.1021/jf00041a001.
  • Frankel, E., T. Satue-Gracia, A. Meyer, and J. German. 2002. Oxidative stability of fish and algae oils containing long-chain polyunsaturated fatty acids in bulk and in oil-in-water emulsions. Journal of Agricultural and Food Chemistry 50 (7):2094–9.
  • Fujii, T., Y. Hiramoto, J. Terao, and K. Fukuzawa. 1991. Site-specific mechanisms of initiation by chelated iron and inhibition by α-tocopherol of lipid peroxide-dependent lipid peroxidation in charged micelles. Archives of Biochemistry and Biophysics 284 (1):120–6.
  • Fukuzawa, K., W. Ikebata, and K. Sohmi. 1993. Location, antioxidant and recycling dynamics of α-tocopherol in liposome membranes. Journal of Nutrition Science and Vitaminology 39:9–22.
  • Gao, H. X., L. Ma, C. Cheng, J. P. Liu, R. H. Liang, L. Q. Zou, W. Liu, and D. J. McClements. 2021. Review of recent advances in the preparation, properties, and applications of high internal phase emulsions. Trends in Food Science & Technology 112:36–49. doi: 10.1016/j.tifs.2021.03.041.
  • Garcia-Mendoza, M. P., F. A. Espinosa-Pardo, R. Savoire, C. Harscoat-Schiavo, M. Cansell, and P. Subra-Paternault. 2021. Improvement of the oxidative stability of camelina oil by enrichment with phospholipid-quercetin formulations. Food Chemistry 341 (Pt 1):128234.
  • Genot, C., C. Berton, and M. H. Ropers. 2013. The role of the interfacial layer and emulsifying proteins in the oxidation in oil-in-water emulsions. In Lipid oxidation: Challenges in food sytems, ed. A. Logan, U. Nienaber, and X. Pan, 177–210. Urbana, IL: AOCS Press.
  • Ghnimi, S., E. Budilarto, and A. Kamal-Eldin. 2017. The new paradigm for lipid oxidation and insights to microencapsulation of omega-3 fatty acids. Comprehensive Reviews in Food Science and Food Safety 16 (6):1206–18.
  • Gohtani, S., M. Sirendi, N. Yamamoto, K. Kajikawa, and Y. Yamano. 1999. Effect of droplet size on oxidation of docosahexaenoic acid in emulsion system. Journal of Dispersion Science and Technology 20 (5):1319–25. doi: 10.1080/01932699908943855.
  • González, M. J., I. Medina, O. S. Maldonado, R. Lucas, and J. C. Morale. 2015. Antioxidant activity of alkyl gallates and glycosyl alkyl gallates in fish oil in water emulsions: Relevance of their surface active properties and of the type of emulsifier. Food Chemistry 183:190–6. doi: 10.1016/j.foodchem.2015.03.035.
  • Gupta, R., H. S. Muralidhara, and H. T. Davis. 2001. Structure and phase behavior of phospholipids-based micelles in non aqueous media. Langmuir 17 (17):5176–83. doi: 10.1021/la0103721.
  • Haahr, A. M., and C. Jacobsen. 2008. Emulsifier type, metal chelation and pH affect oxidative stability of n-3 enriched emulsions. European Journal of Lipid Science and Technology 110 (10):949–61. doi: 10.1002/ejlt.200800035.
  • Hahnel, D., T. Huber, V. Kurze, K. Beyer, and B. Engelmann. 1999. Contribution of copper binding to the inhibition of lipid oxidation by plasmalogen phospholipids. Biochemical Journal 340 (2):377–83. doi: 10.1042/bj3400377.
  • Hajfathalian, M., S. Ghelichi, P. J. Garcia-Moreno, A. D. M. Sorensen, and C. Jacobsen. 2018. Peptides: Production, bioactivity, functionality, and applications. Critical Reviews in Food Science and Nutrition 58 (18):3097–129. doi: 10.1080/10408398.2017.1352564.
  • Hamburger, R., E. Azaz, and M. Donbrow. 1974. Autoxidation of polyoxyethylenic non-ionic surfactants and of polyethylene glycols. Pharmaceutica Acta Helvetiae 50:10–7.
  • Hamilton, R. J., C. Kalu, G. P. McNeill, F. B. Padley, and J. H. Pierce. 1998. Effects of tocopherols, ascorbyl palmitate, and lecithin on autoxidation of fish oil. Journal of the American Oil Chemists’ Society 75 (7):813–22. doi: 10.1007/s11746-998-0231-4.
  • Hammond, E. G., and P. J. White. 2011. A brief history of lipid oxidation. Journal of the American Oil Chemists’ Society 88 (7):891–7. doi: 10.1007/s11746-011-1761-8.
  • Han, D., O. S. Yi, and H. K. Shin. 1991. Solubilization of vitamin C in fish oil and synergistic effect with vitamin E in retarding oxidation. Journal of the American Oil Chemists’ Society 68 (10):740–3. doi: 10.1007/BF02662163.
  • Heins, A., D. B. McPhail, T. Sokolowski, H. Stöckmann, and K. Schwarz. 2007. The location of phenolic antioxidants and radicals at interfaces determines their activity. Lipids 42 (6):573–82. doi: 10.1007/s11745-007-3052-6.
  • Heins, A., T. Sokolowski, H. Stöckmann, and K. Schwarz. 2007. Investigating the location of propyl gallate at surfaces and its chemical microenvironment by (1)H NMR. Lipids 42 (6):561–72. doi: 10.1007/s11745-007-3053-5.
  • Hildebrand, D. H., J. Terao, and M. Kito. 1984. Phospholipids plus tocopherols increase soybean oil stability. Journal of the American Oil Chemists’ Society 61 (3):552–5. doi: 10.1007/BF02677029.
  • Homma, R., K. Suzuki, L. Cui, D. J. McClements, and E. A. Decker. 2015. Impact of association colloids on lipid oxidation in triacylglycerols and fatty acid ethyl esters. Journal of Agricultural and Food Chemistry 63 (46):10161–9.
  • Horn, A., N. Barouh, N. Nielsen, C. Baron, and C. Jacobsen. 2013. Homogenization pressure and temperature affect composition of proteins in the aqueous phase and oxidative stability of fish oil-in-water emulsions. Journal of the American Oil Chemists’ Society 90 (10):1541–50. doi: 10.1007/s11746-013-2292-2.
  • Hu, M., D. J. McClements, and E. A. Decker. 2003. Lipid oxidation in corn oil-in-water emulsions stabilized by casein, whey protein isolate, and soy protein isolate. Journal of Agricultural and Food Chemistry 51 (6):1696–700. doi: 10.1021/jf020952j.
  • Huang, S. W., E. N. Frankel, R. Aeschbach, and J. B. German. 1997. Partition of selected antioxidants in corn oil-water model systems. Journal of Agricultural and Food Chemistry 45 (6):1991–4. doi: 10.1021/jf9701695.
  • Hussein, H. A., and M. A. Abdullah. 2021. Novel drug delivery systems based on silver nanoparticles, hyaluronic acid, lipid nanoparticles and liposomes for cancer treatment. Applied Nanoscience. doi: 10.1007/s13204-021-02018-9.
  • Hwang, D., J. D. Ramsey, and A. V. Kabanov. 2020. Polymeric micelles for the delivery of poorly soluble drugs: From nanoformulation to clinical approval. Advanced Drug Delivery Reviews 156:80–118. doi: 10.1016/j.addr.2020.09.009.
  • Imai, H., T. Maeda, M. Shima, and S. Adachi. 2008. Oxidation of methyl linoleate in oil-in-water micro- and nanoemulsion systems. Journal of the American Oil Chemists’ Society 85 (9):809–15. doi: 10.1007/s11746-008-1257-3.
  • Inchingolo, R., I. Bayram, S. Uluata, S. S. Kiralan, M. T. Rodriguez-Estrada, D. J. McClements, and E. A. Decker. 2021. Ability of sodium dodecyl sulfate (SDS) micelles to increase the antioxidant activity of α tocopherol. Journal of Agricultural and Food Chemistry 69 (20):5702–8.
  • Ingold, K. U., V. W. Bowry, R. Stocker, and C. Walling. 1993. Autoxidation of lipids and antioxidation by a-tocopherol and ubiquinol in homogeneous solution and in aqueous dispersions of lipids: Unrecognized consequences of lipid particle size as exemplified by oxidation of human low-density lipoprotein. Proceedings of the National Academy of Sciences 90 (1):45–9. doi: 10.1073/pnas.90.1.45.
  • Isoglu, I. A., Y. Ozsoy, and S. D. Isoglu. 2017. Advances in micelle-based drug delivery: Cross-linked systems. Current Topics in Medicinal Chemistry 17 (13):1469–89.
  • Jacobsen, C. 2015. Some strategies for the stabilization of long chain n-3 PUFA-enriched foods: A review. European Journal of Lipid Science and Technology 117 (11):1853–66. doi: 10.1002/ejlt.201500137.
  • Jaeger, J., K. Sorensen, and S. P. Wolff. 1994. Peroxide accumulation in detergents. Journal of Biochemical and Biophysical Methods 29 (1):77–81.
  • Jalali-Jivan, M., F. Garavand, and S. M. Jafari. 2020. Microemulsions as nano-reactors for the solubilization, separation, purification and encapsulation of bioactive compounds. Advances in Colloid and Interface Science 283:102227.
  • Jo, S., and J. H. Lee. 2021. Evaluation of the effects of aldehydes on association colloid properties and oxidative stability in bulk oils. Food Chemistry 338:127778. doi: 10.1016/j.foodchem.2020.127778.
  • Jodko-Piórecka, K., and G. Litwinienko. 2015. Antioxidant activity of dopamine and L-DOPA in lipid micelles and their cooperation with an analogue of α-tocopherol. Free Radical Biology & Medicine 83:1–11.
  • Judde, A., P. Villeneuve, A. Rossignol-Castera, and A. Le Guillou. 2003. Antioxidant effect of soy lecithins on vegetable oil stability and their synergism with tocopherols. Journal of the American Oil Chemists’ Society 80 (12):1209–15. doi: 10.1007/s11746-003-0844-4.
  • Kandori, K., R. J. McGreevy, and R. S. Schechter. 1989. Solubilization of phenol and benzene in cationic micelles. Binding sites and effect of structure. The Journal of Physical Chemistry 93 (4):1506–10. doi: 10.1021/j100341a063.
  • Kasaikina, O. T., A. A. Golyavin, D. A. Krugovov, Z. S. Kartasheva, and L. M. Pisarenko. 2010. Micellar catalysis in the oxidation of lipids. Moscow University Chemistry Bulletin 65 (3):206–9. doi: 10.3103/S0027131410030193.
  • Kasaikina, O. T., Z. S. Kartasheva, and L. M. Pisarenko. 2008. Effects of surfactants on liquid-phase oxidation of hydrocarbons and lipids. Russian Journal of General Chemistry 78 (8):1533–44. doi: 10.1134/S1070363208080124.
  • Kasaikina, O. T., D. A. Krugovov, and E. A. Mengele. 2017. Unusual antioxidant effects in multiphase and complex systems. European Journal of Lipid Science and Technology 119 (6):1600286. doi: 10.1002/ejlt.201600286.
  • Kamal-Eldin, A., and E. Budilarto. 2015. Tocopherols and tocotrienols as antioxidant for food preservation. In Handbook of antioxidants for food preservation, ed. F. Shahidi, 141–60. Cambridge, UK: Woodhead Publishing Elsevier.
  • Keller, S., N. Locquet, and M. E. Cuvelier. 2016. Partitioning of vanillic acid in oil-in-water emulsions: Impact of theTween®40 emulsifier. Food Research International 88:61–9. doi: 10.1016/j.foodres.2016.06.013.
  • Khalili, M., and R. J. Wong. 2018. Underserved Does Not Mean Undeserved: Unfurling the HCV Care in the Safety Net. Digestive Diseases and Sciences 63(12):3250–2. doi: 10.1007/s10620-018-5316-9.
  • Khan, M. A., and F. Shahidi. 2000. Tocopherols and phospholipids enhance the oxidative stability of borage and evening primrose triacylglycerols. Journal of Food Lipids 7 (3):143–50. doi: 10.1111/j.1745-4522.2000.tb00167.x.
  • Kim, J., M. J. Kim, and J. H. Lee. 2018. The critical micelle concentration of lecithin in bulk oils and medium chain triacylglycerol is influenced by moisture content and total polar materials. Food Chemistry 261:194–200. doi: 10.1016/j.foodchem.2018.04.048.
  • Kiokias, S., C. Dimakou, and V. Oreopoulou. 2007. Effect of heat treatment and droplet size on the oxidative stability of whey protein emulsions. Food Chemistry 105 (1):94–100. doi: 10.1016/j.foodchem.2007.03.053.
  • Kiokias, S. N., C. P. Dimakou, I. V. Tsaprouni, and V. Oreopoulou. 2006. Effect of compositional factors against the thermal oxidative deterioration of novel food emulsions. Food Biophysics 1 (3):115–23. doi: 10.1007/s11483-006-9015-2.
  • Kiralan, S. S., S. Doğu-Baykut, K. Kittipongpittaya, D. J. McClements, and E. A. Decker. 2014. Increased antioxidant efficacy of tocopherols by surfactant solubilization in oil-in-water emulsions. Journal of Agricultural and Food Chemistry 62 (43):10561–6.
  • Kittipongpittaya, K., A. Panya, C. Leqi, D. J. McClements, and E. A. Decker. 2012. Prooxidant activity of polar lipid oxidation products in bulk oil and oil-in-water emulsion. Journal Of the American Oil Chemists Society 89 (12):2187–2194. doi: 10.1007/s11746-012-2128-5.
  • Kittipongpittaya, K., A. Panya, and E. A. Decker. 2016. Role of water and selected minor compounds on association colloid formation and lipid oxidation in bulk oil. Journal of the American Oil Chemists’ Society 93 (1):83–91. doi: 10.1007/s11746-015-2752-y.
  • Kittipongpittaya, K., A. Panya, C. Leqi, D. J. McClements, and E. A. Decker. 2014. Association colloids formed by multiple surface active minor components and their effect on lipid oxidation in bulk oil. Journal of the American Oil Chemists’ Society 91 (11):1955–65. doi: 10.1007/s11746-014-2541-z.
  • Kittipongpittaya, K., A. Panya, D. J. McClements, and E. A. Decker. 2014. Impact of free fatty acids and phospholipids on reverse micelles formation and lipid oxidation in bulk oil. Journal of the American Oil Chemists’ Society 91 (3):453–62. doi: 10.1007/s11746-013-2388-8.
  • Koga, T., and J. Terao. 1994. Antioxidant activity of a novel phosphatidyl derivative of vitamin E in lard and its model system. Journal of Agricultural and Food Chemistry 42 (6):1291–4. doi: 10.1021/jf00042a007.
  • Koga, T., and J. Terao. 1995. Phospholipids increase radical-scavenging activity of vitamin E in a bulk oil model system. Journal of Agricultural and Food Chemistry 43 (6):1450–4. doi: 10.1021/jf00054a007.
  • Kortenska, V. D., N. V. Yanishlieva, O. T. Kasaikina, I. R. Totzeva, and M. I. Boneva. 2001. Effect of lipid hydroxy compouns on the phenol antioxidant efficiency in lipid autooxidation. Comptes rendus de l’Académie bulgare des Sciences 54:29–34.
  • Kortenska, V. D., N. V. Yanishlieva, O. T. Kasaikina, I. R. Totzeva, M. I. Boneva, and I. F. Russina. 2002. Phenol antioxidant efficiency in various lipid substrates containing hydroxy compounds. European Journal of Lipid Science and Technology 104 (8):513–9. doi: 10.1002/1438-9312(200208)104:8<513::AID-EJLT513>3.0.CO;2-9.
  • Kralova, I., and J. Sjöblom. 2009. Surfactants used in food industry: A review. Journal of Dispersion Science and Technology 30 (9):1363–83. doi: 10.1080/01932690902735561.
  • Kuhn, K. R., and R. L. Cunha. 2012. Flaxseed oil—Whey protein isolate emulsions: Effect of high-pressure homogenization. Journal of Food Engineering 111 (2):449–57. doi: 10.1016/j.jfoodeng.2012.01.016.
  • Laguerre, M., A. Bily, M. Roller, and S. Birtic. 2017. Mass transport phenomena in lipid oxidation and antioxidation. Annual Review of Food Science and Technology 8:391–411.
  • Laguerre, M., C. Bayrasy, A. Panya, J. Weiss, D. J. McClements, J. Lecomte, E. A. Decker, and P. Villeneuve. 2015. What makes good antioxidants in lipid-based systems? The next theories beyond the polar paradox. Critical Reviews in Food Science and Nutrition 55 (2):183–201.
  • Laguerre, M., B. Chen, J. Lecomte, P. Villeneuve, D. J. McClements, and E. A. Decker. 2011. Antioxidant properties of chlorogenic acid and its alkyl esters in stripped corn oil in combination with phospholipids and/or water. Journal of Agricultural and Food Chemistry 59 (18):10361–9. doi: 10.1021/jf2026742.
  • Laguerre, M., L. J. Lopez-Giraldo, J. Lecomte, B. Baréa, E. Cambon, P. F. Tchobo, N. Barouh, and P. Villeneuve. 2008. Conjugated autoxidizable triene (CAT) assay: A novel spectrophotometric method for determination of antioxidant capacity using triacylglycerol as ultraviolet probe. Analytical Biochemistry 380 (2):282–90. doi: 10.1016/j.ab.2008.06.006.
  • Laguerre, M., L. J. López Giraldo, J. Lecomte, M.-C. Figueroa-Espinoza, B. Baréa, J. Weiss, E. A. Decker, and P. Villeneuve. 2009. Chain length affects antioxidant properties of chlorogenate esters in emulsion: The cutoff theory behind the polar paradox. Journal of Agricultural and Food Chemistry 57 (23):11335–42.
  • Laguerre, M., L. J. López Giraldo, J. Lecomte, M.-C. Figueroa-Espinoza, B. Baréa, J. Weiss, E. A. Decker, and P. Villeneuve. 2010. Relationship between hydrophobicity and antioxidant ability of “phenolipids” in emulsion: A parabolic effect of the chain length of rosmarinate esters. Journal of Agricultural and Food Chemistry 58 (5):2869–76.
  • Laguerre, M., M. Tenon, A. Bily, and S. Birtic. 2020. Toward a spatiotemporal model of oxidation in lipid dispersions: A hypothesis-driven review. European Journal of Lipid Science and Technology 122 (3):1900209. doi: 10.1002/ejlt.201900209.
  • Leal-Calderon, F., and V. Schmitt. 2008. Solid-stabilized emulsions. Current Opinion in Colloid & Interface Science 13 (4):217–27. doi: 10.1016/j.cocis.2007.09.005.
  • Lee, J. H., A. Panya, M. Laguerre, C. Bayrasy, J. Lecomte, P. Villeneuve, and E. A. Decker. 2013. Comparison of antioxidant capacities of rosmarinate alkyl esters in riboflavin photosensitized oil-in-water emulsions. Journal of the American Oil Chemists’ Society 90 (2):225–32. doi: 10.1007/s11746-012-2163-2.
  • Lee, S. J., S. J. Choi, Y. Li, E. A. Decker, and D. J. McClements. 2011. Protein-stabilized nanoemulsions and emulsions: Comparison of physicochemical stability, lipid oxidation, and lipase digestibility. Journal of Agricultural and Food Chemistry 59 (1):415–27.
  • Lesmes, U., S. Sandra, E. A. Decker, and D. J. McClements. 2010. Impact of surface deposition of lactoferrin on physical and chemical stability of omega-3 rich lipid droplets stabilised by caseinate. Food Chemistry 123 (1):99–106. doi: 10.1016/j.foodchem.2010.04.007.
  • Let, M. B., C. Jacobsen, A.-D. M. Sørensen, and A. S. Meyer. 2007. Homogenization conditions affect the oxidative stability of fish oil enriched milk emulsions: Lipid oxidation. Journal of Agricultural and Food Chemistry 55 (5):1773–80. doi: 10.1021/jf062391s.
  • Lethuaut, L., F. Metro, and C. Genot. 2002. Effect of droplet size on lipid oxidation rates of oil-in-water emulsions stabilized by protein. Journal of the American Oil Chemists’ Society 79 (5):425–30. doi: 10.1007/s11746-002-0500-z.
  • Lever, M. 1977. Peroxides in detergents as interfering factors in biochemical analysis. Analytical Biochemistry 83 (1):274–84. doi: 10.1016/0003-2697(77)90536-X.
  • Li, P., D. J. McClements, and E. A. Decker. 2020. Application of flow cytometry as novel technology in studying lipid oxidation and mass transport phenomena in oil-in-water emulsions. Food Chemistry 315:126225. doi: 10.1016/j.foodchem.2020.126225.
  • Linke, A., J. Hinrichs, and R. Kohlus. 2020. Impact of the oil droplet size on the oxidative stability of microencapsulated oil. Journal of Microencapsulation 37 (2):170–81.
  • Liu, W., and R. Guo. 2006. Interaction between flavonoid, quercetin and surfactant aggregates with different charges. Journal of Colloid and Interface Science 302 (2):625–32.
  • Lopez-Martinez, A., and A. Rocha-Uribe. 2018. Antioxidant hydrophobicity and emulsifier type influences the partitioning of antioxidants in the interface improving oxidative stability in O/W emulsions rich in n-3 fatty acids. European Journal of Lipid Science and Technology 120 (1):1700277. doi: 10.1002/ejlt.201700277.
  • Losada-Barreiro, S., C. Bravo-Diaz, F. Paiva-Martins, and L. S. Romsted. 2013a. Maxima in antioxidant distributions and efficiencies with increasing hydrophobicity of gallic acid and its alkyl esters. The pseudophase model interpretation of the "cutoff effect”. Journal of Agricultural and Food Chemistry 61 (26):6533–43.
  • Losada-Barreiro, S., V. Sánchez-Paz, C. Bravo-Díaz. 2013b. Effects of emulsifier hydrophile–lipophile balance and emulsifier concentration on the distributions of gallic acid, propyl gallate, and α-tocopherol in corn oil emulsions. Journal of Colloid and Interface Science 389 (1):1–9. doi:10.1016/j.jcis.2012.07.036.
  • Losada-Barreiro, S., C. Bravo-Diaz, and L. S. Romsted. 2015. Distributions of phenolic acid antioxidants between the interfacial and aqueous regions of corn oil emulsions: Effects of pH and emulsifier concentration. European Journal of Lipid Science and Technology 117 (11):1801–13. doi: 10.1002/ejlt.201400507.
  • Losada-Barreiro, S., V. Sánchez-Paz, M. J. Pastoriza Gallego, and C. Bravo-Díaz. 2008. Micellar effects on the reaction between an arenediazonium ion and the antioxidants gallic acid and octyl gallate. Helvetica Chimica Acta 91 (1):21–34. doi: 10.1002/hlca.200890009.
  • Losada-Barreiro, S., V. Sánchez-Paz, C. Bravo-Díaz, F. Paiva-Martins, and L. S. Romsted. 2012. Temperature and emulsifier concentration effects on gallic acid distribution in a model food emulsion. Journal of Colloid and Interface Science 30:73–9.
  • Loshadkin, D. V., E. M. Pliss, and O. T. Kasaikina. 2020. Features of methyl linoleate oxidation in Triton X-100 micellar buffer solutions. Russian Journal of Applied Chemistry 93 (7):1090–5. doi: 10.1134/S1070427220070216.
  • Lue, B. M., N. S. Nielsen, C. Jacobsen, L. Hellgren, Z. Guo, and X. Xu. 2010. Antioxidant properties of modified rutin esters by DPPH, reducing power, iron chelation and human low density lipoprotein assays. Food Chemistry 123 (2):221–30. doi: 10.1016/j.foodchem.2010.04.009.
  • Luning Prak, D. J., L. M. Abriola, W. J. Weber, K. A. Bocskay, and K. D. Pennell. 2000. Solubilization rates of n-alkanes in micellar solutions of nonionic surfactants. Environmental Science & Technology 34 (3):476–82. doi: 10.1021/es9903431.
  • Ma, T., T. Kobayashi, and S. Adachi. 2013. Effect of droplet size on autoxidation rates of methyl linoleate and α-linolenate in an oil-in-water emulsion. Journal of Oleo Science 62:1003–8.
  • Maldonado, O. S., R. Lucas, F. Comelles, M. J. González, J. L. Parra, I. Medina, and J. C. Morales. 2011. Synthesis and characterization of phenolic antioxidants with surfactant properties: Glucosyl- and glucuronosyl alkyl gallates. Tetrahedron 67 (38):7268–79. doi: 10.1016/j.tet.2011.07.046.
  • Mancuso, J., D. McClements, and E. Decker. 1999. The effects of surfactant type, pH, and chelators on the oxidation of salmon oil-in-water emulsions. Journal of Agricultural and Food Chemistry 47 (10):4112–6. doi: 10.1021/jf990203a.
  • McClements, D. J. 2016. Food emulsions: Principles, practices and techniques. 3rd ed. Boca Raton, FL: CRC Press.
  • McClements, D. J. 2018. Recent developments in encapsulation and release of functional food ingredients: Delivery by design. Current Opinion in Food Science 23:80–4. doi: 10.1016/j.cofs.2018.06.008.
  • McClements, D. J., and E. A. Decker. 2018. Interfacial antioxidants: A review of natural and synthetic emulsifiers and coemulsifiers that can inhibit lipid oxidation. Journal of Agricultural and Food Chemistry 66 (1):20–35.
  • McClements, D. J., and S. R. Dungan. 1993. Factors that affect the rate of oil exchange between oil-in-water emulsion droplets stabilized by a nonionic surfactant: Droplet size, surfactant concentration, and ionic strength. The Journal of Physical Chemistry 97 (28):7304–8. doi: 10.1021/j100130a030.
  • McClements, D. J., and S. R. Dungan. 1995. Light-scattering study of solubilization of emulsion droplets by nonionic surfactant solutions. Colloids and Surfaces a-Physicochemical and Engineering Aspects 104:127–35.
  • McClements, D. J., S. R. Dungan, J. B. German, and J. E. Kinsella. 1992. Oil exchange between oil-in-water emulsion droplets stabilized with a nonionic surfactant. Food Hydrocolloids 6 (5):415–22. doi: 10.1016/S0268-005X(09)80027-1.
  • Medina, I., S. Lois, D. Alcantara, R. Lucas, and J. C. Morales. 2009. Effect of lipophilization of hydroxytyrosol on its antioxidant activity in fish oils and fish oil-in-water emulsions. Journal of Agricultural and Food Chemistry 57 (20):9773–9.
  • Mei, L., D. J. McClements, J. Wu, and E. A. Decker. 1998. Iron-catalyzed lipid oxidation in emulsion as affected by surfactant, pH and NaCl. Food Chemistry 61 (3):307–12. doi: 10.1016/S0308-8146(97)00058-7.
  • Miyashita, K. 2014. Paradox of omega-3 PUFA oxidation. European Journal of Lipid Science and Technology 116 (10):1268–79. doi: 10.1002/ejlt.201400114.
  • Miyashita, K., E. Nara, and T. Ota. 1993. Oxidative stability of polyunsaturated fatty acids in an aqueous solution. Bioscience Biotechnology Biochemistry 57 (10):1638–40. doi: 10.1271/bbb.57.1638.
  • Moilanen, D. E., E. E. Fenn, D. Wong, and M. D. Fayer. 2009. Water dynamics in large and small reverse micelles: From two ensembles to collective behavior. The Journal of Chemical Physics 131 (1):014704. doi: 10.1063/1.3159779.
  • Moskalenko, I. V., S. Y. Petrova, E. M. Pliss, A. I. Rusakov, and A. L. Buchachenko. 2016. Effect of microheterogeneity on the kinetic of oxidation of methyl linoleate in micelles. Russian Journal of Physical Chemistry B 10 (2):260–2. doi: 10.1134/S1990793116020214.
  • Nakaya, K., H. Ushio, S. Matsukawa, M. Shimizu, and T. Ohshima. 2005. Effects of droplet size on the oxidative stability of oil-in-water emulsions. Lipids 40 (5):501–7.
  • Neves, M. A., Z. Wang, I. Kobayashi, and M. Nakajima. 2017. Assessment of oxidative stability in fish oil-in-water emulsions: Effect of emulsification process, droplet size and storage temperature. Journal of Food Process Engineering 40 (1):e12316. doi: 10.1111/jfpe.12316.
  • Nguyen, H. H., K. Choi, E. D. Kim, W. Kang, and S. Ko. 2013. Improvement of oxidative stability of rice bran oil emulsion by controlling droplet size. Journal of Food Processing and Preservation 37 (2):139–51. doi: 10.1111/j.1745-4549.2011.00633.x.
  • Niki, E. 1997. Mechanisms and dynamics of antioxidant action of ubiquinol. Molecular Aspects of Medicine 18:63–70. doi: 10.1016/S0098-2997(97)00035-6.
  • Nuchi, C., P. Hernandez, D. McClements, and E. Decker. 2002. Ability of lipid hydroperoxides to partition into surfactant micelles and alter lipid oxidation rates in emulsions. Journal of Agricultural and Food Chemistry 50 (19):5445–9.
  • Nuchi, C., D. J. McClements, and E. A. Decker. 2001. Impact of Tween 20 hydroperoxides and iron on the oxidation of methyl linoleate and salmon oil dispersions. Journal of Agricultural and Food Chemistry 49 (10):4912–6.
  • Oehlke, K., A. Heins, H. Stöckmann, F. Sönnichsen, and K. Schwarz. 2011. New insights into the antioxidant activity of Trolox in o/w emulsions. Food Chemistry 124 (3):781–7. doi: 10.1016/j.foodchem.2010.06.095.
  • Okubanjo, S. S., S. M. Loveday, A. Q. Ye, P. J. Wilde, and H. Singh. 2019. Droplet-stabilized oil-in-water emulsions protect unsaturated lipids from oxidation. Journal of Agricultural and Food Chemistry 67 (9):2626–36.
  • Okubanjo, S. S., S. M. Loveday, A. Q. Ye, P. J. Wilde, and H. Singh. 2021. Antioxidant performance in droplet-stabilized oil-in-water emulsions. LWT-Food Science and Technology 139:110541. doi: 10.1016/j.lwt.2020.110541.
  • Panya, A., M. Laguerre, C. Bayrasy, J. Lecomte, P. Villeneuve, D. J. McClements, and E. A. Decker. 2012. An investigation of the versatile antioxidant mechanisms of action of rosmarinate alkyl esters in oil-in-water emulsions. Journal of Agricultural and Food Chemistry 60 (10):2692–700. doi: 10.1021/jf204848b.
  • Panya, A., K. Kittipongpittaya, M. Laguerre, C. Bayrasy, J. Lecomte, P. Villeneuve, D. J. McClements, and E. A. Decker. 2012. Interactions between α-tocopherol and rosmarinic acid and its alkyl esters in emulsions: Synergistic, additive, or antagonistic effect? Journal of Agricultural and Food Chemistry 60 (41):10320–30. doi: 10.1021/jf302673j.
  • Paraskevopoulou, D., D. Boskou, and A. Paraskevopoulou. 2007. Oxidative stability of olive oil-lemon juice salad dressings stabilized with polysaccharides. Food Chemistry 101 (3):1197–204. doi: 10.1016/j.foodchem.2006.03.022.
  • Penttila, P. A., S. Vierros, K. Utriainen, N. Carl, L. Rautkari, M. Sammalkorpi, and M. O Sterberg. 2019. Phospholipid-based reverse micelle structures in vegetable oil modified by water content, free fatty acid, and temperature. Langmuir 35 (25):8373–82.
  • Pernin, A., V. Bosc, P. Soto, E. Le Roux, and M. N. Maillard. 2019. Lipid oxidation in oil-in-water emulsions rich in omega-3: Effect of aqueous phase viscosity, emulsifiers, and antioxidants. European Journal of Lipid Science and Technology 121 (9):1800462. doi: 10.1002/ejlt.201800462.
  • Ponginebbi, L., W. W. Nawar, and P. Chinachoti. 1999. Oxidation of linoleic acid in emulsions: Effect of substrate, emulsifier, and sugar concentration. Journal of the American Oil Chemists’ Society 76 (1):131–8. doi: 10.1007/s11746-999-0059-6.
  • Porter, W. L., E. D. Black, and A. M. Drolet. 1989. Use of polyamide oxidative fluorescence test on lipid emulsions: Contrast in relative effectiveness of antioxidants in bulk versus dispersed systems. Journal of Agricultural and Food Chemistry 37 (3):615–24. doi: 10.1021/jf00087a009.
  • Pryor, W. A. 1986. Oxy-radicals and related species: Their formation, lifetimes, and reactions. Annual Review of Physiology 48:657–67. doi: 10.1146/annurev.ph.48.030186.003301.
  • Pryor, W. A., J. A. Cornicelli, L. J. Devall, B. Tait, B. K. Trivedi, D. T. Witiak, and M. Wu. 1993. A rapid screening test to determine the antioxidant potencies of natural and synthetic antioxidants. The Journal of Organic Chemistry 58 (13):3521–32. doi: 10.1021/jo00065a013.
  • Raudsepp, P., D. A. Brüggemann, and M. L. Andersen. 2014. Evidence for transfer of radicals between oil-in-water emulsion droplets as detected by the probe (E,E)-3,5-bis(4-phenyl-1,3-butadienyl)-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene, BODIPY(665/676.). Journal of Agricultural and Food Chemistry 62 (51):12428–35. doi: 10.1021/jf504404a.
  • Raudsepp, P., D. A. Brüggemann, J. C. Knudsen, and M. L. Andersen. 2016. Localized lipid autoxidation initiated by two-photon irradiation within single oil droplets in oil-in-water emulsions. Food Chemistry 199:760–7.
  • Richards, M. P., W. Chaiyasit, D. J. McClements, and E. A. Decker. 2002. Ability of surfactant micelles to alter the partitioning of phenolic antioxidants in oil-in-water emulsions. Journal of Agricultural and Food Chemistry 50 (5):1254–9.
  • Roginsky, V. 1990. The inhibiting ability of lipid-soluble and water-soluble phenols at lipid peroxidation in micro heterogeneous systems. Biological Membranes 4:437–51.
  • Roginsky, V. 1996. Kinetics of the chain oxidation of methyl linoleate in aqueous micellar solutions of sodium dodecyl sulfate. Kinetics and Catalysis 37:488–94.
  • Roginsky, V., and T. Barsukova. 2001. Superoxide dismutase inhibits lipid peroxidation in micelles. Chemistry and Physics of Lipids 111 (1):87–91. doi: 10.1016/S0009-3084(01)00148-7.
  • Rokosik, E., A. Siger, M. Rudzińska, P. Siejak, and K. Dwiecki. 2020a. Formation of phospholipid association colloids in rapeseed oil and their effect on lipid autoxidation in the presence of sinapic and ferulic acid. European Journal of Lipid Science and Technology 122 (2):1900243. doi: 10.1002/ejlt.201900243.
  • Rokosik, E., A. Siger, M. Rudzińska, and K. Dwiecki. 2020b. Antioxidant activity and synergism of canolol and α-tocopherol in rapeseed oil is affected by the presence of phospholipids association colloids. LWT-Food Science and Technology 133:110095. doi: 10.1016/j.lwt.2020.110095.
  • Romsted, L. S., and C. Bravo-Diaz. 2013. Modeling chemical reactivity in emulsions. Current Opinion in Colloid & Interface Science 18 (1):3–14. doi: 10.1016/j.cocis.2012.11.001.
  • Salminen, H., T. Helgason, B. Kristinsson, K. Kristbergsson, and J. Weiss. 2017. Tuning of shell thickness of solid lipid particles impacts the chemical stability of encapsulated w-3 fish oil. Journal of Colloid and Interface Science 490:207–16. doi: 10.1016/j.jcis.2016.11.063.
  • Samtlebe, M., U. Yucel, J. Weiss, and J. N. Coupland. 2012. Stability of solid lipid nanoparticles in the presence of liquid oil emulsions. Journal of the American Oil Chemists’ Society 89 (4):609–17. doi: 10.1007/s11746-011-1944-3.
  • Sarmadi, B. H., and A. Ismail. 2010. Antioxidative peptides from food proteins: A review. Peptides 31 (10):1949–56. doi: 10.1016/j.peptides.2010.06.020.
  • Schaich, K. M. 2013. Challenges in elucidating lipid oxidation mechanisims: When, where and how do products arise? In Lipid oxidation: Challenges in food sytems, ed. A. Logan, U. Nienaber, and X. Pan, 1–52. Urbana, IL: AOCS Press.
  • Schaich, K. M. 2020. Lipid oxidation: New perspectives on an old reaction. In Bailey’s industrial oil and fat products, ed. F. Shahidi, 1–72. Hoboken, NJ: John Wiley & Sons.
  • Schwarz, K., S. W. Huang, J. B. German, B. Tiersch, J. Hartmann, and E. N. Frankel. 2000. Activities of antioxidants are affected by colloidal properties of oil-in-water and water-in-oil emulsions and bulk oils. Journal of Agricultural and Food Chemistry 48 (10):4874–82.
  • Shahidi, F., and P. Ambigaipalan. 2015. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects – A review. Journal of Functional Foods 18:820–97. doi: 10.1016/j.jff.2015.06.018.
  • Shinoda, K., and E. Hutchinson. 1962. Pseudo-phase separation model for thermodynamic calculations on micellar solutions. The Journal of Physical Chemistry 66 (4):577–82. doi: 10.1021/j100810a001.
  • Silvestre, M., W. Chaiyasit, R. Brannan, D. McClements, and E. Decker. 2000. Ability of surfactant headgroup size to alter lipid and antioxidant oxidation in oil-in-water emulsions. Journal of Agricultural and Food Chemistry 48 (6):2057–61.
  • Sims, R. J., J. A. Fioriti, and J. Trumbetas. 1979. Effect of sugars and sugar alcohols on autoxidation of safflower oil in emulsion. Journal of the American Oil Chemists’ Society 56 (8):742–5. doi: 10.1007/BF02663053.
  • Sørensen, A. D. M., C. P. Baron, M. B. Let, D. A. Bruggemann, L. R. L. Pedersen, and C. Jacobsen. 2007. Homogenization conditions affect the oxidative stability of fish oil enriched emulsions: Oxidation linked to changes in protein composition at the oil-water interface. Journal of Agricultural and Food Chemistry 55 (5):1781–9. doi: 10.1021/jf0623900.
  • Sørensen, A. D. M., A. M. Haahr, E. M. Becker, L. H. Skibsted, B. Bergenståh, L. Nilsson, and C. Jacobsen. 2008. Interactions between iron, phenolic compounds, emulsifiers, and pH in omega-3-enriched oil-in-water emulsions. Journal of Agricultural and Food Chemistry 56 (5):1740–50.
  • Sørensen, A. D. M., N. S. Nielsen, Z. Yang, X. Xu, and C. Jacobsen. 2012. Lipophilization of dihydrocaffeic acid affects its antioxidative properties in fish-oil-enriched emulsions. European Journal of Lipid Science and Technology 114 (2):134–45. doi: 10.1002/ejlt.201100002.
  • Sørensen, A. D. M., P. Villeneuve, and C. Jacobsen. 2017. Alkyl caffeates as antioxidants in O/W emulsions: Impact of emulsifier type and endogenous tocopherols. European Journal of Lipid Science and Technology 119 (6):1600276. doi: 10.1002/ejlt.201600276.
  • Stephens, H. N. 1928. Autoxidation I. Cyclohexene peroxide. Journal of the American Chemical Society 50 (2):568–71. doi: 10.1021/ja01389a048.
  • Stöckmann, H., K. Schwarz, and T. Huynh-Ba. 2000. The influence of various emulsifiers on the partitioning and antioxidant activity of hydroxybenzoic acids and their derivatives in oil-in-water emulsions. Journal of the American Chemical Society 77:535–42.
  • Storozhok, N. M., M. G. Perevozkina, and G. A. Nikiforov. 2005. Interrelation of the chemical structure and inhibiting activity of sterically hindered phenols in methyl oleate oxidation in homogeneous and microheterogeneous systems. Russian Chemical Bulletin 54 (2):328–33. doi: 10.1007/s11172-005-0255-y.
  • Sun, X., and N. Bandara. 2019. Applications of reverse micelles technique in food science: A comprehensive review. Trends in Food Science & Technology 91:106–15. doi: 10.1016/j.tifs.2019.07.001.
  • Tan, C., and D. J. McClements. 2021. Application of advanced emulsion technology in the food industry: A review and critical evaluation. Foods 10 (4):812. doi: 10.3390/foods10040812.
  • Tartaro, G., H. Mateos, D. Schirone, R. Angelico, and G. Palazzo. 2020. Microemulsion microstructure(s): A tutorial review. Nanomaterials 10 (9):1657. doi: 10.3390/nano10091657.
  • Termini, J. 2003. Peroxyl and alkoxyl radical mediated DNA damage. In Critical reviews of oxidative stress and aging. Advances in basic science, diagnostics and intervention, ed. R. G. Cutler and H. Rodriguez, Vol. I, 39–53. Singapore: World Sci.
  • Tikekar, R. V., A. Johnson, and N. Nitin. 2011. Fluorescence imaging and spectroscopy for real-time, in-situ characterization of interactions of free radicals with oil-in-water emulsions. Food Research International 44 (1):139–45. doi: 10.1016/j.foodres.2010.10.049.
  • Tonova, K., and Z. Lazarova. 2008. Reversed micelle solvents as tools of enzyme purification and enzyme-catalyzed conversion. Biotechnology Advances 6:516–32.
  • Tyssandier, V., B. Lyan, and P. Borel. 2001. Main factors governing the transfer of carotenoids from emulsion lipid droplets to micelles. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1533 (3):285–92. doi: 10.1016/S1388-1981(01)00163-9.
  • Uluata, S., D. J. McClements, and E. A. Decker. 2015. Physical stability, autoxidation, and photosensitized oxidation of ω-3 oils in ­nanoemulsions prepared with natural and synthetic surfactants. Journal of Agricultural and Food Chemistry 63 (42):9333–40.
  • Vandemoortele, A., M. Simon, A. Claes, and B. De Meulenaer. 2020. Behavior of hexanal, (E)-hex-2-nal, 4-hydroxyhex-2-enal, and 4-hydroxynon-2-enal in oil-in-water emulsions. Journal of Agricultural and Food Chemistry 68 (41):11568–77. doi: 10.1021/acs.jafc.0c04060.
  • Villares, A., Guillamón, E., D’Arrigo, M., Martínez, J. A., García-Lafuente, A. & Ramos A. (2012). Kinetic study of the inhibition of linoleic acid oxidation in aqueous media by phenolic compounds. Food Biophysics, 7, 50–56.
  • Villeneuve, P., E. Durand, and E. A. Decker. 2018. The need for a new step in the study of lipid oxidation in heterophasic systems. Journal of Agricultural and Food Chemistry, 66, 8433–8434.
  • Walker, R. M., E. A. Decker, and D. J. McClements. 2015. Physical and oxidative stability of fish oil nanoemulsions produced by spontaneous emulsification: Effect of surfactant concentration and particle size. Journal of Food Engineering 164:10–20. doi: 10.1016/j.jfoodeng.2015.04.028.
  • Wang, P. F., and R. L. Zheng. 1992. Inhibitions of the autooxidation of linoleic acid by flavonoids in micelles. Chemistry and Physics of Lipids 63 (1-2):37–40. doi: 10.1016/0009-3084(92)90019-L.
  • Waraho, T., D. J. McClements, and E. A. Decker. 2011. Mechanisms of lipid oxidation in food dispersions. Trends in Food Science & Technology 22 (1):3–13. doi: 10.1016/j.tifs.2010.11.003.
  • Weiss, J., and D. J. McClements. 2000. Mass transport phenomena in oil-in-water emulsions containing surfactant micelles: Solubilization. Langmuir 16 (14):5879–83. doi: 10.1021/la9914763.
  • Wheeler, D. H. 1932. Peroxide formation as a measure of autoxidative deterioration. Oil & Soap 9 (4):89–97. doi: 10.1007/BF02553782.
  • Witte, F. M., and J. B. F. N. Engberts. 1988. An electron-spin-resonance spin probe study of micelle-polymer complexes-poly(ethylene oxide) complexed and poly(propylene oxide) complexed sodium dodecyl-sulfate and cetyltrimethylammonium bromide micelles. The Journal of Organic Chemistry 53 (13):3085–8. doi: 10.1021/jo00248a033.
  • Wong, F. C., J. Xiao, S. Wang, K. Y. Ee, and T. T. Chai. 2020. Advances on the antioxidant peptides from edible plant sources. Trends in Food Science & Technology 99:44–57. doi: 10.1016/j.tifs.2020.02.012.
  • Xenakis, A., V. Papadimitriou, and T. G. Sotiroudis. 2010. Colloidal structures in natural oils. Current Opinion in Colloid & Interface Science 15 (1-2):55–60. doi: 10.1016/j.cocis.2009.11.007.
  • Xie, W., J. Ji, and H. Wang. 2007. Impact of surfactant type, pH and antioxidants on the oxidation of methyl linoleate in micellar solutions. Food Research International 40 (10):1270–5. doi: 10.1016/j.foodres.2007.08.001.
  • Yalcinöz, S., and E. Erçelebi. 2020. Effect of surfactant type and droplet size on lipid oxidation in oil-in-water nano-emulsions. Quality Assurance and Safety of Crops & Foods 12 (2):1–11. doi: 10.15586/qas.v12i2.645.
  • Yang, S., A. A. Verhoeff, D. W. H. Merkx, J. P. M. van Duynhoven, and J. Hohlbein. 2020. Quantitative spatiotemporal mapping of lipid and protein oxidation in mayonnaise. Antioxidants 9 (12):1278. doi: 10.3390/antiox9121278.
  • Yazu, K., Y. Yamamoto, K. Ukegawa, and E. Niki. 1996. Mechanism of lower oxidizability of eicosapentaenoate than linoleate in aqueous micelles. Lipids 31 (3):337–40.
  • Yazu, K., Y. Yamamoto, E. Niki, K. Miki, and K. Ukegawa. 1998. Mechanism of lower oxidizability of eicosapentaenoate than linoleate in aqueous micelles. II. Effect of antioxidants. Lipids 33 (6):597–600.
  • Yi, B., M. J. Kim, and J. Lee. 2016. Effects of emulsifier charges on the oxidative stability in oil-in-water emulsions under riboflavin photosensitization. Food Science and Biotechnology 25 (4):1003–9.
  • Yoshida, Y., J. Tsuchiya, and E. Niki. 1994. Interaction of alpha-tocopherol with copper and its effect on lipid peroxidation. Biochimica et Biophysica Acta (Bba) - General Subjects 1200 (2):85–92. doi: 10.1016/0304-4165(94)90121-X.
  • You, Y., A. Bloomfield, J. Liu, L. Fu, S. B. Herzon, and E. C. Y. Yan. 2012. Real-time kinetics of surfactant molecule transfer between emulsion particles probed by in situ second harmonic generation spectroscopy. Journal of the American Chemical Society 134 (9):4264–8.
  • Yuji, H., J. Weiss, P. Villeneuve, L. J. López Giraldo, M. C. Figueroa-Espinoza, and E. A. Decker. 2007. Ability of surface-active antioxidants to inhibit lipid oxidation in oil-in-water emulsion. Journal of Agricultural and Food Chemistry 55 (26):11052–6.
  • Zambrowicz, A., E. Eckert, M. Pokora, Ł. Bobak, A. Dąbrowska, M. Szołtysik, T. Trziszka, and J. Chrzanowska. 2015. Antioxidant and antidiabetic activities of peptides isolated from a hydrolysate of an egg-yolk protein by-product prepared with a proteinase from Asian pumpkin (Cucurbita ficifolia). RSC Advances 5 (14):10460–7. doi: 10.1039/C4RA12943A.
  • Zamora, R., J. L. Navarro, I. Aguilar, and F. J. Hidalgo. 2015. Lipid-derived aldehyde degradation under thermal conditions. Food Chemistry 174:89–96.
  • Zeeb, B., C. Thongkaew, and J. Weiss. 2014. Theoretical and practical considerations in electrostatic depositioning of charged polymers. Journal of Applied Polymer Science 131 (7):40099. doi: 10.1002/app.40099.
  • Zheng, R. L., P. F. Wang, J. Li, Z. M. Liu, and Z. J. Jia. 1993. Inhibition of the autoxidation of linoleic acid by phenylpropanoid glycosides from Pedicularis in micelles. Chemistry and Physics of Lipids 65 (2):151–4.
  • Zhou, B., Z. S. Jia, Z. H. Chen, L. Yang, L. M. Wu, and Z. L. Liu. 2000. Synergistic antioxidant effect of green tea polyphenols with α-tocopherol on free radical initiated peroxidation of linoleic acid in micelles. Journal of Chemical Society, Perkin Transactions 2:785–91.
  • Zhou, B., Q. Miao, and Z. L. Liu. 2005. Antioxidative effects of flavonols and their glycosides against the free-radical-induced peroxidation of linoleic acid in solution and in micelles. Chemistry: a European Journal 2:680–91.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.