1,348
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Methods for characterizing the structure of starch in relation to its applications: a comprehensive review

, , , , &

References

  • Almeida, M. R., R. S. Alves, L. B. L. R. Nascimbem, R. Stephani, R. J. Poppi, and L. F. C. de Oliveira. 2010. Determination of amylose content in starch using Raman spectroscopy and multivariate calibration analysis. Analytical and Bioanalytical Chemistry 397 (7):2693–701. doi: 10.1007/s00216-010-3566-2.
  • Ambigaipalan, P., R. Hoover, E. Donner, and Q. Liu. 2013. Retrogradation characteristics of pulse starches. Food Research International 54 (1):203–12. doi: 10.1016/j.foodres.2013.06.012.
  • Baker, A. A., M. J. Miles, and W. Helbert. 2001. Internal structure of the starch granule revealed by AFM. Carbohydrate Research 330 (2):249–56. doi: 10.1016/S0008-6215(00)00275-5.
  • Barrera, G. N., G. Calderon-Dominguez, J. Chanona-Perez, G. F. Gutierrez-Lopez, A. E. Leon, and P. D. Ribotta. 2013. Evaluation of the mechanical damage on wheat starch granules by SEM, ESEM, AFM and texture image analysis. Carbohydrate Polymers 98 (2):1449–57. doi: 10.1016/j.carbpol.2013.07.056.
  • Barth, H. G., B. E. Boyes, and C. Jackson. 1998. Size exclusion chromatography and related separation techniques. Analytical Chemistry 70 (12):251–78. doi: 10.1021/a1980015t.
  • Bayer, R. K., M. E. Cagiao, and F. J. B. Calleja. 2006. Structure development in amorphous starch as revealed by X-ray scattering: Influence of the network structure and water content. Journal of Applied Polymer Science 99 (4):1880–6. doi: 10.1002/app.22655.
  • Bertoft, E. 1989. Partial characterisation of amylopectin alpha-dextrins. Carbohydrate Research 189:181–93. doi: 10.1016/0008-6215(89)84096-0.
  • Bertoft, E. 2004. On the nature of categories of chains in amylopectin and their connection to the super helix model. Carbohydrate Polymers 57 (2):211–24. doi: 10.1016/j.carbpol.2004.04.015.
  • Bertoft, E. 2017. Understanding Starch Structure: Recent Progress. Agronomy 7 (3):56. doi: 10.3390/agronomy7030056.
  • Bertoft, E., G. A. Annor, X. Shen, P. Rumpagaporn, K. Seetharaman, and B. R. Hamaker. 2016. Small differences in amylopectin fine structure may explain large functional differences of starch. Carbohydrate Polymers 140:113–21. doi: 10.1016/j.carbpol.2015.12.025.
  • Bertoft, E., and K. Koch. 2000. Composition of chains in waxy-rice starch and its structural units. Carbohydrate Polymers 41 (2):121–32. doi: 10.1016/S0144-8617(99)00085-5.
  • Bertoft, E., K. Piyachomkwan, P. Chatakanonda, and K. Sriroth. 2008. Internal unit chain composition in amylopectins. Carbohydrate Polymers 74 (3):527–43. doi: 10.1016/j.carbpol.2008.04.011.
  • Bie, P., H. Pu, B. Zhang, J. Su, L. Chen, and X. Li. 2016. Structural characteristics and rheological properties of plasma-treated starch. Innovative Food Science & Emerging Technologies 34:196–204. doi: 10.1016/j.ifset.2015.11.019.
  • Blazek, J., and E. P. Gilbert. 2010. Effect of Enzymatic Hydrolysis on Native Starch Granule Structure. Biomacromolecules 11 (12):3275–89. doi: 10.1021/bm101124t.
  • Blazek, J., and E. P. Gilbert. 2011. Application of small-angle X-ray and neutron scattering techniques to the characterisation of starch structure: A review. Carbohydrate Polymers 85 (2):281–93. doi: 10.1016/j.carbpol.2011.02.041.
  • Buléon, A., P. Colonna, V. Planchot, and S. Ball. 1998. Starch granules: Structure and biosynthesis. International Journal of Biological Macromolecules 23 (2):85–112. doi: 10.1016/S0141-8130(98)00040-3.
  • Bulkin, B. J., Y. Kwak, and I. C. M. Dea. 1987. Retrogradation kinetics of waxy-corn and potato starches; a rapid, Raman-spectroscopic study. Carbohydrate Research 160:95–112. doi: 10.1016/0008-6215(87)80305-1.
  • Cael, J. J., J. L. Koenig, and J. Blackwell. 1975. Infrared and Raman spectroscopy of carbohydrates. Part VI: Normal coordinate analysis of V‐amylose. Biopolymers 14 (9):1885–903. doi: 10.1002/bip.1975.360140909.
  • Cai, J., C. Cai, J. Man, Y. Yang, F. Zhang, and C. Wei. 2014. Crystalline and structural properties of acid-modified lotus rhizome C-type starch. Carbohydrate Polymers 102:799–807. doi: 10.1016/j.carbpol.2013.10.088.
  • Cai, J., C. Cai, J. Man, W. Zhou, and C. Wei. 2014. Structural and functional properties of C-type starches. Carbohydrate Polymers 101:289–300. doi: 10.1016/j.carbpol.2013.09.058.
  • Cameron, R. E., and A. M. Donald. 1992. A small-angle X-ray scattering study of the annealing and gelatinization of starch. Polymer 33 (12):2628–35. doi: 10.1016/0032-3861(92)91147-T.
  • Cameron, R. E., and A. M. Donald. 1993. A small-angle X-ray scattering study of the absorption of water into the starch granule. Carbohydrate Research 244 (2):225–36. doi: 10.1016/0008-6215(83)85003-4.
  • Cardoso, M. B., and H. Westfahl. 2010. On the lamellar width distributions of starch. Carbohydrate Polymers 81 (1):21–8. doi: 10.1016/j.carbpol.2010.01.049.
  • Castro, J. V., C. Dumas, H. Chiou, M. A. Fitzgerald, and R. G. Gilbert. 2005. Mechanistic information from analysis of molecular weight distributions of starch. Biomacromolecules 6 (4):2248–59. doi: 10.1021/bm0500401.
  • Chen, L., R. Ma, Z. Zhang, M. Huang, C. Cai, R. Zhang, D. J. McClements, Y. Tian, and Z. Jin. 2019. Comprehensive investigation and comparison of surface microstructure of fractionated potato starches. Food Hydrocolloids 89:11–9. doi: 10.1016/j.foodhyd.2018.10.017.
  • Chen, L., Y. Tian, Y. Bai, J. Wang, A. Jiao, and Z. Jin. 2018. Effect of frying on the pasting and rheological properties of normal maize starch. Food Hydrocolloids 77:85–95. doi: 10.1016/j.foodhyd.2017.09.024.
  • Chen, Y., Q. Yang, X. Xu, L. Qi, Z. Dong, Z. Luo, X. Lu, and X. Peng. 2017. Structural changes of waxy and normal maize starches modified by heat moisture treatment and their relationship with starch digestibility. Carbohydrate Polymers 177:232–40. doi: 10.1016/j.carbpol.2017.08.121.
  • Chen, P., L. Yu, G. P. Simon, X. Liu, K. Dean, and L. Chen. 2011. Internal structures and phase-transitions of starch granules during gelatinization. Carbohydrate Polymers 83 (4):1975–83. doi: 10.1016/j.carbpol.2010.11.001.
  • Chevigny, C., L. Chaunier, R. Ferbus, P. Roblin, C. Rondeau-Mouro, and D. Lourdin. 2018. In-situ quantitative and multiscale structural study of starch-based biomaterials immersed in water. Biomacromolecules 19 (3):838–48. doi: 10.1021/acs.biomac.7b01635.
  • Chevigny, C., L. Foucat, A. Rolland-Sabate, A. Buleon, and D. Lourdin. 2016. Shape-memory effect in amorphous potato starch: The influence of local orders and paracrystallinity. Carbohydrate Polymers 146:411–9. doi: 10.1016/j.carbpol.2016.03.065.
  • Chung, H.-J., Q. Liu, and R. Hoover. 2009. Impact of annealing and heat-moisture treatment on rapidly digestible, slowly digestible and resistant starch levels in native and gelatinized corn, pea and lentil starches. Carbohydrate Polymers 75 (3):436–47. doi: 10.1016/j.carbpol.2008.08.006.
  • Copeland, L., J. Blazek, H. Salman, and M. C. Tang. 2009. Form and functionality of starch. Food Hydrocolloids 23 (6):1527–34. doi: 10.1016/j.foodhyd.2008.09.016.
  • Dang, J. M. C., and L. Copeland. 2003. Imaging rice grains using atomic force microscopy. Journal of Cereal Science 37 (2):165–70. doi: 10.1006/jcrs.2002.0490.
  • Daniels, D. R., and A. M. Donald. 2003. An improved model for analyzing the small angle x-ray scattering of starch granules. Biopolymers 69 (2):165–75. doi: 10.1002/bip.10341.
  • Daniels, D. R., and A. M. Donald. 2004. Soft material characterization of the lamellar properties of starch: Smectic side-chain liquid-crystalline polymeric approach. Macromolecules 37 (4):1312–8. doi: 10.1021/ma030360h.
  • Fang, F., M. M. Martinez, O. H. Campanella, and B. R. Hamaker. 2020. Long-term low shear-induced highly viscous waxy potato starch gel formed through intermolecular double helices. Carbohydrate Polymers 232:115815. doi: 10.1016/j.carbpol.2019.115815.
  • Fan, D., W. Ma, L. Wang, J. Huang, F. Zhang, J. Zhao, H. Zhang, and W. Chen. 2013. Determining the effects of microwave heating on the ordered structures of rice starch by NMR. Carbohydrate Polymers 92 (2):1395–401. doi: 10.1016/j.carbpol.2012.09.072.
  • Fan, D., W. Ma, L. Wang, J. Huang, J. Zhao, H. Zhang, and W. Chen. 2012. Determination of structural changes in microwaved rice starch using Fourier transform infrared and Raman spectroscopy. Starch - Stärke 64 (8):598–606. doi: 10.1002/star.201100200.
  • Fannon, J. E., R. J. Hauber, and J. N. BeMiller. 1992. Surface pores of starch granules. Cereal Chemistry 69 (3):284–8.
  • Fannon, J. E., J. M. Shull, and J. N. BeMiller. 1993. Interior channels of starch granules. Cereal Chemistry 70:611.
  • Fechner, P. M., S. Wartewig, P. Kleinebudde, and R. H. H. Neubert. 2005. Studies of the retrogradation process for various starch gels using Raman spectroscopy. Carbohydrate Research 340 (16):2563–68. doi: 10.1016/j.carres.2005.08.018.
  • Flanagan, B. M., M. J. Gidley, and F. J. Warren. 2015. Rapid quantification of starch molecular order through multivariate modelling of (13)C CP/MAS NMR spectra. Chemical Communications (Cambridge, England) 51 (80):14856–8. doi: 10.1039/c5cc06144j.
  • Flores-Morales, A., M. Jiménez-Estrada, and R. Mora-Escobedo. 2012. Determination of the structural changes by FT-IR, Raman, and CP/MAS 13C NMR spectroscopy on retrograded starch of maize tortillas. Carbohydrate Polymers 87 (1):61–68. doi: 10.1016/j.carbpol.2011.07.011.
  • Frost, K., D. Kaminski, G. Kirwan, E. Lascaris, and R. Shanks. 2009. Crystallinity and structure of starch using wide angle X-ray scattering. Carbohydrate Polymers 78 (3):543–48. doi: 10.1016/j.carbpol.2009.05.018.
  • Gallant, D. J., B. Bouchet, and P. M. Baldwin. 1997. Microscopy of starch: Evidence of a new level of granule organization. Carbohydrate Polymers 32 (3–4):177–91. doi: 10.1016/S0144-8617(97)00008-8.
  • Gidley, M. J., and S. M. Bociek. 1985. Molecular organization in starches: A carbon 13 CP/MAS NMR study. Journal of the American Chemical Society 107 (24):7040–44. doi: 10.1021/ja00310a047.
  • Gilbert, R. G. 2011. Size-separation characterization of starch and glycogen for biosynthesis-structure-property relationships. Analytical and Bioanalytical Chemistry 399 (4):1425–38. doi: 10.1007/s00216-010-4435-8.
  • Godet, M. C., H. Bizot, and A. Buléon. 1995. Crystallization of amylose-fatty acid complexes prepared with different amylose chain lengths. Carbohydrate Polymers 27 (1):47–52. doi: 10.1016/0144-8617(95)00034-5.
  • Gomand, S. V., L. Lamberts, C. J. Gommes, R. G. Visser, J. A. Delcour, and B. Goderis. 2012. Molecular and morphological aspects of annealing-induced stabilization of starch crystallites. Biomacromolecules 13 (5):1361–70. doi: 10.1021/bm3000748.
  • Guo, Z., X. Jia, B. Zhao, S. Zeng, J. Xiao, and B. Zheng. 2017. C-type starches and their derivatives: Structure and function. Annals of the New York Academy of Sciences 1398 (1):47–61. doi: 10.1111/nyas.13351.
  • Guo, P., J. Yu, S. Wang, S. Wang, and L. Copeland. 2018. Effects of particle size and water content during cooking on the physicochemical properties and in vitro starch digestibility of milled durum wheat grains. Food Hydrocolloids 77:445–53. doi: 10.1016/j.foodhyd.2017.10.021.
  • Hamielec, A. E., and A. C. Ouano. 1978. Generalized universal molecular weight calibration parameter in GPC. Journal of Liquid Chromatography 1 (1):111–20. doi: 10.1080/01483917808068382.
  • Hamielec, A. E., A. C. Ouano, and L. L. Nebenzahl. 1978. Characterization of branched poly (vinyl Acetate) by GPC and low angle laser light scattering photometry. Journal of Liquid Chromatography 1 (4):527–54. doi: 10.1080/01483917808060016.
  • Hanashiro, I., J.-i. Abe, and S. Hizukuri. 1996. A periodic distribution of the chain length of amylopectin as revealed by high-performance anion-exchange chromatography. Carbohydrate Research 283:151–59. doi: 10.1016/0008-6215(95)00408-4.
  • Hanashiro, I., M. Tagawa, S. Shibahara, K. Iwata, and Y. Takeda. 2002. Examination of molar-based distribution of A, B and C chains of amylopectin by fluorescent labeling with 2-aminopyridine. Carbohydrate Research 337 (13):1211–15. doi: 10.1016/S0008-6215(02)00110-6.
  • Hernández, J. M., M. Gaborieau, P. Castignolles, M. J. Gidley, A. M. Myers, and R. G. Gilbert. 2008. Mechanistic investigation of a starch-branching enzyme using hydrodynamic volume SEC analysis. Biomacromolecules 9 (3):954–65. doi: 10.1021/bm701213p.
  • Hoyos-Leyva, J. D., L. A. Bello-Pérez, J. Alvarez-Ramirez, and E. Agama-Acevedo. 2017. Structural characterization of aroid starches by means of chromatographic techniques. Food Hydrocolloids 69:97–102. doi: 10.1016/j.foodhyd.2017.01.034.
  • Hu, X., J. Shi, F. Zhang, X. Zou, M. Holmes, W. Zhang, X. Huang, X. Cui, and J. Xue. 2017. Determination of retrogradation degree in starch by mid-infrared and Raman spectroscopy during storage. Food Analytical Methods 10 (11):3694–705. doi: 10.1007/s12161-017-0932-0.
  • Huang, S., C. Chao, J. Yu, L. Copeland, and S. Wang. 2021. New insight into starch retrogradation: The effect of short-range molecular order in gelatinized starch. Food Hydrocolloids 120:106921. doi: 10.1016/j.foodhyd.2021.106921.
  • Iulianelli, G. C. V., and M. I. B. Tavares. 2016. Application of solid-state NMR spectroscopy to evaluate cassava genotypes. Journal of Food Composition and Analysis 48:88–94. doi: 10.1016/j.jfca.2016.02.009.
  • Jacobs, H., and J. A. Delcour. 1998. Hydrothermal modifications of granular starch, with retention of the granular structure: A review. Journal of Agricultural and Food Chemistry 46 (8):2895–905. doi: 10.1021/jf980169k.
  • Jiang, H., H. T. Horner, T. M. Pepper, M. Blanco, M. Campbell, and J-l Jane. 2010. Formation of elongated starch granules in high-amylose maize. Carbohydrate Polymers 80 (2):533–38. doi: 10.1016/j.carbpol.2009.12.016.
  • Kiseleva, V. I., A. V. Krivandin, J. Fornal, W. Błaszczak, T. Jeliński, and V. P. Yuryev. 2005. Annealing of normal and mutant wheat starches. LM, SEM, DSC, and SAXS studies. Carbohydrate Research 340 (1):75–83. doi: 10.1016/j.carres.2004.10.012.
  • Kizil, R., J. Irudayaraj, and K. Seetharaman. 2002. Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy. Journal of Agricultural and Food Chemistry 50 (14):3912–18. doi: 10.1021/jf011652p.
  • Kong, X., E. Bertoft, J. Bao, and H. Corke. 2008. Molecular structure of amylopectin from Amaranth starch and its effect on physicochemical properties. International Journal of Biological Macromolecules 43 (4):377–82. doi: 10.1016/j.ijbiomac.2008.07.018.
  • Kuang, Q., J. Xu, Y. Liang, F. Xie, F. Tian, S. Zhou, and X. Liu. 2017. Lamellar structure change of waxy corn starch during gelatinization by time-resolved synchrotron SAXS. Food Hydrocolloids 62:43–48. doi: 10.1016/j.foodhyd.2016.07.024.
  • Larkin, P. 2011. Infrared and Raman spectroscopy: Principles and spectral interpretation. 2nd ed. Connecticut: Elsevier.
  • Li, M., S. Dhital, and Y. Wei. 2017. Multilevel structure of wheat starch and its relationship to noodle eating qualities. Comprehensive Reviews in Food Science and Food Safety 16 (5):1042–55. doi: 10.1111/1541-4337.12272.
  • Li, H., S. Prakash, T. M. Nicholson, M. A. Fitzgerald, and R. G. Gilbert. 2016. The importance of amylose and amylopectin fine structure for textural properties of cooked rice grains. Food Chemistry 196:702–11. doi: 10.1016/j.foodchem.2015.09.112.
  • Liu, X., C. Chao, J. Yu, L. Copeland, and S. Wang. 2021. Mechanistic studies of starch retrogradation and its effects on starch gel properties. Food Hydrocolloids 120:106914. doi: 10.1016/j.foodhyd.2021.106914.
  • Liu, X., H. Luan, Y. Jinglin, S. Wang, S. Wang, and L. Copeland. 2020. A method for characterizing short-range molecular order in amorphous starch. Carbohydrate Polymers 242:116405. doi: 10.1016/j.carbpol.2020.116405.
  • Liu, K., B. Zhang, L. Chen, X. Li, and B. Zheng. 2019. Hierarchical structure and physicochemical properties of highland barley starch following heat moisture treatment. Food Chemistry 271:102–8. doi: 10.1016/j.foodchem.2018.07.193.
  • Li, G., F. Zhu, G. Mo, and Y. Hemar. 2019. Supramolecular structure of high hydrostatic pressure treated quinoa and maize starches. Food Hydrocolloids 92:276–84. doi: 10.1016/j.foodhyd.2018.12.030.
  • Lopez-Rubio, A., B. M. Flanagan, E. P. Gilbert, and M. J. Gidley. 2008. A novel approach for calculating starch crystallinity and its correlation with double helix content: A combined XRD and NMR study. Biopolymers 89 (9):761–8. doi: 10.1002/bip.21005.
  • Lopez-Rubio, A., A. Htoon, and E. P. Gilbert. 2007. Influence of extrusion and digestion on the nanostructure of high-amylose maize starch. Biomacromolecules 8 (5):1564–72. doi: 10.1021/bm061124s.
  • Lourdin, D., J.-L. Putaux, G. Potocki-Véronèse, C. Chevigny, A. Rolland-Sabaté, and A. Buléon. 2015. Crystalline structure in starch. In Starch: Metabolism and structure, ed. Y. Nakamura, 1st ed., 61–90. Tokyo: Springer Japan.
  • Ma, Y., H. Zhang, Y. Jin, D. Xu, and X. Xu. 2022. Impact of superheated steam on the moisture transfer, structural characteristics and rheological properties of wheat starch. Food Hydrocolloids 122 (107089):107089. doi: 10.1016/j.foodhyd.2021.107089.
  • Meijer, H. E. H., and L. E. Govaert. 2003. Multi-scale analysis of mechanical properties of amorphous polymer systems. Macromolecular Chemistry and Physics 204 (2):274–88. doi: 10.1002/macp.200290080.
  • Miao, M., B. Jiang, T. Zhang, Z. Jin, and W. Mu. 2011. Impact of mild acid hydrolysis on structure and digestion properties of waxy maize starch. Food Chemistry 126 (2):506–13. doi: 10.1016/j.foodchem.2010.11.031.
  • Mitrus, M., A. Wójtowicz, T. Oniszczuk, E. Gondek, and L. Mościcki. 2017. Effect of processing conditions on microstructure and pasting properties of extrusion-cooked starches. International Journal of Food Engineering 13 (6):20160287. doi: 10.1515/ijfe-2016-0287.
  • Morell, M. K., M. S. Samuel, and M. G. O’Shea. 1998. Analysis of starch structure using fluorophore-assisted carbohydrate electrophoresis. Electrophoresis 19 (15):2603–11. doi: 10.1002/elps.1150191507.
  • Mutungi, C., L. Passauer, C. Onyango, D. Jaros, and H. Rohm. 2012. Debranched cassava starch crystallinity determination by Raman spectroscopy: Correlation of features in Raman spectra with X-ray diffraction and 13C CP/MAS NMR spectroscopy. Carbohydrate Polymers 87 (1):598–606. doi: 10.1016/j.carbpol.2011.08.032.
  • Naguleswaran, S., J. Li, T. Vasanthan, and D. Bressler. 2011. Distribution of granule channels, protein, and phospholipid in triticale and corn starches as revealed by confocal laser scanning microscopy. Cereal Chemistry Journal 88 (1):87–94. doi: 10.1094/CCHEM-04-10-0062.
  • Naguleswaran, S., J. Li, T. Vasanthan, D. Bressler, and R. Hoover. 2012. Amylolysis of large and small granules of native triticale, wheat and corn starches using a mixture of α-amylase and glucoamylase. Carbohydrate Polymers 88 (3):864–74. doi: 10.1016/j.carbpol.2012.01.027.
  • Nara, S., and T. Komiya. 1983. Studies on the relationship between water‐satured state and crystallinity by the diffraction method for moistened potato starch. Starch - Stärke 35 (12):407–10. doi: 10.1002/star.19830351202.
  • Nessi, V., A. Rolland-Sabate, D. Lourdin, F. Jamme, C. Chevigny, and K. Kansou. 2018. Multi-scale characterization of thermoplastic starch structure using Second Harmonic Generation imaging and NMR. Carbohydrate Polymers 194:80–88. doi: 10.1016/j.carbpol.2018.04.030.
  • Niu, M., B. Zhang, C. Jia, and S. Zhao. 2017. Multi-scale structures and pasting characteristics of starch in whole-wheat flour treated by superfine grinding. International Journal of Biological Macromolecules 104 (Pt A):837–45. doi: 10.1016/j.ijbiomac.2017.06.125.
  • O’Shea, M. G., M. S. Samuel, C. M. Konik, and M. K. Morell. 1998. Fluorophore-assisted carbohydrate electrophoresis (FACE) of oligosaccharides: Efficiency of labelling and high-resolution separation. Carbohydrate Research 307 (1–2):1–12. doi: 10.1016/S0008-6215(97)10085-4.
  • O’Shea, M. G., and M. K. Morell. 1996. High resolution slab gel electrophoresis of 8-amino-1,3,6-pyrenetrisulfonic acid (APTS) tagged oligosaccharides using a DNA sequencer. Electrophoresis 17 (4):681–86. doi: 10.1002/elps.1150170410.
  • Peat, S., W. Whelan, and G. J. Thomas. 1952. Evidence of multiple branching in waxy maize starch. Journal of the Chemical Society (Resumed):4536–38.
  • Pérez, S., and E. Bertoft. 2010. The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review. Starch - Stärke 62 (8):389–420. doi: 10.1002/star.201000013.
  • Peroni-Okita, F. H., A. P. Gunning, A. Kirby, R. A. Simao, C. A. Soares, and B. R. Cordenunsi. 2015. Visualization of internal structure of banana starch granule through AFM. Carbohydrate Polymers 128:32–40. doi: 10.1016/j.carbpol.2015.04.019.
  • Pratiwi, M., D. N. Faridah, and H. N. Lioe. 2018. Structural changes to starch after acid hydrolysis, debranching, autoclaving-cooling cycles, and heat moisture treatment (HMT): A review. Starch - Stärke 70 (1–2):1700028. doi: 10.1002/star.201700028.
  • Putaux, J.-L., S. Molina-Boisseau, T. Momaur, and A. Dufresne. 2003. Platelet nanocrystals resulting from the disruption of waxy maize starch granules by acid hydrolysis. Biomacromolecules 4 (5):1198–202. doi: 10.1021/bm0340422.
  • Qi, Y., N. Wang, J. Yu, S. Wang, S. Wang, and L. Copeland. 2020. Insights into structure-function relationships of starch from foxtail millet cultivars grown in China. International Journal of Biological Macromolecules 155:1176–83. doi: 10.1016/j.ijbiomac.2019.11.085.
  • Qiao, D., F. Xie, B. Zhang, W. Zou, S. Zhao, M. Niu, R. Lv, Q. Cheng, F. Jiang, and J. Zhu. 2017. A further understanding of the multi-scale supramolecular structure and digestion rate of waxy starch. Food Hydrocolloids 65:24–34. doi: 10.1016/j.foodhyd.2016.10.041.
  • Rafiq, S. I., S. Singh, and D. C. Saxena. 2016. Effect of heat-moisture and acid treatment on physicochemical, pasting, thermal and morphological properties of Horse Chestnut (Aesculus indica) starch. Food Hydrocolloids 57:103–13. doi: 10.1016/j.foodhyd.2016.01.009.
  • Rashid, I., M. H. A. Omari, S. A. Leharne, B. Z. Chowdhry, and A. Badwan. 2012. Starch gelatinization using sodium silicate: FTIR, DSC, XRPD, and NMR studies. Starch - Stärke 64 (9):713–28. doi: 10.1002/star.201100190.
  • Ren, N., Z. Ma, J. Xu, and X. Hu. 2020. Insights into the supramolecular structure and techno-functional properties of starch isolated from oat rice kernels subjected to different processing treatments. Food Chemistry 317:126464. doi: 10.1016/j.foodchem.2020.126464.
  • Schuster, K. C., H. Ehmoser, J. R. Gapes, and B. Lendl. 2000. On-line FT-Raman spectroscopic monitoring of starch gelatinisation and enzyme catalysed starch hydrolysis. Vibrational Spectroscopy 22 (1–2):181–90. doi: 10.1016/S0924-2031(99)00080-6.
  • Sevenou, O., S. Hill, I. Farhat, and J. Mitchell. 2002. Organisation of the external region of the starch granule as determined by infrared spectroscopy. International Journal of Biological Macromolecules 31 (1–3):79–85. doi: 10.1016/S0141-8130(02)00067-3.
  • Shamai, K., E. Shimoni, and H. Bianco-Peled. 2004. Small angle X-ray scattering of resistant starch type III. Biomacromolecules 5 (1):219–23. doi: 10.1021/bm034332i.
  • Shi, Y.-C., T. Capitani, P. Trzasko, and R. Jeffcoat. 1998. Molecular structure of a low-amylopectin starch and other high-amylose maize starches. Journal of Cereal Science 27 (3):289–99. doi: 10.1006/jcrs.1997.9998.
  • Sujka, M., and J. Jamroz. 2013. Ultrasound-treated starch: SEM and TEM imaging, and functional behaviour. Food Hydrocolloids 31 (2):413–19. doi: 10.1016/j.foodhyd.2012.11.027.
  • Sullivan, W. R., J. G. Hughes, R. W. Cockman, and D. M. Small. 2017. The effects of temperature on the crystalline properties and resistant starch during storage of white bread. Food Chemistry 228:57–61. doi: 10.1016/j.foodchem.2017.01.140.
  • Syahariza, Z. A., E. Li, and J. Hasjim. 2010. Extraction and dissolution of starch from rice and sorghum grains for accurate structural analysis. Carbohydrate Polymers 82 (1):14–20. doi: 10.1016/j.carbpol.2010.04.014.
  • Syahariza, Z. A., S. Sar, J. Hasjim, M. J. Tizzotti, and R. G. Gilbert. 2013. The importance of amylose and amylopectin fine structures for starch digestibility in cooked rice grains. Food Chemistry 136 (2):742–9. doi: 10.1016/j.foodchem.2012.08.053.
  • Tan, I., B. M. Flanagan, P. J. Halley, A. K. Whittaker, and M. J. Gidley. 2007. A method for estimating the nature and relative proportions of amorphous, single, and double-helical components in starch granules by (13)C CP/MAS NMR. Biomacromolecules 8 (3):885–91. doi: 10.1021/bm060988a.
  • Tang, H., T. Mitsunaga, and Y. Kawamura. 2006. Molecular arrangement in blocklets and starch granule architecture. Carbohydrate Polymers 63 (4):555–60. doi: 10.1016/j.carbpol.2005.10.016.
  • Tao, H., P. Wang, B. Ali, F. Wu, Z. Jin, and X. Xu. 2015. Structural and functional properties of wheat starch affected by multiple freezing/thawing cycles. Starch - Stärke 67 (7–8):683–91. doi: 10.1002/star.201500036.
  • Tester, R. F., S. J. J. Debon, and M. D. Sommerville. 2000. Annealing of maize starch. Carbohydrate Polymers 42 (3):287–99. doi: 10.1016/S0144-8617(99)00170-8.
  • Tester, R. F., J. Karkalas, and X. Qi. 2004. Starch—composition, fine structure and architecture. Journal of Cereal Science 39 (2):151–65. doi: 10.1016/j.jcs.2003.12.001.
  • Tester, R. F., and W. R. Morrison. 1990. Swelling and gelatinization of cereal starches. I. Effects of amylopectin, amylose, and lipids. Cereal Chemistry 67 (6):551–57.
  • Tetlow, I. J. 2011. Starch biosynthesis in developing seeds. Seed Science Research 21 (1):5–32. doi: 10.1017/S0960258510000292.
  • Thys, R. C., H. Westfahl, Jr, C. P. Noreña, L. D. Marczak, N. P. Silveira, and M. B. Cardoso. 2008. Effect of the alkaline treatment on the ultrastructure of C-type starch granules. Biomacromolecules 9 (7):1894–901. doi: 10.1021/bm800143w.
  • Tu, Y., S. Huang, C. Chi, P. Lu, L. Chen, L. Li, and X. Li. 2021. Digestibility and structure changes of rice starch following co-fermentation of yeast and Lactobacillus strains. International Journal of Biological Macromolecules 184:530–37. doi: 10.1016/j.ijbiomac.2021.06.069.
  • Vamadevan, V., and E. Bertoft. 2015. Structure-function relationships of starch components. Starch - Stärke 67 (1–2):55–68. doi: 10.1002/star.201400188.
  • van de Velde, F., J. van Riel, and R. H. Tromp. 2002. Visualisation of starch granule morphologies using confocal scanning laser microscopy (CSLM). Journal of the Science of Food and Agriculture 82 (13):1528–36. doi: 10.1002/jsfa.1165.
  • van Soest, J. J., H. Tournois, D. de Wit, and J. F. Vliegenthart. 1995. Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy. Carbohydrate Research 279:201–14. doi: 10.1016/0008-6215(95)00270-7.
  • Véchambre, C., A. Buléon, L. Chaunier, F. Jamme, and D. Lourdin. 2010. Macromolecular orientation in glassy starch materials that exhibit shape memory behavior. Macromolecules 43 (23):9854–58. doi: 10.1021/ma101704k.
  • Vermeylen, R., B. Goderis, and J. A. Delcour. 2006. An X-ray study of hydrothermally treated potato starch. Carbohydrate Polymers 64 (2):364–75. doi: 10.1016/j.carbpol.2005.12.024.
  • Vilaplana, F., and R. G. Gilbert. 2010. Characterization of branched polysaccharides using multiple-detection size separation techniques. Journal of Separation Science 33 (22):3537–54. doi: 10.1002/jssc.201000525.
  • Waduge, R. N., S. Xu, E. Bertoft, and K. Seetharaman. 2013. Exploring the surface morphology of developing wheat starch granules by using Atomic Force Microscopy. Starch - Stärke 65 (5–6):398–409. doi: 10.1002/star.201200172.
  • Waigh, T. A., K. L. Kato, A. M. Donald, M. J. Gidley, C. J. Clarke, and C. Riekel. 2000. Side‐chain liquid‐crystalline model for starch. Starch - Stärke 52 (12):450–60. doi: 10.1002/1521-379X(200012)52:12<450::AID-STAR450>3.0.CO;2-5.
  • Wang, S., J. Blazek, E. Gilbert, and L. Copeland. 2012. New insights on the mechanism of acid degradation of pea starch. Carbohydrate Polymers 87 (3):1941–49. doi: 10.1016/j.carbpol.2011.09.093.
  • Wang, S., C. Chao, J. Cai, B. Niu, L. Copeland, and S. Wang. 2020. Starch-lipid and starch-lipid-protein complexes: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety 19 (3):1056–79. doi: 10.1111/1541-4337.12550.
  • Wang, Y., C. Chao, H. Huang, S. Wang, S. Wang, S. Wang, and L. Copeland. 2019. Revisiting mechanisms underlying digestion of starches. Journal of Agricultural and Food Chemistry 67 (29):8212–26. doi: 10.1021/acs.jafc.9b02615.
  • Wang, S., and L. Copeland. 2015. Effect of acid hydrolysis on starch structure and functionality: A review. Critical Reviews in Food Science and Nutrition 55 (8):1081–97. doi: 10.1080/10408398.2012.684551.
  • Wang, H., J. Ding, N. Xiao, X. Liu, Y. Zhang, and H. Zhang. 2020. Insights into the hierarchical structure and digestibility of starch in heat-moisture treated adlay seeds. Food Chemistry 318:126489. doi: 10.1016/j.foodchem.2020.126489.
  • Wang, S., C. Li, L. Copeland, Q. Niu, and S. Wang. 2015. Starch retrogradation: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety 14 (5):568–85. doi: 10.1111/1541-4337.12143.
  • Wang, H., Y. Liu, L. Chen, X. Li, J. Wang, and F. Xie. 2018. Insights into the multi-scale structure and digestibility of heat-moisture treated rice starch. Food Chemistry 242:323–29. doi: 10.1016/j.foodchem.2017.09.014.
  • Wang, S., T. Li, S. Wang, and L. Copeland. 2017. Effects of hydrothermal-alkali and freezing-thawing pre-treatments on modification of corn starch with octenyl succinic anhydride. Carbohydrate Polymers 175:361–69. doi: 10.1016/j.carbpol.2017.08.014.
  • Wang, S., H. Luo, J. Zhang, Y. Zhang, Z. He, and S. Wang. 2014. Alkali-induced changes in functional properties and in vitro digestibility of wheat starch: The role of surface proteins and lipids. Journal of Agricultural and Food Chemistry 62 (16):3636–43. doi: 10.1021/jf500249w.
  • Wang, S., S. Wang, L. Liu, S. Wang, and L. Copeland. 2017. Structural orders of wheat starch do not determine the in vitro enzymatic digestibility. Journal of Agricultural and Food Chemistry 65 (8):1697–706. doi: 10.1021/acs.jafc.6b04044.
  • Wang, S., J. Wang, S. Wang, and S. Wang. 2017. Annealing improves paste viscosity and stability of starch. Food Hydrocolloids 62:203–11. doi: 10.1016/j.foodhyd.2016.08.006.
  • Wang, X., F. Wen, S. Zhang, R. Shen, W. Jiang, and J. Liu. 2017. Effect of acid hydrolysis on morphology, structure and digestion property of starch from Cynanchum auriculatum Royle ex Wight. International Journal of Biological Macromolecules 96:807–16. doi: 10.1016/j.ijbiomac.2017.01.002.
  • Wang, S., J. Yu, J. Yu, H. Chen, and J. Pang. 2007. The effect of acid hydrolysis on morphological and crystalline properties of Rhizoma Dioscorea starch. Food Hydrocolloids 21 (7):1217–22.
  • Wang, Y., J. Zhao, Y. Wu, M. Wang, and J. Ouyang. 2020. Processing of air-dried chestnut and physicochemical properties of its starch with low digestibility. Food Hydrocolloids 108:106051. doi: 10.1016/j.foodhyd.2020.106051.
  • Wang, S., M. Zheng, J. Yu, S. Wang, and L. Copeland. 2017. Insights into the formation and structures of starch-protein-lipid complexes. Journal of Agricultural and Food Chemistry 65 (9):1960–66. doi: 10.1021/acs.jafc.6b05772.
  • Wang, J., H. Zhu, S. Li, S. Wang, S. Wang, and L. Copeland. 2017. Insights into structure and function of high pressure-modified starches with different crystalline polymorphs. International Journal of Biological Macromolecules 102:414–24. doi: 10.1016/j.ijbiomac.2017.04.042.
  • Warren, F. J., M. J. Gidley, and B. M. Flanagan. 2016. Infrared spectroscopy as a tool to characterise starch ordered structure-a joint FTIR-ATR, NMR, XRD and DSC study. Carbohydrate Polymers 139:35–42. doi: 10.1016/j.carbpol.2015.11.066.
  • Wei, C., F. Qin, W. Zhou, B. Xu, C. Chen, Y. Chen, Y. Wang, M. Gu, and Q. Liu. 2011. Comparison of the crystalline properties and structural changes of starches from high-amylose transgenic rice and its wild type during heating. Food Chemistry 128 (3):645–52. doi: 10.1016/j.foodchem.2011.03.080.
  • Wei, C., F. Qin, W. Zhou, H. Yu, B. Xu, C. Chen, L. Zhu, Y. Wang, M. Gu, and Q. Liu. 2010. Granule structure and distribution of allomorphs in C-Type high-amylose rice starch granule modified by Antisense RNA inhibition of starch branching enzyme. Journal of Agricultural and Food Chemistry 58 (22):11946–54. doi: 10.1021/jf103412d.
  • Witt, T., M. J. Gidley, and R. G. Gilbert. 2010. Starch digestion mechanistic information from the time evolution of molecular size distributions. Journal of Agricultural and Food Chemistry 58 (14):8444–52. doi: 10.1021/jf101063m.
  • Wu, A. C., E. Li, and R. G. Gilbert. 2014. Exploring extraction/dissolution procedures for analysis of starch chain-length distributions. Carbohydrate Polymers 114:36–42. doi: 10.1016/j.carbpol.2014.08.001.
  • Wu, A. C., T. Witt, and R. G. Gilbert. 2013. Characterization methods for starch-based materials: State of the art and perspectives. Australian Journal of Chemistry 66 (12):1550–63. doi: 10.1071/CH13397.
  • Xie, X., L. Qi, C. Xu, Y. Shen, H. Wang, and H. Zhang. 2020. Understanding how the cooking methods affected structures and digestibility of native and heat-moisture treated rice starches. Journal of Cereal Science 95:103085. doi: 10.1016/j.jcs.2020.103085.
  • Xu, X., Y. Chen, Z. Luo, and X. Lu. 2019. Different variations in structures of A- and B-type starches subjected to microwave treatment and their relationships with digestibility. LWT 99:179–87. doi: 10.1016/j.lwt.2018.09.072.
  • Xu, J., Q. Kuang, K. Wang, S. Zhou, S. Wang, X. Liu, and S. Wang. 2017. Insights into molecular structure and digestion rate of oat starch. Food Chemistry 220:25–30. doi: 10.1016/j.foodchem.2016.09.191.
  • Yang, Z., S. Chaib, Q. Gu, and Y. Hemar. 2017. Impact of pressure on physicochemical properties of starch dispersions. Food Hydrocolloids 68:164–77. doi: 10.1016/j.foodhyd.2016.08.032.
  • Yang, Y., T. Li, Y. Li, H. Qian, X. Qi, H. Zhang, and L. Wang. 2020. Understanding the molecular weight distribution, in vitro digestibility and rheological properties of the deep-fried wheat starch. Food Chemistry 331 (127315):127315.
  • Yu, W., H. Li, W. Zou, K. Tao, J. Zhu, and R. G. Gilbert. 2019. Using starch molecular fine structure to understand biosynthesis-structure-property relations. Trends in Food Science & Technology 86:530–36. doi: 10.1016/j.tifs.2018.08.003.
  • Yuryev, V. P., A. V. Krivandin, V. I. Kiseleva, L. A. Wasserman, N. K. Genkina, J. Fornal, W. Blaszczak, and A. Schiraldi. 2004. Structural parameters of amylopectin clusters and semi-crystalline growth rings in wheat starches with different amylose content. Carbohydrate Research 339 (16):2683–91. doi: 10.1016/j.carres.2004.09.005.
  • Zeng, F., F. Ma, F. Kong, Q. Gao, and S. Yu. 2015. Physicochemical properties and digestibility of hydrothermally treated waxy rice starch. Food Chemistry 172:92–8. doi: 10.1016/j.foodchem.2014.09.020.
  • Zhang, G. 2004. Starch-free fatty acid complexation in the presence of whey protein. Carbohydrate Polymers 55 (4):419–24. doi: 10.1016/j.carbpol.2003.11.005.
  • Zhang, B., S. Dhital, B. M. Flanagan, P. Luckman, P. J. Halley, and M. J. Gidley. 2015. Extrusion induced low-order starch matrices: Enzymic hydrolysis and structure. Carbohydrate Polymers 134:485–96. doi: 10.1016/j.carbpol.2015.07.095.
  • Zhang, B., S. Dhital, and M. J. Gidley. 2015. Densely packed matrices as rate determining features in starch hydrolysis. Trends in Food Science & Technology 43 (1):18–31. doi: 10.1016/j.tifs.2015.01.004.
  • Zhang, Z., X. Fan, H. Ma, C. Li, E. Li, and R. G. Gilbert. 2021. Characterization of the baking-induced changes in starch molecular and crystalline structures in sugar-snap cookies. Carbohydrate Polymers 256:117518. doi: 10.1016/j.carbpol.2020.117518.
  • Zhang, B., Q. Huang, F-x Luo, X. Fu, H. Jiang, and J-l Jane. 2011. Effects of octenylsuccinylation on the structure and properties of high-amylose maize starch. Carbohydrate Polymers 84 (4):1276–81. doi: 10.1016/j.carbpol.2011.01.020.
  • Zhang, H., C. Schäfer, P. Wu, B. Deng, G. Yang, E. Li, R. G. Gilbert, and C. Li. 2018. Mechanistic understanding of the relationships between molecular structure and emulsification properties of octenyl succinic anhydride (OSA) modified starches. Food Hydrocolloids 74:168–75. doi: 10.1016/j.foodhyd.2017.08.009.
  • Zhang, Y., H. Zuo, F. Xu, K. Zhu, L. Tan, W. Dong, and G. Wu. 2021. The digestion mechanism of jackfruit seed starch using improved extrusion cooking technology. Food Hydrocolloids 110:106154. doi: 10.1016/j.foodhyd.2020.106154.
  • Zheng, M., C. Chao, J. Yu, L. Copeland, S. Wang, and S. Wang. 2018. Effects of chain length and degree of unsaturation of fatty acids on structure and in vitro digestibility of starch-protein-fatty acid complexes. Journal of Agricultural and Food Chemistry 66 (8):1872–80. doi: 10.1021/acs.jafc.7b04779.
  • Zhu, F. 2017a. Atomic force microscopy of starch systems. Critical Reviews in Food Science and Nutrition 57 (14):3127–44. doi: 10.1080/10408398.2015.1094650.
  • Zhu, F. 2017b. NMR spectroscopy of starch systems. Food Hydrocolloids 63:611–24. doi: 10.1016/j.foodhyd.2016.10.015.
  • Zhu, F. 2018. Relationships between amylopectin internal molecular structure and physicochemical properties of starch. Trends in Food Science & Technology 78:234–42. doi: 10.1016/j.tifs.2018.05.024.
  • Zhu, J., L. Li, L. Chen, and X. Li. 2012. Study on supramolecular structural changes of ultrasonic treated potato starch granules. Food Hydrocolloids 29 (1):116–22. doi: 10.1016/j.foodhyd.2012.02.004.
  • Zobel, H. F. 1988a. Molecules to granules: A comprehensive starch review. Starch - Stärke 40 (2):44–50. doi: 10.1002/star.19880400203.
  • Zobel, H. F. 1988b. Starch crystal transformations and their industrial importance. Starch - Stärke 40 (1):1–7. doi: 10.1002/star.19880400102.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.