2,122
Views
29
CrossRef citations to date
0
Altmetric
Reviews

Impact of lactic acid bacteria and their metabolites on the techno-functional properties and health benefits of fermented dairy products

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Afshari, R., C. J. Pillidge, D. A. Dias, A. M. Osborn, and H. Gill. 2020. Microbiota and metabolite profiling combined with ­integrative analysis for differentiating cheeses of varying ripening ages. Frontiers in Microbiology 11:2991. doi: 10.3389/fmicb.2020.592060.
  • Altay, F., F. Karbancioglu-Güler, C. Daskaya-Dikmen, and D. Heperkan. 2013. A review on traditional Turkish fermented non-alcoholic beverages: Microbiota, fermentation process and quality characteristics. International Journal of Food Microbiology 167 (1):44–56. doi: 10.1016/j.ijfoodmicro.2013.06.016.
  • Arslan, S. 2015. A review: Chemical, microbiological and nutritional characteristics of kefir. Cyta – Journal of Food 13 (3):340–5. doi: 10.1080/19476337.2014.981588.
  • Ataie-Jafari, A., B. Larijani, H. Alavi Majd, and F. Tahbaz. 2009. Cholesterol-lowering effect of probiotic yogurt in comparison with ordinary yogurt in mildly to moderately hypercholesterolemic subjects. Annals of Nutrition and Metabolism 54 (1):22–7. doi: 10.1159/000203284.
  • Ayyash, M., A. S. Al-Dhaheri, S. Al Mahadin, J. Kizhakkayil, and A. Abushelaibi. 2018. In vitro investigation of anticancer, antihypertensive, antidiabetic, and antioxidant activities of camel milk fermented with camel milk probiotic: A comparative study with fermented bovine milk. Journal of Dairy Science 101 (2):900–11. doi: 10.3168/jds.2017-13400.
  • Bahrami, G., A. Mostafaie, A. Kiani, and M. Chalabi. 2020. Bacterial starter cultures induce suitable changes in milk fatty acid profiles at different fermentation conditions. The Journal of Dairy Research 87 (4):469–73. doi: 10.1017/S0022029920001053.
  • Bai, M., T. Huang, S. Guo, Y. Wang, J. Wang, L. Y. Kwok, T. Dan, H. Zhang, and M. Bilige. 2020. Probiotic Lactobacillus casei Zhang improved the properties of stirred yogurt. Food Bioscience 37 (August):100718. doi: 10.1016/j.fbio.2020.100718.
  • Barbu, I. M., R. J. A. N. Lamers, H. W. Gerritsen, M. H. Blokland, M. G. E. G. Bremer, and M. Alewijn. 2021. Endogenous protein and peptide analysis with LC-MS/(MS): A feasibility study for authentication of raw-milk farmer’s cheese. International Dairy Journal 117:104990. doi: 10.1016/j.idairyj.2021.104990.
  • Battelli, G., P. Scano, C. Albano, L. R. Cagliani, M. Brasca, and R. Consonni. 2019. Modifications of the volatile and nonvolatile metabolome of goat cheese due to adjunct of non-starter lactic acid bacteria. LWT 116:108576. doi: 10.1016/j.lwt.2019.108576.
  • Beltrán-Barrientos, L. M., A. Hernández-Mendoza, M. J. Torres-Llanez, A. F. González-Córdova, and B. Vallejo-Córdoba. 2016. Invited review: Fermented milk as antihypertensive functional food. Journal of Dairy Science 99 (6):4099–110. doi: 10.3168/jds.2015-10054.
  • Bintsis, T. 2018. Lactic acid bacteria as starter cultures: An update in their metabolism and genetics. AIMS Microbiology 4 (4):665–84. doi: 10.3934/microbiol.2018.4.665.
  • Bintsis, T., and A. Athanasoulas. 2015. Dairy starter cultures. In: Papademas P, editor. Dairy microbiology, a practical approach, 114–54. Boca Raton, FL: CRC Press.
  • Børsting, M. W., K. B. Qvist, E. Brockmann, J. Vindeløv, T. L. Pedersen, F. K. Vogensen, and Y. Ardö. 2015. Classification of Lactococcus lactis cell envelope proteinase based on gene sequencing, peptides formed after hydrolysis of milk, and computer modeling. Journal of Dairy Science 98 (1):68–77. doi: 10.3168/jds.2014-8517.
  • Bottari, B., A. Levante, E. Bancalari, S. Sforza, C. Bottesini, B. Prandi, F. D. Filippis, D. Ercolini, M. Nocetti, and M. Gatti. 2020. The interrelationship between microbiota and peptides during ripening as a driver for parmigiano Reggiano cheese quality. Frontiers in Microbiology 11. doi: 10.3389/fmicb.2020.581658.
  • Bouteille, R., M. Gaudet, B. Lecanu, and H. This. 2013. Monitoring lactic acid production during milk fermentation by in situ quantitative proton nuclear magnetic resonance spectroscopy. Journal of Dairy Science 96 (4):2071–80. doi: 10.3168/jds.2012-6092.
  • Brandelli, A., D. J. Daroit, and A. P. F. Correa. 2015. Whey as a source of peptides with remarkable biological activities. Food Research International. 73:149–61. doi: 10.1016/j.foodres.2015.01.016.
  • Castellano, P., and G. Vignolo. 2006. Inhibition of Listeria innocua and Brochothrix thermosphacta in vacuum-packaged meat by addition of bacteriocinogenic Lactobacillus curvatus CRL705 and its bacteriocins. Letters in Applied Microbiology 43 (2):194–9. doi: 10.1111/j.1472-765X.2006.01933.x.
  • Cavanagh, D., G. F. Fitzgerald, and O. McAuliffe. 2015. From field to fermentation: The origins of Lactococcus lactis and its domestication to the dairy environment. Food Microbiology 47:45–61. doi: 10.1016/j.fm.2014.11.001.
  • Cerning, J. 1990. Exocellular polysaccharides produced by lactic acid bacteria. FEMS Microbiology Reviews 7 (1-2):113–30. doi: 10.1111/j.1574-6968.1990.tb04883.x.
  • Cerning, J., C. M. G. C. Renard, J. F. Thibault, C. Bouillanne, M. Landon, M. Desmazeaud, and L. Topisirovic. 1994. Carbon source requirements for exopolysaccharide production by Lactobacillus casei CG11 and partial structure analysis of the polymer. Applied and Environmental Microbiology 60 (11):3914–9. /pmc/articles/PMC201915/?report=abstract. doi: 10.1128/aem.60.11.3914-3919.1994.
  • Chand, P., M. D. Kumar, A. Kumar Singh, G. K. Deshwal, P. S. Rao, S. K. Tomar, and H. Sharma. 2021. Low‐calorie synbiotic yoghurt from indigenous probiotic culture and combination of inulin and oligofructose: Improved sensory, rheological and textural attributes. Journal of Food Processing and Preservation 45 (4). doi: 10.1111/jfpp.15322.
  • Chen, Y., W. MacNaughtan, P. Jones, Q. Yang, H. Williams, and T. Foster. 2021. Selection of potential molecular markers for cheese ripening and quality prediction by NMR spectroscopy. Lwt 136 (2):110306. doi: 10.1016/j.lwt.2020.110306.
  • Chen, C., S. Zhao, G. Hao, H. Yu, H. Tian, and G. Zhao. 2017. Role of lactic acid bacteria on the yogurt flavour: A review. International Journal of Food Properties 20 (sup1):S316–S330. doi: 10.1080/10942912.2017.1295988.
  • Costantino, G., M. Calasso, F. Minervini, and M. D. Angelis. 2020. Use of exopolysaccharide-synthesizing lactic acid bacteria and fat replacers for manufacturing reduced-fat burrata cheese: Microbiological aspects and sensory evaluation. Microorganisms 8 (10):1618. doi: 10.3390/microorganisms8101618.
  • Cotter, P. D., R. P. Ross, and C. Hill. 2013. Bacteriocins – a viable alternative to antibiotics? Nature Reviews. Microbiology 11 (2):95–105. doi: 10.1038/nrmicro2937.
  • Cucick, A. C. C., K. Gianni, S. D. Todorov, A. de LeBlanc, M. de, J. G. LeBlanc, and B. D. G. M. Franco. 2020. Evaluation of the bioavailability and intestinal effects of milk fermented by folate producing lactic acid bacteria in a depletion/repletion mice model. Journal of Functional Foods 66:103785. doi: 10.1016/j.jff.2020.103785.
  • Cui, Y., K. Miao, S. Niyaphorn, and X. Qu. 2020. Production of gamma-aminobutyric acid from lactic acid bacteria: a systematic review. International Journal of Molecular Sciences 21 (3):995. doi: 10.3390/ijms21030995.
  • Cukkemane, A., P. Kumar, and B. Sathyamoorthy. 2020. A metabolomics footprint approach to understanding the benefits of synbiotics in functional foods and dietary therapeutics for health, communicable and non-communicable diseases. Food Research International (Ottawa, Ont.) 128:108679. doi: 10.1016/j.foodres.2019.108679.
  • Daba, G. M., M. O. Elnahas, and W. A. Elkhateeb. 2021. Contributions of exopolysaccharides from lactic acid bacteria as biotechnological tools in food, pharmaceutical, and medical applications. International Journal of Biological Macromolecules 173:79–89. doi: 10.1016/j.ijbiomac.2021.01.110.
  • Da Cunha, D. A., T. C. Valim, P. R. Filgueiras, V. L. Junior, and A. C. Neto. 2020. Lactose quantification in bovine milk by nuclear magnetic resonance without deuterated solvent (No-D qNMR). Analytical Methods : advancing Methods and Applications 12 (40):4892–8. doi: 10.1039/d0ay01268h.
  • Da Cruz Rodrigues, V. C., A. L. Rocha Faria Duque, L. De Carvalho Fino, F. M. Simabuco, A. Sartoratto, L. Cabral, M. F. Lia, Noronha, K. Sivieri, and A. E. C. Antunes. 2020. Modulation of the intestinal microbiota and the metabolites produced by the administration of ice cream and a dietary supplement containing the same probiotics. British Journal of Nutrition 124 (1):57–68. doi: 10.1017/S0007114520000896.
  • Dan, T., R. Jin, W. Ren, T. Li, H. Chen, and T. Sun. 2018. Characteristics of milk fermented by Streptococcus thermophilus MGA45-4 and the profiles of associated volatile compounds during fermentation and storage. Molecules 23 (4):878. doi: 10.3390/molecules23040878.
  • Dan, T., D. Wang, R. L. Jin, H. P. Zhang, T. T. Zhou, and T. S. Sun. 2017. Characterization of volatile compounds in fermented milk using solid-phase microextraction methods coupled with gas chromatography-mass spectrometry. Journal of Dairy Science 100 (4):2488–500. doi: 10.3168/jds.2016-11528.
  • de Vos, W. M. 1996. Metabolic engineering of sugar catabolism in lactic acid bacteria. Antonie Van Leeuwenhoek 70 (2-4):223–42. doi: 10.1007/BF00395934.
  • Deshwal, G. K., A. K. Singh, D. Kumar, and H. Sharma. 2020. Effect of spray and freeze drying on physico-chemical, functional, moisture sorption and morphological characteristics of camel milk powder. LWT 134:110117. doi: 10.1016/j.lwt.2020.110117.
  • Deshwal, G. K., R. Singh, A. K. Singh, D. Kumar, and H. Sharma. 2021. Comparative characterization of ghee from Indian Camel breeds using GC-MS and FT-IR techniques. International Journal of Dairy Technology . doi: 10.1111/1471-0307.12826.
  • Dewan, S., and J. P. Tamang. 2007. Dominant lactic acid bacteria and their technological properties isolated from the Himalayan ethnic fermented milk products. Antonie Van Leeuwenhoek 92 (3):343–52. doi: 10.1007/s10482-007-9163-5.
  • Di Cagno, R., A. Tamborrino, G. Gallo, C. Leone, M. De Angelis, M. Faccia, P. Amirante, and M. Gobbetti. 2004. Uses of mares’ milk in manufacture of fermented milks. International Dairy Journal 14 (9):767–75. doi: 10.1016/j.idairyj.2004.02.005.
  • Dos Reis, S. A., L. L. da Conceição, N. P. Siqueira, D. D. Rosa, L. L. da Silva, and M. D. Peluzio. 2017. Review of the mechanisms of probiotic actions in the prevention of colorectal cancer. Nutrition Research (New York, N.Y.) 37:1–19. doi: 10.1016/j.nutres.2016.11.009.
  • Dutra Rosolen, M., A. Gennari, G. Volpato, and C. F. Volken de Souza. 2015. Lactose hydrolysis in milk and dairy whey using microbial β-galactosidases. Enzyme Research 2015:806240. doi: 10.1155/2015/806240.
  • Ebringer, L., M. Ferenčík, and J. Krajčovič. 2008. Beneficial health effects of milk and fermented dairy products-review. Folia Microbiol (Praha) 53 (5):378–94. http://www.biomed.cas.cz/mbu/folia/. doi: 10.1007/s12223-008-0059-1.
  • EFSA. 2020. Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 12: Suitability of taxonomic units notified to EFSA until March 2020. EFSA Journal 18 (7):6174. doi: 10.2903/J.EFSA.2020.6174.
  • Fardet, A., and E. Rock. 2018. In vitro and in vivo antioxidant potential of milks, yoghurts, fermented milks and cheeses: A narrative review of evidence. Nutrition Research Reviews 31 (1):52–70. doi: 10.1017/S0954422417000191.
  • Fessard, A., and F. Remize. 2017. Why are Weissella spp. Not used as commercial starter cultures for food fermentation? Fermentation 3 (3):38. doi: 10.3390/fermentation3030038.
  • FitzGerald, R. J., B. A. Murray, and D. J. Walsh. 2004. Hypotensive peptides from milk proteins. The Journal of Nutrition 134 (4):980S–8S. doi: 10.1093/jn/134.4.980S.
  • García-Burgos, M., J. Moreno-Fernández, M. J. M. Alférez, J. Díaz-Castro, and I. López-Aliaga. 2020. New perspectives in fermented dairy products and their health relevance. Journal of Functional Foods 72 (April):104059. doi: 10.1016/j.jff.2020.104059.
  • Gautam, N., and N. Sharma. 2009. Bacteriocin: Safest approach to preserve food products. Indian Journal of Microbiology 49 (3):204–11. doi: 10.1007/s12088-009-0048-3.
  • Georgalaki, M., K. Papadimitriou, R. Anastasiou, B. Pot, G. van Driessche, B. Devreese, and E. Tsakalidou. 2013. Macedovicin, the second food-grade lantibiotic produced by Streptococcus macedonicus ACA-DC 198. Food Microbiology 33 (1):124–30. doi: 10.1016/j.fm.2012.09.008.
  • Gholamhosseinpour, A., and S. M. B. Hashemi. 2019. Ultrasound ­pretreatment of fermented milk containing probiotic Lactobacillus plantarum AF1: Carbohydrate metabolism and antioxidant activity. Journal of Food Process Engineering 42 (1):e12930. doi: 10.1111/jfpe.12930.
  • Ghosh, T., A. Beniwal, A. Semwal, and N. K. Navani. 2019. Mechanistic insights into probiotic properties of lactic acid bacteria associated with ethnic fermented dairy products. Frontiers in Microbiology 10 (MAR):502. doi: 10.3389/fmicb.2019.00502.
  • Gianferri, R., M. Maioli, M. Delfini, and E. Brosio. 2007. A low-resolution and high-resolution nuclear magnetic resonance integrated approach to investigate the physical structure and metabolic profile of Mozzarella di Bufala Campana cheese. International Dairy Journal 17 (2):167–76. doi: 10.1016/j.idairyj.2006.02.006.
  • Goswami, M., S. K. Bharti, A. Tewari, H. Sharma, and K. N. Karunakara. 2017. Implication of functional ingredients of goat milk to develop functional foods. Journal of Animal Feed Science and Technology 5:65–72.
  • Goswami, M., V. Pathak, H. Sharma, S. Ojha, and A. Professor. 2019. Potential use of fat replacers for development of functional food of animal origin. Journal of Animal Feed Science and Technology 7 (2):81–6.
  • Grażyna, C., C. Hanna, A. Adam, and B. M. Magdalena. 2017. Natural antioxidants in milk and dairy products. International Journal of Dairy Technology 70 (2):165–78. doi: 10.1111/1471-0307.12359.
  • Gu, Y., X. Li, H. Chen, K. Guan, X. Qi, L. Yang, and Y. Ma. 2021. Evaluation of FAAs and FFAs in yogurts fermented with different starter cultures during storage. Journal of Food Composition and Analysis 96:103666. doi: 10.1016/j.jfca.2020.103666.
  • Guénard-Lampron, V., S. Villeneuve, D. St-Gelais, and S. L. Turgeon. 2020. Relationship between smoothing temperature, storage time, syneresis and rheological properties of stirred yogurt. International Dairy Journal 109:104742. doi: 10.1016/j.idairyj.2020.104742.
  • Guha, S., H. Sharma, G. K. Deshwal, and P. S. Rao. 2021. A comprehensive review on bioactive peptides derived from milk and milk products of minor dairy species. Food Production, Processing and Nutrition 3 (1). doi: 10.1186/s43014-020-00045-7.
  • Güler, Z., and Y. W. Park. 2011. Characteristics of physico-chemical properties, volatile compounds and free fatty acid profiles of commercial set-type Turkish yoghurts Chemical properties of Turkish yoghurts. Open Journal of Animal Sciences 1 (1):1–9. doi: 10.4236/ojas.2011.11001.
  • Guzel-Seydim, Z. B., A. C. Seydim, A. K. Greene, and T. Taş. 2006. Determination of antimutagenic properties of acetone extracted fermented milks and changes in their total fatty acid profiles including conjugated linoleic acids. International Journal of Dairy Technology 59 (3):209–15. doi: 10.1111/j.1471-0307.2006.00265.x.
  • Hagi, T., M. Kobayashi, and M. Nomura. 2016. Metabolome analysis of milk fermented by γ-aminobutyric acid-producing Lactococcus lactis. J Dairy Sci 99 (2):994–1001. doi: 10.3168/jds.2015-9945.
  • Hagi, T., H. Nakagawa, H. Ohmori, K. Sasaki, M. Kobayashi, T. Narita, and M. Nomura. 2019. Characterization of unique metabolites in γ-aminobutyric acid-rich cheese by metabolome analysis using liquid chromatography-mass spectrometry. Journal of Food Biochemistry 43 (11):e13039. doi: 10.1111/jfbc.13039.
  • Han, X., Z. Yang, X. Jing, P. Yu, Y. Zhang, H. Yi, and L. Zhang. 2016. Improvement of the texture of yogurt by use of exopolysaccharide producing lactic acid bacteria. BioMed Research International 2016:1–6. doi: 10.1155/2016/7945675.
  • Harzallah, D., and H. Belhadj. 2013. lactic acid bacteria as probiotics: characteristics, selection criteria and role in immunomodulation of human GI muccosal barrier. Lactic Acid Bacteria – R & D for Food, Health and Livestock Purposes doi: 10.5772/50732.
  • Hassan, A. N., M. Corredig, J. F. Frank, and M. Elsoda. 2004. Microstructure and rheology of an acid-coagulated cheese (Karish) made with an exopolysaccharide-producing Streptococcus thermophilus strain and its exopolysaccharide non-producing genetic variant. Journal of Dairy Research 71 (1):116–20. doi: 10.1017/s0022029903006605.
  • Hayes, M., R. P. Ross, G. F. Fitzgerald, C. Hill, and C. Stanton. 2006. Casein-derived antimicrobial peptides generated by Lactobacillus acidophilus DPC6026. Applied and Environmental Microbiology 72 (3):2260–4. doi: 10.1128/AEM.72.3.2260-2264.2006.
  • Hemsworth, J., S. Hekmat, and G. Reid. 2011. The development of micronutrient supplemented probiotic yogurt for people living with HIV: Laboratory testing and sensory evaluation. Innovative Food Science & Emerging Technologies 12 (1):79–84. doi: 10.1016/j.ifset.2010.11.004.
  • Homayouni Rad, A., A. Yari Khosroushahi, M. Khalili, and S. Jafarzadeh. 2016. Folate bio-fortification of yoghurt and fermented milk: A review. Dairy Science & Technology 96 (4):427–41. doi: 10.1007/s13594-016-0286-1.
  • Hu, F., K. Furihata, M. Ito-Ishida, S. Kaminogawa, and M. Tanokura. 2004. Nondestructive observation of bovine milk by NMR spectroscopy: Analysis of existing States of compounds and detection of new compounds. Journal of Agricultural and Food Chemistry 52 (16):4969–74. doi: 10.1021/jf049616o.
  • Huang, F., K. Teng, Y. Liu, Y. Cao, T. Wang, C. Ma, J. Zhang, and J. Zhong. 2021. Bacteriocins: Potential for human health. Oxidative Medicine and Cellular Longevity 2021:5518825. doi: 10.1155/2021/5518825.
  • Huang, Y., F. Wu, X. Wang, Y. Sui, L. Yang, and J. Wang. 2013. Characterization of Lactobacillus plantarum Lp27 isolated from Tibetan kefir grains: A potential probiotic bacterium with cholesterol-lowering effects. Journal of Dairy Science 96 (5):2816–25. doi: 10.3168/jds.2012-6371.
  • Hugenschmidt, S., S. M. Schwenninger, and C. Lacroix. 2011. Concurrent high production of natural folate and vitamin B12 using a co-culture process with Lactobacillus plantarum SM39 and Propionibacterium freudenreichii DF13. Process Biochemistry 46 (5):1063–70. doi: 10.1016/j.procbio.2011.01.021.
  • Hussin, F. S., S. Y. Chay, A. S. M. Hussin, W. Z. Wan Ibadullah, B. J. Muhialdin, M. S. Abd Ghani, and N. Saari. 2021. GABA enhancement by simple carbohydrates in yoghurt fermented using novel, self-cloned Lactobacillus plantarum Taj-Apis362 and metabolomics profiling. Scientific Reports 11 (1):1–12. doi: 10.1038/s41598-021-88436-9.
  • Ibarguren, C., G. Céliz, A. S. Díaz, M. A. Bertuzzi, M. Daz, and M. C. Audisio. 2015. Gelatine based films added with bacteriocins and a flavonoid ester active against food-borne pathogens. Innovative Food Science & Emerging Technologies 28:66–72. doi: 10.1016/j.ifset.2015.01.007.
  • Iranmanesh, M., H. Ezzatpanah, B. Akbari-Adergani, M. Amir, and K. Torshizi. 2018. SPME/GC-MS characterization of volatile compounds of Iranian traditional Dried Kashk. International Journal of Food Properties 21 (1):1067–1079. doi: 10.1080/10942912.2018.1466323.
  • Ispirli, H., and E. Dertli. 2017. Isolation and characterisation of lactic acid bacteria from traditional koumiss and kurut. International Journal of Food Properties 20 (sup3):S2441–S2449. doi: 10.1080/10942912.2017.1372473.
  • Jafari, M., M. Rezaei, H. R. Gheisari, K. Abhari, G. J. Khaniki, N. Noori, and A. Mousavi Khaneghah. 2019. Application of cultivable lactic acid bacteria isolated from Iranian traditional dairy products for the production of liquid and dried kashks. LWT 116:108519. doi: 10.1016/j.lwt.2019.108519.
  • Jäkälä, P., and H. Vapaatalo. 2010. Antihypertensive peptides from milk proteins. Pharmaceuticals (Basel, Switzerland) 3 (1):251–72. doi: 10.3390/ph3010251.
  • Jaya, S. 2009. Microstructure analysis of dried yogurt: effect of different drying methods. International Journal of Food Properties 12 (3):469–81. doi: 10.1080/10942910701772071.
  • Jia, W., Y. Liu, and L. Shi. 2021. Integrated metabolomics and lipidomics profiling reveals beneficial changes in sensory quality of brown fermented goat milk. Food Chemistry 364:130378. doi: 10.1016/j.foodchem.2021.130378.
  • Jin Ng, Z., M. A. Zarin, C. K. Lee, and J. S. Tan. 2020. Application of bacteriocins in food preservation and infectious disease treatment for humans and livestock: A review. RSC Advances 10 (64):38937–64. doi: 10.1039/D0RA06161A.
  • Jørgensen, C. E., R. K. Abrahamsen, E. O. Rukke, T. K. Hoffmann, A. G. Johansen, and S. B. Skeie. 2019. Processing of high-protein yoghurt – A review. International Dairy Journal 88:42–59. doi: 10.1016/j.idairyj.2018.08.002.
  • Joshi, V. K. 2015. Indigenous fermented foods of South Asia. Fermented Food and Beverage Series. Boca Raton, FL: CRC Press.
  • Kandasamy, S., J. Yoo, J. Yun, H. B. Kang, K. Seol, and J. Ham. 2020. 1H HRMAS-NMR based metabolic fingerprints for discrimination of cheeses based on sensory qualities. Saudi Journal of Biological Sciences 27 (6):1446–61. doi: 10.1016/j.sjbs.2020.04.043.
  • Khurana, H. K., S. Jun, I. K. Cho, and Q. X. Li. 2008. Rapid determination of sugars in commercial fruit yogurts and yogurt drinks using fourier transform infrared spectroscopy and multivariate. Analysis. Applied Engineering and Agriculture 24:631–6. https://agris.fao.org/agris-search/search.do?recordID=US201301588205.
  • Kitabchi, A. E., K. A. McDaniel, J. Y. Wan, F. A. Tylavsky, C. A. Jacovino, C. W. Sands, E. A. Nyenwe, and F. B. Stentz. 2013. Effects of high-protein versus high-carbohydrate diets on markers of β-Cell function, oxidative stress, lipid peroxidation, proinflammatory cytokines, and adipokines in obese, premenopausal women without diabetes. Diabetes Care 36 (7):1919–25. doi: 10.2337/dc12-1912.
  • Kojic, M., M. Vujcic, A. Banina, P. Cocconcelli, J. Cerning, and L. Topisirovic. 1992. Analysis of exopolysaccharide production by Lactobacillus casei CG11, isolated from cheese. Applied and Environmental Microbiology 58 (12):4086–8. doi: 10.1128/aem.58.12.4086-4088.1992.
  • Korcz, E., and L. Varga. 2021. Exopolysaccharides from lactic acid bacteria: Techno-functional application in the food industry. Trends in Food Science & Technology 110 (February):375–84. doi: 10.1016/j.tifs.2021.02.014.
  • Kostelac, D., M. Gerić, G. Gajski, K. Markov, A. M. Domijan, I. Čanak, Ž. Jakopović, I. K. Svetec, B. Žunar, and J. Frece. 2021. Lactic acid bacteria isolated from equid milk and their extracellular metabolites show great probiotic properties and anti-inflammatory potential. International Dairy Journal 112:104828. doi: 10.1016/j.idairyj.2020.104828.
  • Kumar Tomar, S., R. Singh, S. Chandra Gupta, D. K. Arora, B. Kumar Joshi, and D. Kumar. 2009. Phenotypic and genotypic characterization of lactobacilli from Churpi cheese. Dairy Science & Technology 89 (6):10. doi: 10.1051/dst/2009029ï.
  • Laiño, J. E., M. Juarez del Valle, G. Savoy de Giori, and J. G. J. LeBlanc. 2013. Development of a high folate concentration yogurt naturally bio-enriched using selected lactic acid bacteria. LWT – Food Science and Technology 54 (1):1–5. doi: 10.1016/j.lwt.2013.05.035.
  • Lamanna, R., I. Piscioneri, V. Romanelli, and N. Sharma. 2008. A preliminary study of soft cheese degradation in different packaging conditions by 1H-NMR. Magnetic Resonance in Chemistry: MRC 46 (9):828–31. doi: 10.1002/mrc.2258.
  • Lapujade, P., M. Cocaign-Bousquet, and P. Loubiere. 1998. Glutamate biosynthesis in Lactococcus lactis subsp. lactis NCDO 2118. Applied and Environmental Microbiology 64 (7):2485–9. doi: 10.1128/AEM.64.7.2485-2489.1998.
  • Le Feunteun, S., M. Ouethrani, and F. Mariette. 2012. The rennet coagulation mechanisms of a concentrated casein suspension as observed by PFG-NMR diffusion measurements. Food Hydrocolloids. 27 (2):456–63. doi: 10.1016/j.foodhyd.2011.09.008.
  • Leksir, C., S. Boudalia, N. Moujahed, and M. Chemmam. 2019. Traditional dairy products in Algeria: Case of Klila cheese. Journal of Ethnic Foods 6 (1):1–14. doi: 10.1186/s42779-019-0008-4.
  • Li, D. Y., Y. Zheng, L. Kwok, W. Y. Yu, Zhang, and T. S. Sun. 2020. Metabolic footprinting revealed key biochemical changes in a brown fermented milk product using Streptococcus thermophilus. Journal of Dairy Science 103 (3):2128–38. doi: 10.3168/jds.2019-16881.
  • Linares, D. M., C. Gómez, E. Renes, J. M. Fresno, M. E. Tornadijo, R. P. Ross, and C. Stanton. 2017. Lactic acid bacteria and bifidobacteria with potential to design natural biofunctional health-promoting dairy foods. Frontiers in Microbiology 8 (MAY):846–11. doi: 10.3389/fmicb.2017.00846.
  • Liu, W., Bao, Q. Jirimutu, Qing, M. Siriguleng, Chen, X.Sun, T.Li, M.Zhang, J.Yu, J.Bilige, M.Sun, T, et al. 2012. Isolation and identification of lactic acid bacteria from Tarag in Eastern Inner Mongolia of China by 16S rRNA sequences and DGGE analysis. Microbiological Research 167 (2):110–5. doi: 10.1016/j.micres.2011.05.001.
  • Ljungh, A., and T. Wadstrom. 2006. Lactic acid bacteria as probiotics. Curr Inssues Intest Microbiol 7 (2):73–89. doi: 10.1016/J.ANAEROBE.2011.03.010.
  • London, L. E. E., V. Chaurin, M. A. E. Auty, M. A. Fenelon, G. F. Fitzgerald, R. P. Ross, and C. Stanton. 2015. Use of Lactobacillus mucosae DPC 6426, an exopolysaccharide-producing strain, positively influences the techno-functional properties of yoghurt. International Dairy Journal 40:33–8. doi: 10.1016/j.idairyj.2014.08.011.
  • Lopes, R. P., M. J. Mota, S. Sousa, A. M. Gomes, I. Delgadillo, and J. A. Saraiva. 2019. Combined effect of pressure and temperature for yogurt production. Food Research International (Ottawa, Ont.) 122:222–9. doi: 10.1016/j.foodres.2019.04.010.
  • Lordan, R., N. P. Vidal, T. Huong Pham, A. Tsoupras, R. H. Thomas, and I. Zabetakis. 2020. Yoghurt fermentation alters the composition and antiplatelet properties of milk polar lipids. Food Chemistry 332:127384. doi: 10.1016/j.foodchem.2020.127384.
  • Lore, T. A., S. K. Mbugua, and J. Wangoh. 2005. Enumeration and identification of microflora in suusac, a Kenyan traditional fermented camel milk product. LWT – Food Science and Technology 38 (2):125–30. doi: 10.1016/j.lwt.2004.05.008.
  • Luo, F., S. Feng, Q. Sun, W. Xiang, J. Zhao, J. Zhang, and Z. Yang. 2011. Screening for bacteriocin-producing lactic acid bacteria from kurut, a traditional naturally-fermented yak milk from Qinghai–Tibet plateau. Food Control. 22 (1):50–3. doi: 10.1016/j.foodcont.2010.05.006.
  • Madhubasani, G. B. L., P. H. P. Prasanna, A. Chandrasekara, D. C. S. Gunasekara, P. Senadeera, D. V. P. Chandramali, and J. K. Vidanarachchi. 2020. Exopolysaccharide producing starter cultures positively influence on microbiological, physicochemical, and sensory properties of probiotic goats’ milk set-yoghurt. Journal of Food Processing and Preservation 44 (3):e14361. doi: 10.1111/jfpp.14361.
  • Maher, A. D., and S. J. Rochfort. 2014. Applications of NMR in dairy research. Metabolites 4 (1):131–41. doi: 10.3390/metabo4010131.
  • Mangia, N. P., G. Garau, M. A. Murgia, A. Bennani, and P. Deiana. 2014. Influence of autochthonous lactic acid bacteria and enzymatic yeast extracts on the microbiological, biochemical and sensorial properties of Lben generic products. The Journal of Dairy Research 81 (2):193–201. doi: 10.1017/S0022029914000119.
  • Marcone, S., O. Belton, and D. J. Fitzgerald. 2017. Milk-derived bioactive peptides and their health promoting effects: A potential role in atherosclerosis. British Journal of Clinical Pharmacology 83 (1):152–62. doi: 10.1111/bcp.13002.
  • Markoska, T., T. Huppertz, M. K. Grewal, and T. Vasiljevic. 2019. FTIR analysis of physiochemical changes in raw skim milk upon concentration. LWT 102:64–70. doi: 10.1016/j.lwt.2018.12.011.
  • Mathara, J. M., U. Schillinger, P. M. Kutima, S. K. Mbugua, and W. H. Holzapfel. 2004. Isolation, identification and characterisation of the dominant microorganisms of kule naoto: The Maasai traditional fermented milk in Kenya. International Journal of Food Microbiology 94 (3):269–78. doi: 10.1016/j.ijfoodmicro.2004.01.008.
  • Mazzei, P., and A. Piccolo. 2012. 1H HRMAS-NMR metabolomic to assess quality and traceability of mozzarella cheese from Campania buffalo milk . Food Chemistry 132 (3):1620–7. doi: 10.1016/j.foodchem.2011.11.142.
  • Mazzei, P., and A. Piccolo. 2018. NMR-based metabolomics of water-buffalo milk after conventional or biological feeding. Chemical and Biological Technologies in Agriculture 5 (1):3. doi: 10.1186/s40538-017-0116-6.
  • McAuliffe, O., K. Kilcawley, and E. Stefanovic. 2019. Symposium review: Genomic investigations of flavor formation by dairy microbiota. Journal of Dairy Science 102 (1):909–22. doi: 10.3168/jds.2018-15385.
  • Melini, F., V. Melini, F. Luziatelli, A. G. Ficca, and M. Ruzzi. 2019. Health-promoting components in fermented foods: An up-to-date systematic review. Nutrients 11 (5):1189–24. doi: 10.3390/nu11051189.
  • Méndez Utz, V. E., D. Pérez Visñuk, G. Perdigón, and A. de Moreno de LeBlanc. 2021. Milk fermented by Lactobacillus casei CRL431 administered as an immune adjuvant in models of breast cancer and metastasis under chemotherapy. Applied Microbiology and Biotechnology 105 (1):327–40. doi: 10.1007/s00253-020-11007-x.
  • Min, Z., J. Yunyun, C. Miao, and Y. Zhennai. 2020. Characterization and ACE inhibitory activity of fermented milk with probiotic Lactobacillus plantarum K25 as Analyzed by GC-MS-based metabolomics approach. Journal of Microbiology and Biotechnology 30 (6):903–11. doi: 10.4014/jmb.1911.11007.
  • Minj, S., and S. Anand. 2020. Whey proteins and its derivatives: Bioactivity, functionality and current applications. Dairy 1 (3):233–58. doi: 10.3390/dairy1030016.
  • Mohanty, D. P., S. Mohapatra, S. Misra, and P. S. Sahu. 2016. Milk derived bioactive peptides and their impact on human health – A review. Saudi Journal of Biological Sciences 23 (5):577–83. doi: 10.1016/j.sjbs.2015.06.005.
  • Mulas, G., T. Roggio, S. Uzzau, and R. Anedda. 2013. A new magnetic resonance imaging approach for discriminating Sardinian sheep milk cheese made from heat-treated or raw milk. Journal of Dairy Science 96 (12):7393–403. doi: 10.3168/jds.2013-6607.
  • Murgia, A., P. Scano, R. Cacciabue, D. Dessì, and P. Caboni. 2019. GC-MS metabolomics comparison of yoghurts from sheep’s and goats’ milk. International Dairy Journal 96:44–9. doi: 10.1016/j.idairyj.2019.03.012.
  • Narsaiah, K., R. A. Wilson, K. Gokul, H. M. Mandge, S. N. Jha, S. Bhadwal, R. K. Anurag, R. K. Malik, and S. Vij. 2015. Effect of bacteriocin-incorporated alginate coating on shelf-life of minimally processed papaya (Carica papaya L.). Postharvest Biology and Technology 100:212–8. doi: 10.1016/j.postharvbio.2014.10.003.
  • Niederhäusern, S., de Camellini, S.Sabia, C.Iseppi, R.Bondi, M. and Messi P. 2020. Antilisterial activity of bacteriocins produced by lactic bacteria isolated from dairy products. Foods 9 (12):1757. doi: 10.3390/foods9121757.
  • Nielsen, B., G. C. Gürakan, and G. Ünlü. 2014. Kefir: A multifaceted fermented dairy product. Probiotics and Antimicrobial Proteins 6 (3–4):123–35. doi: 10.1007/s12602-014-9168-0.
  • Ning, L., Fu-Ping, Z.Hai-Tao, C.Si-Yuan, L.Chen, G.Zhen-Yang, S.Bao-Guo S., and S. 2011. Identification of volatile components in Chinese Sinkiang fermented camel milk using SAFE, SDE, and HS-SPME-GC/MS. Food Chemistry 129 (3):1242–52. doi: 10.1016/j.foodchem.2011.03.115.
  • Ochi, H., Y. Sakai, H. Koishihara, F. Abe, T. Bamba, and E. Fukusaki. 2013. Monitoring the ripening process of Cheddar cheese based on hydrophilic component profiling using gas chromatography-mass spectrometry. Journal of Dairy Science 96 (12):7427–41. doi: 10.3168/jds.2013-6897.
  • Ohmori, T., M. Tahara, and T. Ohshima. 2018. Mechanism of gamma-aminobutyric acid (GABA) production by a lactic acid bacterium in yogurt-sake. Process Biochemistry 74:21–7. doi: 10.1016/j.procbio.2018.08.030.
  • Ortu, S., G. E. Felis, M. Marzotto, A. Deriu, P. Molicotti, L. A. Sechi, F. Dellaglio, and S. Zanetti. 2007. Identification and functional characterization of Lactobacillus strains isolated from milk and Gioddu, a traditional Sardinian fermented milk. International Dairy Journal 17 (11):1312–20. doi: 10.1016/j.idairyj.2007.02.008.
  • Odeyemi, O. A., O. O. Alegbeleye, M. Strateva, and D. Stratev. 2020. Understanding spoilage microbial community and spoilage mechanisms in foods of animal origin. Comprehensive Reviews in Food Science and Food Safety 19 (2):311–31. doi: 10.1111/1541-4337.12526.
  • Ozcan, T. 2013. Determination of yogurt quality by using rheological and textural parameters. Nutrition & Food Science II 53:118–22.
  • Pachekrepapol, U., J. A. Lucey, Y. Gong, R. Naran, and P. Azadi. 2017. Characterization of the chemical structures and physical properties of exopolysaccharides produced by various Streptococcus thermophilus strains. Journal of Dairy Science 100 (5):3424–35. doi: 10.3168/jds.2016-12125.
  • Pan, L., J. Yu, Z. Mi, L. Mo, H. Jin, C. Yao, D. Ren, and B. Menghe. 2018. A metabolomics approach uncovers differences between traditional and commercial dairy products in buryatia (Russian federation). Molecules 23 (4):735. doi: 10.3390/molecules23040735.
  • Papadopoulou, O. S., A. A. Argyri, V. Kounani, C. C. Tassou, and N. Chorianopoulos. 2021. Use of Fourier transform infrared spectroscopy for monitoring the shelf life and safety of yogurts supplemented with a lactobacillus plantarum strain with probiotic potential. Frontiers in Microbiology 12:1625. doi: 10.3389/fmicb.2021.678356.
  • Parada, J. L., C. R. Caron, A. B. P. Medeiros, and C. R. Soccol. 2007. Bacteriocins from lactic acid bacteria: Purification, properties and use as biopreservatives. Brazilian Archives of Biology and Technology 50 (3):512–42. doi: 10.1590/S1516-89132007000300018.
  • Park, Y. W., and M. S. Nam. 2015. Bioactive peptides in milk and dairy products: a review. Korean Journal for Food Science of Animal Resources 35 (6):831–40. doi: 10.5851/kosfa.2015.35.6.831.
  • Passerini, D., V. Laroute, M. Coddeville, P. Le Bourgeois, P. Loubière, P. Ritzenthaler, M. Cocaign-Bousquet, and M. L. Daveran-Mingot. 2013. New insights into Lactococcus lactis diacetyl- and acetoin-producing strains isolated from diverse origins. International Journal of Food Microbiology 160 (3):329–36. doi: 10.1016/j.ijfoodmicro.2012.10.023.
  • Peng, C., G. Yao, Y. Sun, S. Guo, J. Wang, X. Mu, Z. Sun, and H. Zhang. 2021. Comparative effects of the single and binary probiotics of Lacticaseibacillus casei Zhang and Bifidobacterium lactis V9 on the growth and metabolomic profiles in yogurts. Food Research International :110603. doi: 10.1016/j.foodres.2021.110603.
  • Perdigon, G., M. E. N. De Macias, S. Alvarez, G. Oliver, and A. A. P. R. De Holgado. 1990. Prevention of gastrointestinal infection using immunobiological methods with milk fermented with Lactobacillus casei and Lactobacillus acidophilus. The Journal of Dairy Research 57 (2):255–64. doi: 10.1017/s002202990002687x.
  • Pessione, E., and S. Cirrincione. 2016. Bioactive molecules released in food by lactic acid bacteria: encrypted peptides and biogenic amines. Frontiers in Microbiology 7 (JUN):876. doi: 10.3389/fmicb.2016.00876.
  • Peyer, L. C., E. Zannini, and E. K. Arendt. 2016. Lactic acid bacteria as sensory biomodulators for fermented cereal-based beverages. Trends in Food Science & Technology 54:17–25. doi: 10.1016/j.tifs.2016.05.009.
  • Piras, C., F. C. Marincola, F. Savorani, S. B. Engelsen, S. Cosentino, S. Viale, and M. B. Pisano. 2013. A NMR metabolomics study of the ripening process of the Fiore Sardo cheese produced with autochthonous adjunct cultures. Food Chem 141 (3):2137–47. doi: 10.1016/j.foodchem.2013.04.108.
  • Polak-Berecka, M., A. Waśko, H. Skrzypek, and A. Kreft. 2013. Production of exopolysaccharides by a probiotic strain of Lactobacillus rhamnosus: Biosynthesis and purification methods. Acta Alimentaria 42 (2):220–8. doi: 10.1556/AAlim.42.2013.2.9.
  • Pourjoula, M., G. Picariello, G. Garro, G. D’Auria, C. Nitride, A. Rheza Ghaisari, and P. Ferranti. 2020. The protein and peptide fractions of kashk, a traditional Middle East fermented dairy product. Food Research International (Ottawa, Ont.) 132:109107. doi: 10.1016/j.foodres.2020.109107.
  • Prajapati, V. D., and G. K. Jani, and S. M. Khanda. 2013. Pullulan: An exopolysaccharide and its various applications. Carbohydr Polym 95 (1):540–9. doi: 10.1016/j.carbpol.2013.02.082.
  • Purohit, D. H., A. N. Hassan, E. Bhatia, and X. Zhang. 2009. Rheological, sensorial, and chemopreventive properties of milk fermented with exopolysaccharide-producing lactic cultures. Journal of Dairy Science 92: 847–856. https://www.journalofdairyscience.org/article/S0022-0302(09)70392-3/pdf
  • Raman, M., P. Ambalam, K. K. Kondepudi, S. Pithva, C. Kothari, A. T. Patel, R. K. Purama, J. M. Dave, and B. R. Vyas. 2013. Potential of probiotics, prebiotics and synbiotics for management of colorectal cancer. Gut Microbes 4 (3):181–92. doi: 10.4161/gmic.23919.
  • Ramu, R., P. S. Shirhatti, A. T. Devi, and A. Prasad. 2020. Bacteriocins and their applications in food preservation. Critical Reviews in Food Science and Nutrition 60 (18):II. doi: 10.1080/10408398.2015.1020918.
  • Raveschot, C., B. Cudennec, F. Coutte, C. Flahaut, M. Fremont, D. Drider, and P. Dhulster. 2018. Production of bioactive peptides by lactobacillus species: from gene to application. Frontiers in Microbiology 9:2354. doi: 10.3389/fmicb.2018.02354.
  • Reale, M., P. Boscolo, V. Bellante, C. Tarantelli, M. D. Nicola, L. Forcella, Q. Li, K. Morimoto, and R. Muraro. 2012. Daily intake of Lactobacillus casei Shirota increases natural killer cell activity in smokers. British Journal of Nutrition 108 (2):308–314. doi: 10.1017/S0007114511005630.
  • Ripari, V. 2019. Techno-functional role of exopolysaccharides in cereal-based, yogurt-like beverages. Beverages 5 (1):16. doi: 10.3390/beverages5010016.
  • Rossi, M., A. Amaretti, and S. Raimondi. 2011. Folate production by probiotic bacteria. Nutrients 3 (1):118–134. doi: 10.3390/nu3010118.
  • Rowe, D. 2009. Flavor generation in Foods. In: Chemistry and technology of flavors and fragrances, pp: 46–9. New Jersey, USA: Wiley-Blackwell Publishing Ltd.
  • Saipriya, K., G. K. Deshwal, A. K. Singh, S. Kapila, and H. Sharma. 2021. Effect of dairy unit operations on immunoglobulins, colour, rheology and microbiological characteristics of goat milk. International Dairy Journal 121:105118. doi: 10.1016/j.idairyj.2021.105118.
  • Salva, S.,. M. Nuñez, J. Villena, A. Ramón, G. Font, and S. Alvarez. 2011. Development of a fermented goats’ milk containing Lactobacillus rhamnosus: in vivo study of health benefits. Journal of the Science of Food and Agriculture 91 (13):2355–2362. doi: 10.1002/jsfa.4467.
  • Sanchez, S., and A. L. Demain. 2008. Metabolic regulation and overproduction of primary metabolites. Microbial Biotechnology 1 (4):283–319. doi: 10.1111/j.1751-7915.2007.00015.x.
  • Santiago-López, L., A. Hernández-Mendoza, H. S. Garcia, V. Mata-Haro, B. Vallejo-Cordoba, and A. F. González-Córdova. 2015. The effects of consuming probiotic-fermented milk on the immune system: A review of scientific evidence. International Journal of Dairy Technology 68 (2):153–165. doi: 10.1111/1471-0307.12202.
  • Savijoki, K., H. Ingmer, and P. Varmanen. 2006. Proteolytic systems of lactic acid bacteria. Applied Microbiology and Biotechnology 71 (4):394–406. doi: 10.1007/s00253-006-0427-1.
  • Shangpliang, H. N. J., R. Rai, S. Keisam, K. Jeyaram, and J. P. Tamang. 2018. Bacterial community in naturally fermented milk products of Arunachal Pradesh and Sikkim of India analysed by high-throughput amplicon sequencing. Scientific Reports 8 (1):1–10. doi: 10.1038/s41598-018-19524-6.
  • Sharifi, M., A. Moridnia, D. Mortazavi, M. Salehi, M. Bagheri, and A. Sheikhi. 2017. Kefir: A powerful probiotics with anticancer properties. Medical Oncology 34 (11). doi: 10.1007/s12032-017-1044-9.
  • Sharma, H., G. D. el Rassi, A. Lathrop, V. B. Dobreva, T. S. Belem, and R. Ramanathan. 2021a. Comparative analysis of metabolites in cow and goat milk yoghurt using GC-MS based untargeted metabolomics. International Dairy Journal 117:105016. doi: 10.1016/j.idairyj.2021.105016.
  • Sharma, R., P. Garg, P. Kumar, S. Bhatia, and S. Kulshrestha. 2020b. Microbial fermentation and its role in quality improvement of fermented foods. Fermentation 6 (4):106–20. doi: 10.3390/fermentation6040106.
  • Sharma, H., and R. Ramanathan. 2021. Gas chromatography-mass spectrometry based metabolomic approach to investigate the changes in goat milk yoghurt during storage. Food Research International 140 (August 2020):110072. doi: 10.1016/j.foodres.2020.110072.
  • Sharma, H., A. K. Singh, S. Borad, and G. K. Deshwal. 2020a. Processing stability and debittering of Tinospora cordifolia (giloy) juice using ultrasonication for potential application in foods. LWT 139:110584. doi: 10.1016/j.lwt.2020.110584.
  • Sharma, H., A. K. Singh, G. K. Deshwal, P. S. Rao, and D. M. Kumar. 2021b. Functional Tinospora cordifolia (giloy) based pasteurized goat milk beverage: Impact of milk protein-polyphenol interaction on bioactive compounds, anti-oxidant activity and microstructure. Food Bioscience 42:101101. doi: 10.1016/j.fbio.2021.101101.
  • Shiby, V. K., and H. N. Mishra. 2013. Fermented milks and milk products as functional foods-a review. Critical Reviews in Food Science and Nutrition 53 (5):482–496. doi: 10.1080/10408398.2010.547398.
  • Singh, V., S. Haque, R. Niwas, A. Srivastava, M. Pasupuleti, and C. K. M. Tripathi. 2016. Strategies for fermentation medium optimization: an in-depth review. Frontiers in Microbiology 7:2087. doi: 10.3389/fmicb.2016.02087.
  • Silva, H. L. A., C. F. Balthazar, R. Silva, A. H. Vieira, R. G. B. Costa, E. A. Esmerino, M. Q. Freitas, and A. G. Cruz. 2018. Sodium reduction and flavor enhancer addition in probiotic prato cheese: Contributions of quantitative descriptive analysis and temporal dominance of sensations for sensory profiling. Journal of Dairy Science 101 (10):8837–8846. doi: 10.3168/jds.2018-14819.
  • Siragusa, S., de Angelis, M., R. di Cagno, Rizzello, C. G.Coda, R. and Gobbetti M. 2007. Synthesis of gamma-aminobutyric acid by lactic acid bacteria isolated from a variety of Italian cheeses. Applied and Environmental Microbiology 73 (22):7283–7290. doi: 10.1128/AEM.01064-07.
  • Solieri, L., G. S. Rutella, and D. Tagliazucchi. 2015. Impact of non-starter lactobacilli on release of peptides with angiotensin-converting enzyme inhibitory and antioxidant activities during bovine milk fermentation. Food Microbiology 51:108–116. doi: 10.1016/j.fm.2015.05.012.
  • Stefanovic, E., K. N. Kilcawley, M. C. Rea, G. F. Fitzgerald, and O. McAuliffe. 2017. Genetic, enzymatic and metabolite profiling of the Lactobacillus casei group reveals strain biodiversity and potential applications for flavour diversification. Journal of Applied Microbiology 122 (5):1245–1261. doi: 10.1111/jam.13420.
  • Surono, I., S. Pato, U. Koesnandar, and A. Hosono. 2009. In vivo antimutagenicity of dadih probiotic bacteria towards Trp-P1. Asian-Australasian Journal of Animal Sciences 22 (1):119–123. doi: 10.5713/ajas.2009.80122.
  • Tan, H. L., and K. M. McGrath. 2010. The microstructural and rheological properties of Na-caseinate dispersions. Journal of Colloid and Interface Science 342 (2):399–406. doi: 10.1016/j.jcis.2009.10.055.
  • Tanello, A. C., C. D. d Souza Silveira, E. Carasek, S. Verruck, E. S. Prudencio, and R. D. M. C. Amboni. 2019. Analysis of volatile compounds in probiotic yogurt during storage through solid-phase microextraction gas chromatography. Asian Journal of Advances in Agricultural Research 9 (2):1–11. doi: 10.9734/ajaar/2019/v9i229995.
  • Tasdemir, S. S., and N. Sanlier. 2020. An insight into the anticancer effects of fermented foods: A review. Journal of Functional Foods 75 (October):104281. doi: 10.1016/j.jff.2020.104281.
  • Tavakoli, M., M. B. Habibi Najafi, and M. Mohebbi. 2019. Effect of the milk fat content and starter culture selection on proteolysis and antioxidant activity of probiotic yogurt. Heliyon 5 (2):e01204. doi: 10.1016/j.heliyon.2019.e01204.
  • Tellez, A., M. Corredig, L. Y. Brovko, and M. W. Griffiths. 2010. Characterization of immune-active peptides obtained from milk fermented by Lactobacillus helveticus. The Journal of Dairy Research 77 (2):129–136. doi: 10.1017/S002202990999046X.
  • Temizkan, R., A. Can, M. A. Dogan, M. Mortas, and H. Ayvaz. 2020. Rapid detection of milk fat adulteration in yoghurts using near and mid-infrared spectroscopy. International Dairy Journal 110:104795. doi: 10.1016/j.idairyj.2020.104795.
  • Thierry, A., F. Valence, S. M. Deutsch, S. Even, H. Falentin, Y. Le Loir, G. Jan, and V. Gagnaire. 2015. Strain-to-strain differences within lactic and propionic acid bacteria species strongly impact the properties of cheese–A review. Dairy Science & Technology 95 (6):895–918. doi: 10.1007/s13594-015-0267-9.
  • Tidona, F., M. Zago, M. Corredig, F. Locci, G. Contarini, G. Giraffa, and D. Carminati. 2016. Selection of Streptococcus thermophilus strains able to produce exopolysaccharides in milk. International Journal of Dairy Technology 69 (4):569–575. doi: 10.1111/1471-0307.12295.
  • Trimigno, A., C. B. Lyndgaard, G. A. Atladóttir, V. Aru, S. B. Engelsen, and L. K. H. Clemmensen. 2020. An NMR metabolomics approach to investigate factors affecting the yoghurt fermentation process and quality. Metabolites 10 (7):293–16. doi: 10.3390/metabo10070293.
  • Verruck, S., C. F. Balthazar, R. S. Rocha, R. Silva, E. A. Esmerino, T. C. Pimentel, M. Q. Freitas, M. C. Silva, A. G. da Cruz, and E. S. Prudencio. 2019. Dairy foods and positive impact on the consumer’s health. Advances in Food and Nutrition Research 89:95–164. doi: 10.1016/bs.afnr.2019.03.002.
  • Vieco-Saiz, N., Y. Belguesmia, R. Raspoet, E. Auclair, F. Gancel, I. Kempf, and D. Drider. 2019. Benefits and inputs from lactic acid bacteria and their bacteriocins as alternatives to antibiotic growth promoters during food-animal production. Frontiers in Microbiology 10:57. doi: 10.3389/fmicb.2019.00057.
  • Vieira, C. P., T. S. Álvares, L. S. Gomes, A. G. Torres, V. M. F. Paschoalin, and C. A. Conte-Junior. 2015. Kefir grains change fatty acid profile of milk during fermentation and storage. Plos ONE 10 (10):e0139910. doi: 10.1371/journal.pone.0139910.
  • Vukotić, G., I. Strahinić, J. Begović, J. Lukić, M. Kojić, and D. Fira. 2016. Survey on proteolytic activity and diversity of proteinase genes in mesophilic lactobacilli. Microbiology 85 (1):33–41. doi: 10.1134/S002626171601015X.
  • Wang, J., H. Sun, S. Guo, Y. Sun, L. Kwok, H. Zhang, and C. Peng. 2021. Comparison of the effects of single probiotic strains Lactobacillus casei Zhang and Bifidobacterium animalis ssp. lactis Probio-M8 and their combination on volatile and nonvolatile metabolomic profiles of yogurt. Journal of Dairy Science 104 (7):7509–7521. doi: 10.3168/jds.2020-20099.
  • Wishart, D. S. 2008. Metabolomics: Applications to food science and nutrition research. Trends in Food Science & Technology 19 (9):482–493. doi: 10.1016/j.tifs.2008.03.003.
  • Wszolek, M., A. Y. Tamime, D. D. Muir, and M. N. I. Barclay. 2001. Properties of Kefir made in Scotland and Poland using bovine, caprine and ovine milk with different starter cultures. LWT – Food Science and Technology 34 (4):251–261. doi: 10.1006/fstl.2001.0773.
  • Wu, R., J. Chen, L. Zhang, X. Wang, Y. Yang, and X. Ren. 2021. LC/MS-based metabolomics to evaluate the milk composition of human, horse, goat and cow from China. European Food Research and Technology 247 (3):663–675. doi: 10.1007/s00217-020-03654-1.
  • Wu, W., and H. Li. 2018. Metabolites of lactic acid bacteria. Lactic Acid Bacteria in Foodborne Hazards Reduction: Physiology to Practice :87–113. doi: 10.1007/978-981-13-1559-6_4.
  • Wullschleger, S., C. Lacroix, B. Bonfoh, A. Sissoko-Thiam, S. Hugenschmidt, E. Romanens, S. Baumgartner, I. Traoré, M. Yaffee, C. Jans, et al. 2013. Analysis of lactic acid bacteria communities and their seasonal variations in a spontaneously fermented dairy product (Malian fènè) by applying a cultivation/genotype-based binary model. International Dairy Journal 29 (1):28–35. doi: 10.1016/j.idairyj.2012.08.001.
  • Xia, Y., J. Yu, W. Miao, and Q. Shuang. 2020. A UPLC-Q-TOF-MS-based metabolomics approach for the evaluation of fermented mare’s milk to koumiss. Food Chemistry 320:126619. doi: 10.1016/j.foodchem.2020.126619.
  • Xiao, J. F., B. Zhou, and H. W. Ressom. 2012. Metabolite identification and quantitation in LC-MS/MS-based metabolomics. Trends in Analytical Chemistry: TRAC 32:1–14. doi: 10.1016/j.trac.2011.08.009.
  • Xu, L., S. M. Yan, C. B. Cai, Z. J. Wang, and X. P. Yu. 2013. The feasibility of using near-infrared spectroscopy and chemometrics for untargeted detection of protein adulteration in yogurt: Removing unwanted variations in pure yogurt. Journal of Analytical Methods in Chemistry 2013:201873. doi: 10.1155/2013/201873.
  • Ya, T., Q. Zhang, F. Chu, J. Merritt, M. Bilige, T. Sun, R. Du, and H. Zhang. 2008. Immunological evaluation of Lactobacillus casei Zhang: A newly isolated strain from koumiss in Inner Mongolia, China. BMC Immunol 9 (1):68–9. doi: 10.1186/1471-2172-9-68.
  • Yadav, R., A. K. Puniya, and P. Shukla. 2016. Probiotic properties of Lactobacillus plantarum RYPR1 from an indigenous fermented beverage raabadi. Frontiers in Microbiology 7 (OCT):1683. doi: 10.3389/fmicb.2016.01683.
  • Yadav, R., R. Vij, S. Kapila, S. H. Khan, N. Kumar, S. Meena, and R. Kapila. 2019. Milk fermented with probiotic strains Lactobacillus rhamnosus MTCC: 5957 and Lactobacillus rhamnosus MTCC: 5897 ameliorates the diet-induced hypercholesterolemia in rats. Annals of Microbiology 69 (5):483–494. doi: 10.1007/s13213-018-1433-0.
  • Yang, S., D. Yan, Y. Zou, D. Mu, X. Li, H. Shi, X. Luo, M. Yang, X. Yue, R. Wu, et al. 2021. Fermentation temperature affects yogurt quality: A metabolomics study. Food Bioscience 42 (May):101104. doi: 10.1016/j.fbio.2021.101104.
  • Zannini, E., D. M. Waters, A. Coffey, and E. K. Arendt. 2016. Production, properties, and industrial food application of lactic acid bacteria-derived exopolysaccharides. Applied Microbiology and Biotechnology 100 (3):1121–1135.
  • Zhang, K., H. Dai, W. Liang, L. Zhang, and Z. Deng. 2019. Fermented dairy foods intake and risk of cancer. International Journal of Cancer 144 (9):2099–2108. doi: 10.1002/ijc.31959.
  • Zhang, Y. D., P. Li, N. Zheng, Z. W. Jia, N. Meruva, A. Ladak, G. Cleland, F. Wen, S. L. Li, S. G. Zhao, et al. 2018. A metabolomics approach to characterize raw, pasteurized, and ultra-high temperature milk using ultra-performance liquid chromatography–quadrupole time-of-flight mass spectrometry and multivariate data analysis. Journal of Dairy Science 101 (11):9630–7. doi: 10.3168/jds.ssss2018-14441.
  • Zheng, Y., Y. Lu, J. Wang, L. Yang, C. Pan, and Y. Huang. 2013. Probiotic properties of Lactobacillus strains isolated from Tibetan kefir grains. PLoS One 8 (7):e69868. doi: 10.1371/journal.pone.0069868.
  • Zheng, J., S. Wittouck, E. Salvetti, C. M. A. P. Franz, H. M. B. Harris, P. Mattarelli, P. W. O’Toole, B. Pot, P. Vandamme, J. Walter, et al. 2020. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology 70 (4):2782–2858. doi: 10.1099/ijsem.0.004107.
  • Zivkovic, M., M. Miljkovic, P. Ruas-Madiedo, I. Strahinic, M. Tolinacki, N. Golic, and M. Kojic. 2015. Exopolysaccharide production and ropy phenotype are determined by two gene clusters in putative probiotic strain Lactobacillus paraplantarum BGCG11. Applied and Environmental Microbiology 81 (4):1387–96. doi: 10.1128/AEM.03028-14.
  • Zhu, D., B. Kebede, G. Chen, K. McComb, and R. Frew. 2020. Effects of the vat pasteurization process and refrigerated storage on the bovine milk metabolome. Journal of Dairy Science 103 (3):2077–2088. doi: 10.3168/jds.2019-17512.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.