1,370
Views
8
CrossRef citations to date
0
Altmetric
Reviews

Mechanism, indexes, methods, challenges, and perspectives of edible oil oxidation analysis

, , , , , & show all

References

  • Adhvaryu, A., S. Z. Erhan, Z. S. Liu, and J. M. Perez. 2000. Oxidation kinetic studies of oils derived from unmodified and genetically modified vegetables using pressurized differential scanning calorimetry and nuclear magnetic resonance spectroscopy. Thermochimica Acta 364 (1–2):87–97. doi: 10.1016/S0040-6031(00)00626-2.
  • Agiomyrgianaki, A., P. V. Petrakis, and P. Dais. 2010. Detection of refined olive oil adulteration with refined hazelnut oil by employing NMR spectroscopy and multivariate statistical analysis. Talanta 80 (5):2165–71. doi: 10.1016/j.talanta.2009.11.024.
  • Alberdi-Cedeño, J., M. L. Ibargoitia, and M. D. Guillén. 2019. Monitoring of minor compounds in corn oil oxidation by direct immersion-solid phase microextraction-gas chromatography/mass spectrometry. New oil oxidation markers. Food Chemistry 290:286–94. doi: 10.1016/j.foodchem.2019.04.001.
  • Alvarez-Ordóñez, A., and M. Prieto. 2012. Fourier transform infrared spectroscopy in food microbiology. Springer US. doi: 10.1007/978-1-4614-3813-7.
  • Armenta, S., S. Garrigues, and M. de la Guardia. 2007. Determination of edible oil parameters by near infrared spectrometry. Analytica Chimica Acta 596 (2):330–7. doi: 10.1016/j.aca.2007.06.028.
  • Awl, R. A., E. N. Frankel, and D. Weisleder. 1987. Cyclic fatty esters: Hydroperoxides from autoxidation of methyl 9-(6-propyl-3-cyclohexenyl)-(Z)8-nonenoate. Lipids 22 (10):721–30. doi: 10.1007/BF02533972.
  • Azarbad, M. H., and H. Jeleń. 2015. Determination of hexanal—an indicator of lipid oxidation by static headspace gas chromatography (SHS-GC) in fat-rich food matrices. Food Analytical Methods 8 (7):1727–33. doi: 10.1007/s12161-014-0043-0.
  • Barriuso, B., I. Astiasarán, and D. Ansorena. 2013. A review of analytical methods measuring lipid oxidation status in foods: A challenging task. European Food Research and Technology 236 (1):1–15. doi: 10.1007/s00217-012-1866-9.
  • Barthus, R. C., and R. J. Poppi. 2002. Multivariate quality control applied to detect the soybean oil oxidation using Fourier transform infrared spectroscopy. Spectroscopy Letters 35 (5):729–39. doi: 10.1081/SL-120014943.
  • Bellon-Maurel, V., and A. McBratney. 2011. Near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for assessing the amount of carbon stock in soils – Critical review and research perspectives. Soil Biology and Biochemistry 43 (7):1398–410. doi: 10.1016/j.soilbio.2011.02.019.
  • Beltrán, A., M. Ramos, N. Grané, M. L. Martín, and M. C. Garrigós. 2011. Monitoring the oxidation of almond oils by HS-SPME-GC-MS and ATR-FTIR: Application of volatile compounds determination to cultivar authenticity. Food Chemistry 126 (2):603–9. doi: 10.1016/j.foodchem.2010.11.058.
  • Bilancia, M. T., F. Caponio, E. Sikorska, A. Pasqualone, and C. Summo. 2007. Correlation of triacylglycerol oligopolymers and oxidised triacylglycerols to quality parameters in extra virgin olive oil during storage. Food Research International 40 (7):855–61. doi: 10.1016/j.foodres.2007.02.001.
  • Brenes, M., A. García, P. García, and A. Garrido. 2001. Acid hydrolysis of secoiridoid aglycons during storage of virgin olive oil. Journal of Agricultural and Food Chemistry 49 (11):5609–14. doi: 10.1021/jf0107860.
  • Caldwell, J. D., B. S. Cooke, and M. K. Greer. 2011. High performance liquid chromatography–size exclusion chromatography for rapid analysis of total polar compounds in used frying oils. Journal of the American Oil Chemists’ Society 88 (11):1669–74. doi: 10.1007/s11746-011-1845-5.
  • Cao, J., L. Deng, X. M. Zhu, Y. W. Fan, J. N. Hu, J. Li, and Z. Y. Deng. 2014a. Novel approach to evaluate the oxidation state of vegetable oils using characteristic oxidation indicators. Journal of Agricultural and Food Chemistry 62 (52):12545–52. doi: 10.1021/jf5047656.
  • Cao, H. H., B. Xue, Y. R. Jiang, X. D. Han, H. M. Shi, and W. M. Cao. 2017. Application of triacylglycerol polymer determination in the quality evaluation of vegetable oil. LWT - Food Science and Technology 82:243–7. doi: 10.1016/j.lwt.2017.04.037.
  • Cao, J., X. G. Zou, L. Deng, Y. W. Fan, H. Li, J. Li, and Z. Y. Deng. 2014b. Analysis of nonpolar lipophilic aldehydes/ketones in oxidized edible oils using HPLC-QqQ-MS for the evaluation of their parent fatty acids. Food Research International (Ottawa, ON) 64:901–7. doi: 10.1016/j.foodres.2014.08.042.
  • Cebi, N., M. T. Yilmaz, O. Sagdic, H. Yuce, and E. Yelboga. 2017. Prediction of peroxide value in omega-3 rich microalgae oil by ATR-FTIR spectroscopy combined with chemometrics. Food Chemistry 225:188–96. doi: 10.1016/j.foodchem.2017.01.013.
  • Chakraborty, K., D. Joseph, and D. Joseph. 2016. Changes in the quality of refined fish oil in an accelerated storage study. Journal of Aquatic Food Product Technology 25 (7):1155–70. doi: 10.1080/10498850.2015.1036482.
  • Cheng, J. H., Q. Dai, D. W. Sun, X. A. Zeng, D. Liu, and H. B. Pu. 2013. Applications of non-destructive spectroscopic techniques for fish quality and safety evaluation and inspection. Trends in Food Science & Technology 34 (1):18–31. doi: 10.1016/j.tifs.2013.08.005.
  • Chen, J., L. Y. Zhang, Q. Li, M. Z. Wang, Y. Y. Dong, and X. Z. Yu. 2020. Comparative study on the evolution of polar compound composition of four common vegetable oils during different oxidation processes. LWT 129:109538. doi: 10.1016/j.lwt.2020.109538.
  • Chen, J., L. Y. Zhang, Y. L. Li, N. Zhang, Y. Gao, and X. Z. Yu. 2021. The formation, determination and health implications of polar compounds in edible oils: Current status, challenges and perspectives. Food Chemistry 364:130451. doi: 10.1016/j.foodchem.2021.130451.
  • Cordella, C. B. Y., T. Tekye, D. N. Rutledge, and R. Leardi. 2012. A multiway chemometric and kinetic study for evaluating the thermal stability of edible oils by 1H NMR analysis: Comparison of methods. Talanta 88:358–68. doi: 10.1016/j.talanta.2011.11.001.
  • Cozzolino, D., and I. Murray. 2012. A review on the application of infrared technologies to determine and monitor composition and other quality characteristics in raw fish, fish products, and seafood. Applied Spectroscopy Reviews 47 (3):207–18. doi: 10.1080/05704928.2011.639106.
  • Cui, Y. M., P. F. Hao, B. J. Liu, and X. H. Meng. 2017. Effect of traditional Chinese cooking methods on fatty acid profiles of vegetable oils. Food Chemistry 233:77–84. doi: 10.1016/j.foodchem.2017.04.084.
  • Custodio-Mendoza, J. A., J. Aja-Macaya, I. M. Valente, J. A. Rodrigues, P. J. Almeida, R. A. Lorenzo, and A. M. Carro. 2020. Determination of malondialdehyde, acrolein and four other products of lipid peroxidation in edible oils by Gas-Diffusion Microextraction combined with Dispersive Liquid-Liquid Microextraction. Journal of Chromatography A 1627:461397. doi: 10.1016/j.chroma.2020.461397.
  • da Costa, G. B., D. D. S. Fernandes, A. A. Gomes, V. E. de Almeida, and G. Veras. 2016. Using near infrared spectroscopy to classify soybean oil according to expiration date. Food Chem 196:539–43. doi: 10.1016/j.foodchem.2015.09.076.
  • Dais, P., and E. Hatzakis. 2013. Quality assessment and authentication of virgin olive oil by NMR spectroscopy: A critical review. Analytica Chimica Acta 765:1–27. doi: 10.1016/j.aca.2012.12.003.
  • Di Maio, I., S. Esposto, A. Taticchi, R. Selvaggini, G. Veneziani, S. Urbani, and M. Servili. 2013. Characterization of 3,4-DHPEA-EDA oxidation products in virgin olive oil by high performance liquid chromatography coupled with mass spectrometry. Food Chemistry 138 (2–3):1381–91. doi: 10.1016/j.foodchem.2012.10.097.
  • Du, S. S., M. K. Su, Y. F. Jiang, F. F. Yu, Y. Xu, X. F. Lou, T. Yu, and H. L. Liu. 2019. Direct discrimination of edible oil type, oxidation, and adulteration by liquid interfacial surface-enhanced Raman spectroscopy. ACS Sensors 4 (7):1798–805. doi: 10.1021/acssensors.9b00354.
  • Dymińska, L., M. Calik, A. M. M. Albegar, A. Zając, K. Kostyń, J. Lorenc, and J. Hanuza. 2017. Quantitative determination of the iodine values of unsaturated plant oils using infrared and Raman spectroscopy methods. International Journal of Food Properties 20 (9):2003–15. doi: 10.1080/10942912.2016.1230744.
  • El-Abassy, R. M., P. Donfack, and A. Materny. 2009. Rapid determination of free fatty acid in extra virgin olive oil by raman spectroscopy and multivariate analysis. Journal of the American Oil Chemists’ Society 86 (6):507–11. doi: 10.1007/s11746-009-1389-0.
  • Fang, G. H., J. Y. Goh, M. Tay, H. F. Lau, and S. F. Y. Li. 2013. Characterization of oils and fats by 1H NMR and GC/MS fingerprinting: Classification, prediction and detection of adulteration. Food Chemistry 138 (2–3):1461–9. doi: 10.1016/j.foodchem.2012.09.136.
  • Feng, H. X., R. Sam, L. Z. Jiang, Y. Li, and W. M. Cao. 2016. High-performance size-exclusion chromatography studies on the formation and distribution of polar compounds in camellia seed oil during heating. Journal of Zhejiang University-Science B 17 (11):882–91. doi: 10.1631/jzus.B1600173.
  • Garcia-Gonzalez, D. L., and F. R. van de Voort. 2009. A novel wire mesh "cell" for studying lipid oxidative processes by fourier transform infrared spectroscopy. Applied Spectroscopy 63 (5):518–27. doi: 10.1366/000370209788346995.
  • García-Martínez, M. C., G. Márquez-Ruiz, J. Fontecha, and M. H. Gordon. 2009. Volatile oxidation compounds in a conjugated linoleic acid-rich oil. Food Chemistry 113 (4):926–31. doi: 10.1016/j.foodchem.2008.08.020.
  • Goicoechea, E., and M. D. Guillén. 2014. Volatile compounds generated in corn oil stored at room temperature. Presence of toxic compounds. European Journal of Lipid Science and Technology 116 (4):395–406. doi: 10.1002/ejlt.201300244.
  • Gomes, T., F. Caponio, and D. Delcuratolo. 2003. Non-conventional parameters for quality evaluation of refined oils with special reference to commercial class olive oil. Food Chemistry 83 (3):403–8. doi: 10.1016/S0308-8146(03)00102-X.
  • Gómez-Cortés, P., G. L. Sacks, and J. T. Brenna. 2015. Quantitative analysis of volatiles in edible oils following accelerated oxidation using broad spectrum isotope standards. Food Chemistry 174:310–8. doi: 10.1016/j.foodchem.2014.11.015.
  • Gotoh, N., S. Miyake, H. Takei, K. Sasaki, S. Okuda, M. Ishinaga, and S. Wada. 2011. Simple method for measuring the peroxide value in a colored lipid. Food Analytical Methods 4 (4):525–30. doi: 10.1007/s12161-011-9193-5.
  • Gromadzka, J., W. Wardencki, R. Pawłowicz, and G. Muszyński. 2010. Photoinduced and thermal oxidation of rapeseed and sunflower oils. European Journal of Lipid Science and Technology 112 (11):1229–35. doi: 10.1002/ejlt.201000057.
  • Grüneis, V., S. Fruehwirth, M. Zehl, J. Ortner, A. Schamann, J. König, and M. Pignitter. 2019. Simultaneous analysis of epoxidized and hydroperoxidized triacylglycerols in canola oil and margarine by LC-MS. Journal of Agricultural and Food Chemistry 67 (36):10174–84. doi: 10.1021/acs.jafc.9b03601.
  • Guillén, M. D., and N. Cabo. 1999. Usefulness of the frequency data of the fourier transform infrared spectra to evaluate the degree of oxidation of edible oils. Journal of Agricultural and Food Chemistry 47 (2):709–19. doi: 10.1021/jf9808123.
  • Guillén, M. D., and E. Goicoechea. 2007. Detection of primary and secondary oxidation products by Fourier transform infrared spectroscopy (FTIR) and 1H nuclear magnetic resonance (NMR) in sunflower oil during storage. Journal of Agricultural and Food Chemistry 55 (26):10729–36. doi: 10.1021/jf071712c.
  • Guillén, M. D., and E. Goicoechea. 2009. Oxidation of corn oil at room temperature: Primary and secondary oxidation products and determination of their concentration in the oil liquid matrix from 1 H nuclear magnetic resonance data. Food Chemistry 116 (1):183–92. doi: 10.1016/j.foodchem.2009.02.029.
  • Guzmán, E., V. Baeten, J. A. F. Pierna, and J. A. García-Mesa. 2011. Application of low-resolution Raman spectroscopy for the analysis of oxidized olive oil. Food Control 22 (12):2036–40. doi: 10.1016/j.foodcont.2011.05.025.
  • Ha, J., D. W. Seo, X. Chen, J. B. Hwang, and Y. S. Shim. 2011. Determination of hexanal as an oxidative marker in vegetable oils using an automated dynamic headspace sampler coupled to a gas chromatograph/mass spectrometer. Analytical Sciences 27 (9):873–8. doi: 10.2116/analsci.27.873.
  • Hammouda, I. B., G. Márquez-Ruiz, F. Holgado, F. Freitas, M. D. R. Gomes Da Silva, and M. Bouaziz. 2019. Comparative study of polymers and total polar compounds as indicators of refined oil degradation during frying. European Food Research and Technology 245 (5):967–76. doi: 10.1007/s00217-018-3202-5.
  • Ho, E., K. K. Galougahi, C. C. Liu, R. Bhindi, and G. A. Figtree. 2013. Biological markers of oxidative stress: Applications to cardiovascular research and practice. Redox Biology 1 (1):483–91. doi: 10.1016/j.redox.2013.07.006.
  • Hong, S. J., S. J. Rho, A. Y. Lee, H. Park, J. Cui, J. Park, S. J. Hong, Y. R. Kim, and G. Kim. 2017. Rancidity estimation of perilla seed oil by using near-infrared spectroscopy and multivariate analysis techniques. Journal of Spectroscopy 2017:1. doi: 10.1155/2017/1082612.
  • Hori, K., F. H. Koh, and K. Tsumura. 2019. A metabolomics approach using LC TOF-MS to evaluate oxidation levels of edible oils. Food Analytical Methods 12 (8):1799–804. doi: 10.1007/s12161-019-01525-4.
  • Jiang, Y. F., M. K. Su, T. Yu, S. S. Du, L. L. Liao, H. Y. Wang, Y. P. Wu, and H. L. Liu. 2021. Quantitative determination of peroxide value of edible oil by algorithm-assisted liquid interfacial surface enhanced Raman spectroscopy. Food Chemistry 344:128709. doi: 10.1016/j.foodchem.2020.128709.
  • Jin, H. Q., H. Li, Z. K. Yin, Y. Y. Zhu, A. M. Lu, D. Zhao, and C. B. Li. 2021. Application of Raman spectroscopy in the rapid detection of waste cooking oil. Food Chemistry 362:130191. doi: 10.1016/j.foodchem.2021.130191.
  • Juita, B. Z. Dlugogorski, E. M. Kennedy, and J. C. Mackie. 2012. Identification and quantitation of volatile organic compounds from oxidation of linseed oil. Industrial & Engineering Chemistry Research 51 (16):5653–61. doi: 10.1021/ie202535d.
  • Karami, H., M. Rasekh, and E. Mirzaee-Ghaleh. 2020. Qualitative analysis of edible oil oxidation using an olfactory machine. Journal of Food Measurement and Characterization 14 (5):2600–10. doi: 10.1007/s11694-020-00506-0.
  • Karami, H., M. Rasekh, and E. Mirzaee-Ghaleh. 2021. Identification of olfactory characteristics of edible oil during storage period using of MOS sensors signal and ANN methods. Journal of Food Processing and Preservation 45 (10):e15749. doi: 10.1111/jfpp.15749.
  • Kiralan, M., M. Ulaş, A. Özaydin, N. Özdemır, G. Özkan, A. Bayrak, and M. F. Ramadan. 2017. Blends of cold pressed black cumin oil and sunflower oil with improved stability: A study based on changes in the levels of volatiles, tocopherols and thymoquinone during accelerated oxidation conditions. Journal of Food Biochemistry 41 (1):e12272. doi: 10.1111/jfbc.12272.
  • Kishikawa, N., M. H. El-Maghrabey, and N. Kuroda. 2019. Chromatographic methods and sample pretreatment techniques for aldehydes determination in biological, food, and environmental samples. Journal of Pharmaceutical and Biomedical Analysis 175:112782. doi: 10.1016/j.jpba.2019.112782.
  • Laguerre, M., J. Lecomte, and P. Villeneuve. 2007. Evaluation of the ability of antioxidants to counteract lipid oxidation: Existing methods, new trends and challenges. Progress in Lipid Research 46 (5):244–82. doi: 10.1016/j.plipres.2007.05.002.
  • Lee, J., D. H. Kim, P. S. Chang, and J. H. Lee. 2007. Headspace-solid phase microextraction (HS-SPME) analysis of oxidized volatiles from free fatty acids (FFA) and application for measuring hydrogen donating antioxidant activity. Food Chemistry 105 (1):414–20. doi: 10.1016/j.foodchem.2006.12.059.
  • Li, Q., J. Chen, Z. Y. Huyan, Y. X. Kou, L. R. Xu, X. Z. Yu, and J. M. Gao. 2019. Application of Fourier transform infrared spectroscopy for the quality and safety analysis of fats and oils: A review. Critical Reviews in Food Science and Nutrition 59 (22):3597–611. doi: 10.1080/10408398.2018.1500441.
  • Li, Y., M. Driver, E. Decker, and L. L. He. 2014. Lipid and lipid oxidation analysis using surface enhanced Raman spectroscopy (SERS) coupled with silver dendrites. Food Research International 58:1–6. doi: 10.1016/j.foodres.2014.01.056.
  • Li, X., Y. R. Li, F. Yang, R. J. Liu, C. W. Zhao, Q. Z. Jin, and X. G. Wang. 2019a. Oxidation degree of soybean oil at induction time point under Rancimat test condition: Theoretical derivation and experimental observation. Food Research International (Ottawa, Ont.) 120:756–62. doi: 10.1016/j.foodres.2018.11.036.
  • Li, X., G. C. Wu, F. Yang, L. L. Meng, J. H. Huang, H. Zhang, Q. Z. Jin, and X. G. Wang. 2019b. Influence of fried food and oil type on the distribution of polar compounds in discarded oil during restaurant deep frying. Food Chemistry 272:12–7. doi: 10.1016/j.foodchem.2018.08.023.
  • Liu, H., Y. Chen, C. Shi, X. T. Yang, and D. H. Han. 2020. FT-IR and Raman spectroscopy data fusion with chemometrics for simultaneous determination of chemical quality indices of edible oils during thermal oxidation. LWT 119:108906. doi: 10.1016/j.lwt.2019.108906.
  • Liu, X. J., T. Li, J. Jiang, Y. Wang, X. H. Zhang, B. H. Xia, and W. F. Dong. 2021. Visual detection of edible oil oxidation by using chitin-based colorimetric sensor for aldehydes. Colloids and Surfaces A: Physicochemical and Engineering Aspects 628:127303. doi: 10.1016/j.colsurfa.2021.127303.
  • Longobardi, F., F. Contillo, L. Catucci, L. Tommasi, F. Caponio, and V. M. Paradiso. 2021. Analysis of peroxide value in olive oils with an easy and green method. Food Control. 130:108295. doi: 10.1016/j.foodcont.2021.108295.
  • Lucas-Torres, C., Á. Pérez, B. Cabañas, and A. Moreno. 2014. Study by ³1P NMR spectroscopy of the triacylglycerol degradation processes in olive oil with different heat-transfer mechanisms. Food Chemistry 165:21–8. doi: 10.1016/j.foodchem.2014.05.092.
  • Mahesar, S. A., S. T. H. Sherazi, A. R. Khaskheli, A. A. Kandhro, and S. Uddin. 2014. Analytical approaches for the assessment of free fatty acids in oils and fats. Analytical Methods 6 (14):4956–63. doi: 10.1039/C4AY00344F.
  • Majchrzak, T., W. Wojnowski, A. Głowacz-Różyńska, and A. Wasik. 2021. On-line assessment of oil quality during deep frying using an electronic nose and proton transfer reaction mass spectrometry. Food Control 121:107659. doi: 10.1016/j.foodcont.2020.107659.
  • Ma, L. K., G. Q. Liu, W. W. Cheng, X. Q. Liu, C. Brennan, M. A. Brennan, H. F. Liu, and Q. Wang. 2020. The effect of heating on the formation of 4-hydroxy-2-hexenal and 4-hydroxy-2-nonenal in unsaturated vegetable oils: Evaluation of oxidation indicators. Food Chemistry 321:126603. doi: 10.1016/j.foodchem.2020.126603.
  • Ma, L. K., G. Q. Liu, and X. Q. Liu. 2019. Malondialdehyde, 4‐hydroxy‐2‐hexenal, and 4‐hydroxy‐2‐nonenal in vegetable oils: Formation kinetics and application as oxidation indicators. European Journal of Lipid Science and Technology 121 (7):1900040. doi: 10.1002/ejlt.201900040.
  • Martin-Rubio, A. S., P. Sopelana, M. L. Ibargoitia, and M. D. Guillén. 2018. Prooxidant effect of α-tocopherol on soybean oil. Global monitoring of its oxidation process under accelerated storage conditions by 1H nuclear magnetic resonance. Food Chemistry 245:312–23. doi: 10.1016/j.foodchem.2017.10.098.
  • Messina, V., A. Sancho, and N. W. de Reca. 2015. Monitoring odour of heated extra‐virgin olive oils from Arbequina and Manzanilla cultivars using an electronic nose. European Journal of Lipid Science and Technology 117 (8):1295–300. doi: 10.1002/ejlt.201400651.
  • Mildner-Szkudlarz, S., H. H. Jeleń, and R. Zawirska-Wojtasiak. 2008. The use of electronic and human nose for monitoring rapeseed oil autoxidation. European Journal of Lipid Science and Technology 110 (1):61–72. doi: 10.1002/ejlt.200700009.
  • Morales, A., S. Marmesat, M. C. Dobarganes, G. Márquez-Ruiz, and J. Velasco. 2012. Quantitative analysis of hydroperoxy-, keto- and hydroxy-dienes in refined vegetable oils. Journal of Chromatography A 1229:190–7. doi: 10.1016/j.chroma.2012.01.039.
  • Moselhy, H. F., R. G. Reid, S. Yousef, and S. P. Boyle. 2013. A specific, accurate, and sensitive measure of total plasma malondialdehyde by HPLC. Journal of Lipid Research 54 (3):852–8. doi: 10.1194/jlr.D032698.
  • Muik, B., B. Lendl, A. Molina-Díaz, and M. J. Ayora-Cañada. 2005. Direct monitoring of lipid oxidation in edible oils by Fourier transform Raman spectroscopy. Chemistry and Physics of Lipids 134 (2):173–82. doi: 10.1016/j.chemphyslip.2005.01.003.
  • Nuchi, C., F. Guardiola, R. Bou, P. Bondioli, L. D. Bella, and R. Codony. 2009. Assessment of the levels of degradation in fat co- and byproducts for feed uses and their relationships with some lipid composition parameters. Journal of Agricultural and Food Chemistry 57 (5):1952–9. doi: 10.1021/jf803369h.
  • Ottaway, J. M., J. C. Carter, K. L. Adams, J. Camancho, B. K. Lavine, and K. S. Booksh. 2021. Comparison of spectroscopic techniques for determining the peroxide value of 19 classes of naturally aged, plant-based edible oils. Applied Spectroscopy 75 (7):781–94. doi: 10.1177/0003702821994500.
  • Park, M. H., M. K. Jeong, J. Yeo, H. J. Son, C. L. Lim, E. J. Hong, B. S. Noh, and J. Lee. 2011. Application of solid phase‐microextraction (SPME) and electronic nose techniques to differentiate volatiles of sesame oils prepared with diverse roasting conditions. Journal of Food Science 76 (1):C80–88. doi: 10.1111/j.1750-3841.2010.01954.x.
  • Pignoli, G., R. Bou, M. T. Rodriguez-Estrada, and E. A. Decker. 2009. Suitability of saturated aldehydes as lipid oxidation markers in washed turkey meat. Meat Science 83 (3):412–6. doi: 10.1016/j.meatsci.2009.06.019.
  • Pizarro, C., I. Esteban-Díez, S. Rodríguez-Tecedor, and J. M. González-Sáiz. 2013. Determination of the peroxide value in extra virgin olive oils through the application of the stepwise orthogonalisation of predictors to mid-infrared spectra. Food Control 34 (1):158–67. doi: 10.1016/j.foodcont.2013.03.025.
  • Pratt, D. A., K. A. Tallman, and N. A. Porter. 2011. Free radical oxidation of polyunsaturated lipids: New mechanistic insights and the development of peroxyl radical clocks. Accounts of Chemical Research 44 (6):458–67. doi: 10.1021/ar200024c.
  • Prosen, H., M. Kokalj, D. Janeš, and S. Kreft. 2010. Comparison of isolation methods for the determination of buckwheat volatile compounds. Food Chemistry 121 (1):298–306. doi: 10.1016/j.foodchem.2009.12.014.
  • Rao, Y. L., B. R. Xiang, X. H. Zhou, Z. M. Wang, S. F. Xie, and J. P. Xu. 2009. Quantitative and qualitative determination of acid value of peanut oil using near-infrared spectrometry. Journal of Food Engineering 93 (2):249–52. doi: 10.1016/j.jfoodeng.2009.01.023.
  • Rodriguez-Saona, L. E., and M. E. Allendorf. 2011. Use of FTIR for rapid authentication and detection of adulteration of food. Annual Review of Food Science and Technology 2 (1):467–83. doi: 10.1146/annurev-food-022510-133750.
  • Rohman, A. 2017. The use of infrared spectroscopy in combination with chemometrics for quality control and authentication of edible fats and oils: A review. Applied Spectroscopy Reviews 52 (7):589–604. doi: 10.1080/05704928.2016.1266493.
  • Russin, T. A., F. R. van de Voort, and J. Sedman. 2004. Rapid determination of oxidative stability of edible oils by FTIR spectroscopy using disposable IR cards. Journal of the American Oil Chemists’ Society 81 (2):111–6. doi: 10.1007/s11746-004-0867-x.
  • Sánchez-Muniz, F. J., and S. Bastida. 2003. Frying oil discarding: Polar content vs. oligomer content determinations. Forum of Nutrition 56:345–7.
  • Sghaier, L., C. B. Y. Cordella, D. N. Rutledge, M. Watiez, S. Breton, P. Sassiat, D. Thiebaut, and J. Vial. 2016. Validation of a headspace trap gas chromatography and mass spectrometry method for the quantitative analysis of volatile compounds from degraded rapeseed oil. Journal of Separation Science 39 (9):1675–83. doi: 10.1002/jssc.201501364.
  • Shahidi, F., and Y. Zhong. 2010. Lipid oxidation and improving the oxidative stability. Chemical Society Reviews 39 (11):4067–79. doi: 10.1039/b922183m.
  • Shu, J. P., D. B. Sun, and S. S. Liu. 2010. Comparative performance of different methods used to collect tomato plant volatiles. Allelopathy Journal 26 (1):71–82. doi: 10.2134/agronj2010.0005.
  • Sinelli, N., M. S. Cosio, C. Gigliotti, and E. Casiraghi. 2007. Preliminary study on application of mid infrared spectroscopy for the evaluation of the virgin olive oil “freshness". Analytica Chimica Acta 598 (1):128–34. doi: 10.1016/j.aca.2007.07.024.
  • Singkhonrat, J., A. Sriprai, S. Hirunwatthanakasem, T. Angkuratipakorn, and P. Preechaburana. 2019. Digital image colorimetric analysis for evaluating lipid oxidation in oils and its emulsion. Food Chemistry 286:703–9. doi: 10.1016/j.foodchem.2019.02.035.
  • Skiera, C., P. Steliopoulos, T. Kuballa, U. Holzgrabe, and B. Diehl. 2012. 1 H-NMR spectroscopy as a new tool in the assessment of the oxidative state in edible oils. Journal of the American Oil Chemists’ Society 89 (8):1383–91. doi: 10.1007/s11746-012-2051-9.
  • Sun, H. H., X. X. Peng, C. Li, W. M. Zhang, and J. Cao. 2020. Determination of 2,4-decadienal In edible oils using reversed-phase liquid chromatography and its application as an alternative indicator of lipid oxidation. Journal of Food Science 85 (5):1418–26. doi: 10.1111/1750-3841.15132.
  • Talpur, M. Y., S. T. H. Sherazi, S. A. Mahesar, and A. A. Bhutto. 2010. A simplified UV spectrometric method for determination of peroxide value in thermally oxidized canola oil. Talanta 80 (5):1823–6. doi: 10.1016/j.talanta.2009.10.028.
  • Tarmizi, A. H. A., E. Hishamuddin, and R. A. Abd Razak. 2019. Impartial assessment of oil degradation through partitioning of polar compounds in vegetable oils under simulated frying practice of fast food restaurants. Food Control 96:445–55. doi: 10.1016/j.foodcont.2018.10.010.
  • Tiryaki, G. Y. 2012. Potential applications of HS-SPME/GC in oxidized vegetable oils. Journal of Food Science and Engineering 2 (5):263–70. doi: 10.17265/2159-5828/2012.05.003.
  • Vandemoortele, A., P. M. Heynderickx, L. Leloup, and B. De Meulenaer. 2021. Kinetic modeling of malondialdehyde reactivity in oil to simulate actual malondialdehyde formation upon lipid oxidation. Food Research International (Ottawa, ON) 140:110063. doi: 10.1016/j.foodres.2020.110063.
  • Velasco, J., A. Morales, M. V. Ruiz-Méndez, and G. Márquez-Ruiz. 2018. Quantitative determination of major oxidation products in edible oils by direct NP-HPLC-DAD analysis. Journal of Chromatography A 1547:62–70. doi: 10.1016/j.chroma.2018.03.014.
  • Wai, W. T., B. Saad, and B. P. Lim. 2009. Determination of TOTOX value in palm oleins using a FI-potentiometric analyzer. Food Chemistry 113 (1):285–90. doi: 10.1016/j.foodchem.2008.06.082.
  • Wang, M. Z., J. Chen, B. Y. Jing, L. Y. Zhang, Y. Y. Dong, and X. Z. Yu. 2020. Analysis of reaction kinetics of edible oil oxidation at ambient temperature by FTIR spectroscopy. European Journal of Lipid Science and Technology 122 (6):1900302. doi: 10.1002/ejlt.201900302.
  • Wang, M. Z., Z. Y. Huyan, B. Y. Jing, X. H. Mao, and X. Z. Yu. 2019. Analysis of edible oil oxidation based on changes in the electrical conductivity of the extracted aqueous phase. European Journal of Lipid Science and Technology 121 (5):1800441. doi: 10.1002/ejlt.201800441.
  • Wang, N., T. Ma, X. Z. Yu, L. R. Xu, and R. Zhang. 2016. Determination of peroxide values of edible oils by ultraviolet spectrometric method. Food Analytical Methods 9 (5):1412–7. doi: 10.1007/s12161-015-0322-4.
  • Wang, C., Y. Y. Sun, Y. Y. Zhou, Y. W. Cui, W. R. Yao, H. Yu, Y. H. Guo, and Y. F. Xie. 2021. Dynamic monitoring oxidation process of nut oils through Raman technology combined with PLSR and RF-PLSR model. LWT 146 (12):111290. doi: 10.1016/j.lwt.2021.11129.
  • Wang, Y. G., X. Z. Yu, X. M. Chen, Y. D. Yang, and J. Y. Zhang. 2014. Application of Fourier transform near-infrared spectroscopy to the quantification and monitoring of carbonyl value in frying oils. Analytical Methods 6 (19):7628–33. doi: 10.1039/C4AY00703D.
  • Wilson, A. D., and M. Baietto. 2009. Applications and advances in electronic-nose technologies. Sensors (Basel, Switzerland) 9 (7):5099–148. doi: 10.3390/s90705099.
  • Xie, M. Z., X. Y. Dong, Y. Yu, and L. Q. Cui. 2020a. A novel method for detection of lipid oxidation in edible oil. LWT 123:109068. doi: 10.1016/j.lwt.2020.109068.
  • Xie, M. Z., M. C. Jia, H. Zhao, and L. W. Zhang. 2020b. Visual determination of oxidation of edible oil by a nanofiber mat prepared from polyvinyl alcohol and Schiff’s reagent. Mikrochimica Acta 187 (11):597. doi: 10.1007/s00604-020-04574-3.
  • Xu, L. R., T. Fei, Q. H. Li, X. Z. Yu, and L. Liu. 2015. Qualitative analysis of edible oil oxidation by FTIR spectroscopy using a mesh "cell”. Analytical Methods 7 (10):4328–33. doi: 10.1039/C5AY00438A.
  • Xu, L. R., X. Li, J. H. Huang, P. Gao, Q. Z. Jin, and X. G. Wang. 2019. Rapid measuring flavour quality changes of frying rapeseed oils using a flash gas chromatography electronic nose: Determining flavour quality changes of frying oils. European Journal of Lipid Science and Technology 121 (5):1800260. doi: 10.1002/ejlt.201800260.
  • Xu, L. R., X. Z. Yu, L. Liu, and R. Zhang. 2016. A novel method for qualitative analysis of edible oil oxidation using an electronic nose. Food Chemistry 202:229–35. doi: 10.1016/j.foodchem.2016.01.144.
  • Yang, K. M., M. C. Cheng, C. W. Chen, C. Y. Tseng, L. Y. Lin, and P. Y. Chiang. 2017. Characterization of volatile compounds with HS-SPME from oxidized n-3 PUFA rich oils via rancimat tests. Journal of Oleo Science 66 (2):113–22. doi: 10.5650/jos.ess16157.
  • Yang, Y. D., Q. H. Li, X. Z. Yu, X. M. Chen, and Y. G. Wang. 2014. A novel method for determining peroxide value of edible oils using electrical conductivity. Food Control 39:198–203. doi: 10.1016/j.foodcont.2013.11.017.
  • Yildiz, G., R. L. Wehling, and S. L. Cuppett. 2001. Method for determining oxidation of vegetable oils by near-infrared spectroscopy. Journal of the American Oil Chemists’ Society 78 (5):495–502. doi: 10.1007/s11746-001-0292-1.
  • Yildiz, G., R. L. Wehling, and S. L. Cuppett. 2002. Monitoring PV in corn and soybean oils by NIR spectroscopy. Journal of the American Oil Chemists’ Society 79 (11):1085–9. doi: 10.1007/s11746-002-0608-1.
  • Yildiz, G., R. L. Wehling, and S. L. Cuppett. 2003. Comparison of four analytical methods for the determination of peroxide value in oxidized soybean oils. Journal of the American Oil Chemists’ Society 80 (2):103–7. doi: 10.1007/s11746-003-0659-3.
  • Yu, X. Z. 2012. Automatic determination of acid value and peroxide value of edible oils by near-infrared spectroscopy. Transactions of the Chinese Society for Agricultural Machinery 43 (9):150–4. doi: 10.6041/j.issn.1000-1298.2012.09.028.
  • Yu, X. Z., Q. H. Li, D. J. Sun, X. B. Dong, and T. Wang. 2015. Determination of the peroxide value of edible oils by FTIR spectroscopy using polyethylene films. Analytical Methods 7 (5):1727–31. doi: 10.1039/C4AY02718C.
  • Yu, X. Z., C. Yang, S. K. Du, and J. M. Gao. 2012. A new method for determining free fatty acid content in edible oils by using electrical conductivity. Food Analytical Methods 5 (6):1453–8. doi: 10.1007/s12161-012-9399-1.
  • Zeb, A. 2012. Triacylglycerols composition, oxidation and oxidation compounds in camellia oil using liquid chromatography-mass spectrometry. Chemistry and Physics of Lipids 165 (5):608–14. doi: 10.1016/j.chemphyslip.2012.03.004.
  • Zhang, P. 2019. Determination of peroxide value in edible oil by near-infrared spectroscopy. Journal of Yangling Vocational & Technical College 18 (4):4–8.
  • Zhang, N., Y. L. Li, S. S. Wen, Y. W. Sun, J. Chen, Y. Gao, A. Sagymbek, and X. Z. Yu. 2021. Analytical methods for determining the peroxide value of edible oils: A mini-review. Food Chemistry 358:129834. doi: 10.1016/j.foodchem.2021.129834.
  • Zheng, Z., and X. Lin. 2012. Study on application of medical diagnosis by electronic nose. World Science and Technology 14 (6):2115–9. doi: 10.1016/S1876-3553(13)60016-2.
  • Zhou, Y. Y., Y. W. Cui, C. Wang, F. W. Yang, W. R. Yao, H. Yu, Y. H. Guo, and Y. F. Xie. 2021. Rapid and accurate monitoring and modeling analysis of eight kinds of nut oils during oil oxidation process based on Fourier transform infrared spectroscopy. Food Control 130:108294. doi: 10.1016/j.foodcont.2021.108294.
  • Zhu, H. J., X. Q. Li, C. F. Shoemaker, and S. C. Wang. 2013. Ultrahigh performance liquid chromatography analysis of volatile carbonyl compounds in virgin olive oils. Journal of Agricultural and Food Chemistry 61 (50):12253–9. doi: 10.1021/jf404368m.
  • Zhu, M. T., T. Shi, Z. Y. Guo, H. X. Liao, and Y. Chen. 2020. Comparative study of the oxidation of cold-pressed and commercial refined camellia oil during storage with 1H and 31P NMR spectroscopy. Food Chemistry 321:126640. doi: 10.1016/j.foodchem.2020.126640.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.