1,126
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Recognition elements based on the molecular biological techniques for detecting pesticides in food: A review

, , , , , , ORCID Icon, , & ORCID Icon show all

References

  • Alatraktchi, F. A., H. K. Johansen, S. Molin, and W. E. Svendsen. 2016. Electrochemical sensing of biomarker for diagnostics of bacteria-specific infections. Nanomedicine (London, England) 11 (16):2185–2195. doi: 10.2217/nnm-2016-0155.
  • Bala, R., A. Swami, I. Tabujew, K. Peneva, N. Wangoo, and R. K. Sharma. 2018. Ultra-sensitive detection of malathion using quantum dots-polymer based fluorescence aptasensor. Biosensors & Bioelectronics 104:45–49. doi: 10.1016/j.bios.2017.12.034.
  • Balamurugan, S., A. Obubuafo, S. A. Soper, and D. A. Spivak. 2008. Surface immobilization methods for aptamer diagnostic applications. Analytical and Bioanalytical Chemistry 390 (4):1009–1021. doi: 10.1007/s00216-007-1587-2.
  • Berman, J. D., and M. Young. 1971. Rapid and complete purification of acetylcholinesterases of electric eel and erythrocyte by affinity chromatography. Proceedings of the National Academy of Sciences of the United States of America 68 (2):395–8. doi: 10.1073/pnas.68.2.395.
  • Bor, G., E. Man, O. Ugurlu, A. E. Ceylan, S. Balaban, C. Durmus, G. Z. Pinar, S. Evran, and S. Timur. 2020. In vitro selection of aptamer for imidacloprid recognition as model analyte and construction of a water analysis platform. Electroanalysis 32 (9):1922–1929. doi: 10.1002/elan.202000075.
  • Breaker, R. R., and G. F. Joyce. 1994. A DNA enzyme that cleaves RNA. Chemistry & Biology 1 (4):223–9. doi: 10.1016/1074-5521(94)90014-0.
  • Caldas, S. S., C. Rombaldi, J. L. D. Arias, L. C. Marube, and E. G. Primel. 2016. Multi-residue method for determination of 58 pesticides, pharmaceuticals and personal care products in water using solvent demulsification dispersive liquid-liquid microextraction combined with liquid chromatography-tandem mass spectrometry. Talanta 146:676–688. doi: 10.1016/j.talanta.2015.06.047.
  • Cao, J., M. Wang, H. Yu, Y. X. She, Z. Cao, J. M. Ye, A. M. Abd El-Aty, H. T. Ahmet, J. Wang, and S. b Lao. 2020. An overview on the mechanisms and applications of enzyme inhibition-based methods for determination of organophosphate and carbamate pesticides. Journal of Agricultural and Food Chemistry 68 (28):7298–7315. doi: 10.1021/acs.jafc.0c01962.
  • Chen, X., Y. J. Park, M. Kang, S.-K. Kang, J. Koo, S. M. Shinde, J. Shin, S. Jeon, G. Park, Y. Yan, et al. 2018. CVD-grown monolayer MoS2 in bioabsorbable electronics and biosensors. Nature Communications 9 (1):1690. doi: 10.1038/s41467-018-03956-9.
  • Chen, C., J. Shi, Y. D. Guo, L. Zha, L. M. Lan, Y. F. Chang, and Y. J. Ding. 2018. A novel aptasensor for malathion blood samples detection based on DNA-silver nanocluster. Analytical Methods 10 (16):1928–1934. doi: 10.1039/C8AY00428E.
  • Chen, M., K. Wen, X. Q. Tao, J. Xie, L. M. Wang, Y. Li, S. Y. Ding, and H. Y. Jiang. 2014. Cloning, expression, purification and characterization of a bispecific single-chain diabody against fluoroquinolones and sulfonamides in Escherichia coli. Protein Expression and Purification 100:19–25. doi: 10.1016/j.pep.2014.04.015.
  • Chen, A., and S. Yang. 2015. Replacing antibodies with aptamers in lateral flow immunoassay. Biosensors & Bioelectronics 71:230–242. doi: 10.1016/j.bios.2015.04.041.
  • Cho, E. J., J. R. Collett, A. E. Szafranska, and A. D. Ellington. 2006. Optimization of aptamer microarray technology for multiple protein targets. Analytica Chimica Acta 564 (1):82–90. doi: 10.1016/j.aca.2005.12.038.
  • Chong, H. Q., and C. B. Ching. 2016. Development of colorimetric-based whole-cell biosensor for organophosphorus compounds by engineering transcription regulator DmpR. ACS Synthetic Biology 5 (11):1290–1298. doi: 10.1021/acssynbio.6b00061.
  • Chronopoulou, E. G., D. Vlachakis, A. C. Papageorgiou, F. S. Ataya, and N. E. Labrou. 2019. Structure-based design and application of an engineered glutathione transferase for the development of an optical biosensor for pesticides determination. Biochimica et Biophysica Acta. General Subjects 1863 (3):565–576. doi: 10.1016/j.bbagen.2018.12.004.
  • Crivianu-Gaita, V., and M. Thompson. 2016. Aptamers, antibody scFv, and antibody Fab’ fragments: An overview and comparison of three of the most versatile biosensor biorecognition elements. Biosensors Bioelectronics 85:32–45.
  • Daczkowski, C. M., S. D. Pegan, and S. P. Harvey. 2015. Engineering the organophosphorus acid anhydrolase enzyme for increased catalytic efficiency and broadened stereospecificity on Russian VX. Biochemistry 54 (41):6423–6433. doi: 10.1021/acs.biochem.5b00624.
  • Dalila, R. N., M. M. Arshad, S. Gopinath, W. Norhaimi, and M. Fathil. 2019. Current and future envision on developing biosensors aided by 2D molybdenum disulfide (MoS2) productions. Biosensors Bioelectronics 132:248–264.
  • Danesh, N. M., M. Ramezani, A. S. Emrani, K. Abnous, and S. M. Taghdisi. 2016. A novel electrochemical aptasensor based on arch-shape structure of aptamer-complimentary strand conjugate and exonuclease I for sensitive detection of streptomycin. Biosensors and Bioelectronics 75:123–128. doi: 10.1016/j.bios.2015.08.017.
  • Desmyter, A., S. Spinelli, A. Roussel, and C. Cambillau. 2015. Camelid nanobodies: Killing two birds with one stone. Current Opinion in Structural Biology 32:1–8. doi: 10.1016/j.sbi.2015.01.001.
  • Ding, N. N., S. H. Zhou, and Y. Deng. 2021. Transcription-factor-based biosensor engineering for applications in synthetic biology. ACS Synthetic Biology 10 (5):911–922. doi: 10.1021/acssynbio.0c00252.
  • Doshi, R., B. R. Chen, C. R. T. Vibat, N. Huang, C. W. Lee, and G. Chang. 2014. In vitro nanobody discovery for integral membrane protein targets. Scientific Reports 4:6760. doi: 10.1038/srep06760.
  • Ellington, A. D., and J. W. Szostak. 1990. In vitro selection of RNA molecules that bind specific ligands. Nature 346 (6287):818–822. doi: 10.1038/346818a0.
  • El-Moghazy, A. Y., J. Q. Huo, N. Amal, N. Vasylieva, B. D. Hammock, and G. Sun. 2020. An innovative nanobody-based electrochemical immunosensor using decorated nylon nanofibers for point-of-care monitoring of human exposure to pyrethroid insecticides. ACS Applied Materials & Interfaces 12 (5):6159–6168. doi: 10.1021/acsami.9b16193.
  • Feng, C., Q. Xu, X. L. Qiu, Y. E. Jin, J. Y. Ji, Y. J. Lin, S. Y. Le, G. Q. Wang, and D. S. Lu. 2021. Comprehensive strategy for analysis of pesticide multi-residues in food by GC-MS/MS and UPLC-Q-Orbitrap” (vol 320, 126576, 2020). Food Chemistry 348:129153. doi: 10.1016/j.foodchem.2021.129153.
  • Gareev, K. G., D. S. Grouzdev, P. V. Kharitonskii, A. Kosterov, V. V. Koziaeva, E. S. Sergienko, and M. A. Shevtsov. 2021. Magnetotactic bacteria and magnetosomes: Basic properties and applications. Magnetochemistry 7 (6):86. doi: 10.3390/magnetochemistry7060086.
  • Golge, O. 2021. Validation of quick polar pesticides (QuPPe) method for determination of eight polar pesticides in cherries by LC-MS/MS. Food Analytical Methods 14 (7):1432–1437. doi: 10.1007/s12161-021-01966-w.
  • Goradel, N. H., H. Mirzaei, A. Sahebkar, M. Poursadeghiyan, A. Masoudifar, Z. V. Malekshahi, and B. Negahdari. 2018. Biosensors for the detection of environmental and urban pollutions. Journal of Cellular Biochemistry 119 (1):207–212. doi: 10.1002/jcb.26030.
  • Gorodetsky, A. A., M. C. Buzzeo, and J. K. Barton. 2008. DNA-mediated electrochemistry. Bioconjugate Chemistry 19 (12):2285–2296. doi: 10.1021/bc8003149.
  • Govindasamy, M., U. Rajaji, S. M. Chen, S. Kumaravel, T. W. Chen, F. M. A. Al-Hemaid, M. A. Ali, and M. S. Elshikh. 2018. Detection of pesticide residues (Fenitrothion) in fruit samples based on niobium carbide@molybdenum nanocomposite: An electrocatalytic approach. Analytica Chimica Acta 1030:52–60. doi: 10.1016/j.aca.2018.05.044.
  • Grieshaber, D., R. Mackenzie, J. Voros, and E. Reimhult. 2008. Electrochemical biosensors - sensor principles and architectures. Sensors (Basel, Switzerland) 8 (3):1400–1458. doi: 10.3390/s80314000.
  • Gu, H., N. Duan, Y. Xia, H. Xu, H. Wang, and Z. Wang. 2018. Magnetic separation-based multiple SELEX for effectively selecting aptamers against saxitoxin, domoic acid, and tetrodotoxin. Journal of Agricultural Food Chemistry 66 (37):9801–9809. doi: 10.1021/acs.jafc.8b02771.
  • Guo, P., Y. Wang, and Q. Zhuang. 2019. Highly sensitive and selective biosensor for heparin detection with rhodamine B-labelled peptides as fluorescent bioreceptors. Sensors Actuators B: Chemical 299:126873.
  • Hamami, M., N. Raouafi, and Y. H. Korri. 2021. Self-assembled MoS2/ssDNA nanostructures for the capacitive aptasensing of acetamiprid insecticide. Applied Sciences 11 (4):1382. doi: 10.3390/app11041382.
  • Hanko, E. K. R., N. P. Minton, and N. Malys. 2018. A transcription factor-based biosensor for detection of itaconic acid. ACS Synthetic Biology 7 (5):1436–46. doi: 10.1021/acssynbio.8b00057.
  • Han, L., P. Liu, H. Zhang, F. Li, and A. Liu. 2017. Phage capsid protein-directed MnO2 nanosheets with peroxidase-like activity for spectrometric biosensing and evaluation of antioxidant behaviour. Chemical Communications (Cambridge, England) 53 (37):5216–5219. doi: 10.1039/c7cc02049j.
  • Han, L., H. Q. Xia, L. Yin, V. A. Petrenko, and A. H. Liu. 2018. Selected landscape phage probe as selective recognition interface for sensitive total prostate-specific antigen immunosensor. Biosensors & Bioelectronics 106:1–6. doi: 10.1016/j.bios.2018.01.046.
  • He, J. X., J. S. Tian, J. J. Xu, K. Wang, J. Li, S. J. Gee, B. D. Hammock, Q. X. Li, and T. Xu. 2018. Strong and oriented conjugation of nanobodies onto magnetosomes for the development of a rapid immunomagnetic assay for the environmental detection of tetrabromobisphenol-A. Analytical and Bioanalytical Chemistry 410 (25):6633–6642. doi: 10.1007/s00216-018-1270-9.
  • Hu, W. W., Q. S. Chen, H. H. Li, Q. Ouyang, and J. W. Zhao. 2016. Fabricating a novel label-free aptasensor for acetamiprid by fluorescence resonance energy transfer between NH2-NaYF4: Yb, Ho@SiO2 and Au nanoparticles. Biosensors & Bioelectronics 80:398–404. doi: 10.1016/j.bios.2016.02.001.
  • Hu, L., X. Y. Fu, G. Z. Kong, Y. Yin, H. M. Meng, G. L. Ke, and X. B. Zhang. 2020. DNAzyme-gold nanoparticle-based probes for biosensing and bioimaging. Journal of Materials Chemistry B 8 (41):9449–9465. doi: 10.1039/d0tb01750g.
  • Huo, J., Z. Li, D. Wan, D. Li, M. Qi, B. Barnych, N. Vasylieva, J. Zhang, and B. D. Hammock. 2018. Development of a highly sensitive direct competitive fluorescence enzyme immunoassay based on a nanobody-alkaline phosphatase fusion protein for detection of 3-phenoxybenzoic acid in urine. Journal of Agricultural and Food Chemistry 66 (43):11284–11290. doi: 10.1021/acs.jafc.8b04521.
  • Jiang, M. D., C. Chen, J. B. He, H. Y. Zhang, and Z. X. Xu. 2020. Fluorescence assay for three organophosphorus pesticides in agricultural products based on Magnetic-Assisted fluorescence labeling aptamer probe. Food Chemistry 307:125534. doi: 10.1016/j.foodchem.2019.125534.
  • Jiao, Y., W. Hou, J. Fu, Y. Guo, S. Xia, X. Wang, and Z. Jing. 2017. A nanostructured electrochemical aptasensor for highly sensitive detection of chlorpyrifos. Sensors and Actuators B: Chemical 243 (May):1164–1170. doi: 10.1016/j.snb.2016.12.106.
  • Jya, B., B. Zwa, B. Lga, B. Xxa, B. Lla, B. Lxa, B. Ssa, B. Cxa, and K. Hua. 2020. Advances in immunoassays for organophosphorus and pyrethroid pesticides. Trac: Trends in Analytical Chemistry 131:116022.
  • Kang, Y., T. Wu, W. Chen, L. Li, and Y. Du. 2019. A novel metastable state nanoparticle-enhanced Raman spectroscopy coupled with thin layer chromatography for determination of multiple pesticides. Food Chemistry 270 (Sep.15):494–501. doi: 10.1016/j.foodchem.2018.07.070.
  • Karsunke, X., H. Wang, E. Weber, M. D. Mclean, R. Niessner, J. C. Hall, and D. Knopp. 2012. Development of single-chain variable fragment (scFv) antibodies against hapten benzo[a]pyrene: A binding study. Analytical and Bioanalytical Chemistry 402 (1):499–507. doi: 10.1007/s00216-011-5389-1.
  • Khan, M. 2016. Nanoparticles modified ITO based biosensor. Journal of Electronic Materials 46 (4):1–15.
  • Khan, N. S., D. Pradhan, S. Choudhary, P. Saxena, N. K. Poddar, and A. K. Jain. 2021. Immunoassay-based approaches for development of screening of chlorpyrifos. Journal of Analytical Science and Technology 12 (1):32. doi: 10.1186/s40543-021-00282-6.
  • Kim, Y. S., J. H. Kim, I. A. Kim, J. L. Su, and B. G. Man. 2011. The affinity ratio-its pivotal role in gold nanoparticle-based competitive colorimetric aptasensor. Biosensors & Bioelectronics 26 (10):4058–4063. doi: 10.1016/j.bios.2011.03.030.
  • Kong, Q. Q., F. L. Yue, M. Y. Liu, Y. M. Guo, and X. Sun. 2021. Recent advances in screening and application of aptamers in pesticides. Journal of Food Safety and Quality 12 (2):584–594.
  • Kwon, Y. S., N. Van-Thuan, J. G. Park, and M. B. Gu. 2015. Detection of Iprobenfos and Edifenphos using a new Multi-aptasensor. Analytica Chimica Acta 868:60–66. doi: 10.1016/j.aca.2015.02.020.
  • Labib, M., A. S. Zamay, D. Muharemagic, A. V. Chechik, J. C. Bell, and M. V. Berezovski. 2012. Aptamer-based viability impedimetric sensor for viruses. Analytical Chemistry 84 (4):1813–1816. doi: 10.1021/ac203412m.
  • Lai, X. X., S. Z. Zhang, G. R. Du, Y. X. Wang, Y. Han, N. S. Ye, and Y. H. Xiang. 2021. Ultrasensitive determination of malathion in apples by aptamer-based resonance scattering. Analytical Letters 54 (10):1639–1653. doi: 10.1080/00032719.2020.1820022.
  • Lake, R. J., Z. L. Yang, J. L. Zhang, and Y. Lu. 2019. DNAzymes as activity-based sensors for metal ions: Recent applications, demonstrated advantages, current challenges, and future directions. Accounts of Chemical Research 52 (12):3275–3286. doi: 10.1021/acs.accounts.9b00419.
  • Liang, B., G. Wang, L. Yan, H. Ren, R. R. Feng, Z. Xiong, and A. H. Liu. 2019. Functional cell surface displaying of acetylcholinesterase for spectrophotometric sensing organophosphate pesticide. Sensors and Actuators B: Chemical 279:483–489. doi: 10.1016/j.snb.2018.09.119.
  • Li, J., J. Cai, M. Ma, L. Li, L. Lu, Y. Wang, C. Wang, J. Yang, Z. Xu, M. Yao, et al. 2021. Preparation of a Bombyx mori acetylcholinesterase enzyme reagent through chaperone protein disulfide isomerase co-expression strategy in Pichia pastoris for detection of pesticides. Enzyme and Microbial Technology 144:109741. doi: 10.1016/j.enzmictec.2020.109741.
  • Li, Z. F., J. X. Dong, N. Vasylieva, Y. L. Cui, D. B. Wan, X. D. Hua, J. Q. Huo, D. C. Yang, S. J. Gee, and B. D. Hammock. 2021. Highly specific nanobody against herbicide 2,4-dichlorophenoxyacetic acid for monitoring of its contamination in environmental water. Science of the Total Environment 753:141950. doi: 10.1016/j.scitotenv.2020.141950.
  • Li, T. S., M. L. Huang, H. R. Xiao, G. Q. Zhang, J. H. Ding, P. Wu, H. Zhang, J. L. Sheng, and C. F. Chen. 2017. Selection and characterization of specific nanobody against bovine virus diarrhea virus (BVDV) E2 protein. PLOS One 12 (6):e0178469. doi: 10.1371/journal.pone.0178469.
  • Li, X., P. Li, Q. Zhang, Y. Li, W. Zhang, and X. Ding. 2012. Molecular characterization of monoclonal antibodies against aflatoxins: A possible explanation for the highest sensitivity. Analytical Chemistry 84 (12):5229–5235. doi: 10.1021/ac202747u.
  • Li, X. T., X. M. Tang, X. J. Chen, B. H. Qu, and L. H. Lu. 2018. Label-free and enzyme-free fluorescent isocarbophos aptasensor based on MWCNTs and G-quadruplex. Talanta 188:232–237. doi: 10.1016/j.talanta.2018.05.092.
  • Liu, B. Y., Y. Tang, Y. X. Yang, Y. G. Wu, B. Y. Liu, Y. Tang, Y. X. Yang, and Y. G. Wu. 2021. Design an aptamer-based sensitive lateral flow biosensor for rapid determination of isocarbophos pesticide in foods. Food Control 129:108208. doi: 10.1016/j.foodcont.2021.108208.
  • Liu, R., X. Liang, D. D. Xiang, Y. R. Guo, Y. H. Liu, and G. N. Zhu. 2016. Expression and functional properties of an anti-triazophos high-affinity single-chain variable fragment antibody with specific lambda light Chain. International Journal of Molecular Sciences 17 (6):823. doi: 10.3390/ijms17060823.
  • Liu, R. H., C. Yang, Y. M. Xu, P. Xu, H. Jiang, and C. L. Qiao. 2013. Development of a whole-cell biocatalyst/biosensor by display of multiple heterologous proteins on the Escherichia coli cell surface for the detoxification and detection of organophosphates. Journal of Agricultural and Food Chemistry 61 (32):7810–7816. doi: 10.1021/jf402999b.
  • Liu, T., X. Zhang, J. Hao, W. Zhu, W. Liu, D. Zhang, and J. Wang. 2015. Acetylcholinesterase-free colorimetric detection of chlorpyrifos in fruit juice based on the oxidation reaction of H2O2 with chlorpyrifos and ABTS(2-) catalyzed by hemin/G-quadruplex DNAzyme. Food Analytical Methods 8 (6):1556–1564. doi: 10.1007/s12161-014-0042-1.
  • Liu, Y., G. J. Yang, T. T. Li, Y. Deng, Z. Chen, and N. Y. He. 2021. Selection of a DNA aptamer for the development of fluorescent aptasensor for carbaryl detection. Chinese Chemical Letters 32 (6):1957–1962. doi: 10.1016/j.cclet.2021.01.016.
  • Liu, Y., D. Liu, C. Shen, S. Dong, and X. Liu. 2020. Construction and characterization of a class-specific single-chain variable fragment against pyrethroid metabolites. Applied Microbiology Biotechnology and Bioengineering 104 (1):7345–7354.
  • Liu, Z., K. Wang, S. Wu, Z. Wang, G. Ding, X. Hao, Q. X. Li, J. Li, S. J. Gee, B. D. Hammock, et al. 2019. Development of an immunoassay for the detection of carbaryl in cereals based on a camelid variable heavy-chain antibody domain. Journal of the Science of Food and Agriculture 99 (9):4383–4390. doi: 10.1002/jsfa.9672.
  • Li, H. P., J. B. Zhang, and Y. C. Liao. 2010. Expression and characterization of a green fluorescence protein gene in a transgenic Gibberella zeae from wheat. Journal of Triticeae Crops 30 (5):824–828.
  • Li, C., G. P. Zhang, S. Q. Wu, and Q. C. Zhang. 2018. Aptamer-based microcantilever-array biosensor for profenofos detection. Analytica Chimica Acta 1020:116–122. doi: 10.1016/j.aca.2018.02.072.
  • Lozowicka, B., P. Kaczynski, A. E. Paritova, G. B. Kuzembekova, A. B. Abzhalieva, N. B. Sarsembayeva, and K. Alihan. 2014. Pesticide residues in grain from Kazakhstan and potential health risks associated with exposure to detected pesticides. Food and Chemical Toxicology 64:238–248. doi: 10.1016/j.fct.2013.11.038.
  • Lu, X., and Z. F. Fan. 2020. RecJf exonuclease-assisted fluorescent self-assembly aptasensor for supersensitive detection of pesticides in food. Journal of Luminescence 226:117469. doi: 10.1016/j.jlumin.2020.117469.
  • Luo, X. J., X. D. Kong, J. Zhao, Q. Chen, J. H. Zhou, and J. H. Xu. 2014. Switching a newly discovered lactonase into an efficient and thermostable phosphotriesterase by simple double mutations His250Ile/Ile263Trp. Biotechnology and Bioengineering 111 (10):1920–1930. doi: 10.1002/bit.25272.
  • Luo, Y. H., and Y. X. Xia. 2012. Selection of single-chain variable fragment antibodies against fenitrothion by ribosome display. Analytical Biochemistry 421 (1):130–137. doi: 10.1016/j.ab.2011.10.044.
  • Ma, J., L. Hou, G. Wu, L. Wang, X. Wang, and L. Chen. 2020. Multi-walled carbon nanotubes for magnetic solid-phase extraction of six heterocyclic pesticides in environmental water samples followed by HPLC-DAD determination. Materials 13 (24):5729. doi: 10.3390/ma13245729.
  • Madianos, L., G. Tsekenis, E. Skotadis, L. Patsiouras, and D. Tsoukalas. 2018. A highly sensitive impedimetric aptasensor for the selective detection of acetamiprid and atrazine based on microwires formed by platinum nanoparticles. Biosensors & Bioelectronics 101:268–274. doi: 10.1016/j.bios.2017.10.034.
  • Mahmoudpour, M., Z. Karimzadeh, G. Ebrahimi, M. Hasanzadeh, and N. D. J. Ezzati. 2021. Synergizing functional nanomaterials with aptamers based on electrochemical strategies for pesticide detection: Current status and perspectives. Critical Reviews in Analytical Chemistry: 1–28. doi: 10.1080/10408347.2021.1919987.
  • Majdinasab, M., M. Daneshi, and J. L. Marty. 2021. Recent developments in non-enzymatic (bio)sensors for detection of pesticide residues: Focusing on antibody, aptamer and molecularly imprinted polymer. Talanta 232:122397. doi: 10.1016/j.talanta.2021.122397.
  • Mannan, A. A., D. Liu, F. Z. Zhang, and D. A. Oyarzun. 2017. Fundamental design principles for transcription-factor-based metabolite biosensors. ACS Synthetic Biology 6 (10):1851–1859. doi: 10.1021/acssynbio.7b00172.
  • Mansouri, A., K. Abnous, M. S. Nabavinia, M. Ramezani, and S. M. Taghdisi. 2020. In vitro selection of tacrolimus binding aptamer by systematic evolution of ligands by exponential enrichment method for the development of a fluorescent aptasensor for sensitive detection of tacrolimus. Journal of Pharmaceutical and Biomedical Analysis 177:112853. doi: 10.1016/j.jpba.2019.112853.
  • Mergny, J. L., and D. Sen. 2020. Correction to DNA quadruple helices in nanotechnology. Chemical Reviews 120 (20):11698. doi: 10.1021/acs.chemrev.0c01004.
  • Mickoleit, F., C. Lanzloth, and D. Schuler. 2020. A versatile toolkit for controllable and highly selective multifunctionalization of bacterial magnetic nanoparticles. Small 16 (16):1906922. doi: 10.1002/smll.201906922.
  • Moeyaert, B., and P. Dedecker. 2020. Genetically encoded biosensors based on innovative scaffolds. The International Journal of Biochemistry & Cell Biology 125:105761. doi: 10.1016/j.biocel.2020.105761.
  • Mutero, A., and D. Fournier. 1992. Post-translational modifications of Drosophila acetylcholinesterase. In vitro mutagenesis and expression in Xenopus oocytes. Journal of Biological Chemistry 267 (3):1695–1700. doi: 10.1016/S0021-9258(18)46001-2.
  • Nan, C., S. Yang, Q. Fu, D. Du, Y. Luo, W. Yong, W. Xu, and Y. Lin. 2018. Aptasensor based on fluorophore-quencher nano-pair and smartphone spectrum reader for on-site quantification of multi-pesticides. Biosensors & Bioelectronics 117:75–83. doi: 10.1016/j.bios.2018.06.002.
  • Nguyen, D. K., and C. H. Jang. 2021. A cationic surfactant-decorated liquid crystal-based aptasensor for label-free detection of malathion pesticides in environmental samples. Biosensors 11 (3):92. doi: 10.3390/bios11030092.
  • Nie, Y. H., Y. J. Teng, P. Li, W. H. Liu, Q. W. Shi, and Y. C. Zhang. 2018. Label-free aptamer-based sensor for specific detection of malathion residues by surface-enhanced Raman scattering. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy 191:271–276. doi: 10.1016/j.saa.2017.10.030.
  • Okubo, Y., and M. Yagi. 2021. Evaluation of the pesticide analysis in agricultural products using the self-cleaning ion source GC-MS/MS. Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi) 62 (1):14–19. doi: 10.3358/shokueishi.62.14.
  • Oroval, M., C. Coll, A. Bernardos, M. D. Marcos, R. Martinez-Manez, D. G. Shchukin, and F. Sancenon. 2017. Selective fluorogenic sensing of As(III) using aptamer-capped nanomaterials. ACS Applied Materials & Interfaces 13 (9):11332–11336.
  • Park, J. W., S. S. Kallempudi, J. H. Niazi, Y. Gurbuz, B. S. Youn, and B. G. Man. 2012. Rapid and sensitive detection of Nampt (PBEF/visfatin) in human serum using an ssDNA aptamer-based capacitive biosensor. Biosensors & Bioelectronics 38 (1):233–238. doi: 10.1016/j.bios.2012.05.036.
  • Peng, Y. Y., X. N. Xiao, L. J. Zhu, X. Q. Tao, and W. T. Xu. 2020. The interaction law between small molecular substances and aptamers. Biotechnology Bulletin 36 (8):201–209.
  • Plekhanova, Y. V., and A. N. Reshetilov. 2019. Microbial biosensors for the determination of pesticides. Journal of Analytical Chemistry 74 (12):1159–1173. doi: 10.1134/S1061934819120098.
  • Qi, Y. Y., Y. T. Chen, F. R. Xiu, and J. X. Hou. 2020. An aptamer-based colorimetric sensing of acetamiprid in environmental samples: Convenience, sensitivity and practicability. Sensors and Actuators B-Chemical 304:127359. doi: 10.1016/j.snb.2019.127359.
  • Qi, Y. Y., F. R. Xiu, M. F. Zheng, and B. X. Li. 2016. A simple and rapid chemiluminescence aptasensor for acetamiprid in contaminated samples: Sensitivity, selectivity and mechanism. Biosensors & Bioelectronics 83:243–249. doi: 10.1016/j.bios.2016.04.074.
  • Rao, M. F., Y. J. Li, J. X. Dong, W. J. Wu, Z. L. Xu, Y. M. Sun, and H. Wang. 2016. Production and characterization of a single-chain Fab fragment for the detection of O,O-diethyl organophosphorus pesticides. Analytical Methods 8 (15):3140–3147. doi: 10.1039/C6AY00224B.
  • Rebets, Y., S. Schmelz, O. Gromyko, S. Tistechok, L. Petzke, A. Scrima, and A. Luzhetskyy. 2018. Design, development and application of whole-cell based antibiotic-specific biosensor. Metabolic Engineering 47:263–270. doi: 10.1016/j.ymben.2018.03.019.
  • Reinemer, P., L. Prade, P. Hof, T. Neuefeind, R. Huber, R. Zettl, K. Palme, J. Schell, I. Koelln, H. D. Bartunik, et al. 1996. Three-dimensional structure of glutathione S-transferase from Arabidopsis thaliana at 2.2 A resolution: Structural characterization of herbicide-conjugating plant glutathione S-transferases and a novel active site architecture. Journal of Molecular Biology 255 (2):289–309. doi: 10.1006/jmbi.1996.0024.
  • Ren, E., L. Zhao, J. Wang, Z. Yang, and L. Gang. 2018. Magnetosome modification: From bio‐nano engineering toward nanomedicine. Advanced Therapeutics 1 (6):1800080. doi: 10.1002/adtp.201800080.
  • Riangrungroj, P., C. S. Bever, B. D. Hammock, and K. M. Polizzi. 2019. A label-free optical whole-cell Escherichia coli biosensor for the detection of pyrethroid insecticide exposure. Scientific Reports 9 (1):12466. doi: 10.1038/s41598-019-48907-6.
  • Ritcharoon, B., R. Sallabhan, N. Toewiwat, S. Mongkolsuk, and S. Loprasert. 2020. Detection of 2,4-dichlorophenoxyacetic acid herbicide using a FGE-sulfatase based whole-cell Agrobacterium biosensor. Journal of Microbiological Methods 175:105997. doi: 10.1016/j.mimet.2020.105997.
  • Rotariu, L., F. Lagarde, N. Jaffrezic-Renault, and C. Bala. 2016. Electrochemical biosensors for fast detection of food contaminants trends and perspective. Trac: Trends in Analytical Chemistry 79:80–87. doi: 10.1016/j.trac.2015.12.017.
  • Sato, R., T. Matsumoto, N. Hidaka, Y. Imai, K. Abe, S. Takahashi, R. H. Yamada, and Y. Kera. 2009. Cloning and expression of carp acetylcholinesterase gene in Pichia pastoris and characterization of the recombinant enzyme. Protein Expression and Purification 64 (2):205–212. doi: 10.1016/j.pep.2008.12.003.
  • Schaumburg, F., C. S. Carrell, and C. S. Henry. 2019. Rapid bacteria detection at low concentrations using sequential immunomagnetic separation and paper-based isotachophoresis. Analytical Chemistry 91 (15):9623–9630. doi: 10.1021/acs.analchem.9b01002.
  • Schoukroun-Barnes, L. R., E. P. Glaser, and R. J. White. 2015. Heterogeneous electrochemical aptamer-based sensor surfaces for controlled sensor response. Langmuir: The ACS Journal of Surfaces and Colloids 31 (23):6563–6569. doi: 10.1021/acs.langmuir.5b01418.
  • Seitz, W. R., C. J. Grenier, J. R. Csoros, R. F. Yang, and T. Y. Ren. 2021. Molecular recognition: Perspective and a new approach. Sensors 21 (8):2757. doi: 10.3390/s21082757.
  • Sharma, S., N. Singh, V. Tomar, and R. Chandra. 2018. A review on electrochemical detection of serotonin based on surface modified electrodes. Biosensors & Bioelectronics 107:76–93. doi: 10.1016/j.bios.2018.02.013.
  • Smith, M. R., E. Khera, and F. Wen. 2015. Engineering novel and improved biocatalysts by cell surface display. Industrial & Engineering Chemistry Research 54 (16):4021–4032. doi: 10.1021/ie504071f.
  • Soreq, H., R. Ben-Aziz, C. A. Prody, S. Seidman, A. Gnatt, L. Neville, J. Lieman-Hurwitz, E. Lev-Lehman, D. Ginzberg, and Y. Lipidot-Lifson. 1990. Molecular cloning and construction of the coding region for human acetylcholinesterase reveals a G + C-rich attenuating structure. Proceedings of the National Academy of Sciences of the United States of America 87 (24):9688–9692. doi: 10.1073/pnas.87.24.9688.
  • Stella, D., and H. Marcel. 2015. Generation of aptamers with an expanded chemical repertoire. Molecules 20 (9):16643–16671.
  • Strachan, G., J. A. Whyte, P. M. Molloy, G. I. Paton, and A. G. R. Porter. 2000. Development of robust, environmental, immunoassay formats for the quantification of pesticides in soil. Environmental Science Technology 34 (8):1603–1608. doi: 10.1021/es991053n.
  • Su, Z. P., F. Y. Ye, K. Y. He, T. Yang, W. Li, and J. L. Ren. 2021. Determination of acetamiprid by fluorescence monitoring of a glycine-L-histidine copper-organic framework aptasensor. Analytical Letters: 1–10. doi: 10.1080/00032719.2021.1946555.
  • Tang, X. J., B. Liang, T. Yi, G. Manco, I. Palchetti, and A. Liu. 2014. Cell surface display of organophosphorus hydrolase for sensitive spectrophotometric detection of p-nitrophenol substituted organophosphates. Enzyme Microbial Technology 55 (1):107–112. doi: 10.1016/j.enzmictec.2013.10.006.
  • Tang, X. J., T. Zhang, B. Liang, D. Han, L. Zeng, C. Zheng, T. Li, M. Wei, and A. Liu. 2014. Sensitive electrochemical microbial biosensor for p-nitrophenylorganophosphates based on electrode modified with cell surface-displayed organophosphorus hydrolase and ordered mesopore carbons. Biosensors Bioelectronics 60:137–142.
  • Tolle, F., and G. Mayer. 2012. Dressed for success – applying chemistry to modulate aptamer functionality. Cheminform 4 (24):60–67.
  • Tuerk, C., and L. Gold. 1990. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science (New York, NY) 249 (4968):505–510. doi: 10.1126/science.2200121.
  • Van, D., J. P. Merwe, P. A. Neale, S. D. Melvin, and F. D. L. Leusch. 2018. In vitro bioassays reveal that additives are significant contributors to the toxicity of commercial household pesticides. Aquatic Toxicology 199:263–268. doi: 10.1016/j.aquatox.2018.03.033.
  • Wang, L., and J. H. Lin. 2020. Recent advances on magnetic nanobead based biosensors: From separation to detection. Trac: Trends in Analytical Chemistry 128:115915. doi: 10.1016/j.trac.2020.115915.
  • Wang, K., Z. P. Liu, G. C. Ding, J. Li, N. Vasylieva, Q. X. Li, D. Y. Li, S. J. Gee, B. D. Hammock, and T. Xu. 2019. Development of a one-step immunoassay for triazophos using camel single-domain antibody-alkaline phosphatase fusion protein. Analytical and Bioanalytical Chemistry 411 (6):1287–1295. doi: 10.1007/s00216-018-01563-7.
  • Wang, Q., S. Y. Tang, and S. Yang. 2017. Genetic biosensors for small-molecule products: Design and applications in high-throughput screening. Frontiers of Chemical Science and Engineering 11 (1):15–26. doi: 10.1007/s11705-017-1629-z.
  • Wang, L., H. Ye, H. Q. Sang, and D. D. Wang. 2016. Aptamer-based fluorescence assay for detection of isocarbophos and profenofos. Chinese Journal of Analytical Chemistry 44 (5):799–803. doi: 10.1016/S1872-2040(16)60933-7.
  • Weng, R., S. Lou, X. Pang, Y. Song, X. Su, Z. Xiao, and J. Qiu. 2020. Multi-residue analysis of 126 pesticides in chicken muscle by ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Food Chemistry 309:125503. doi: 10.1016/j.foodchem.2019.125503.
  • Wesolowski, J., V. Alzogaray, J. Reyelt, M. Unger, K. Juarez, M. Urrutia, A. Cauerhff, W. Danquah, B. Rissiek, F. Scheuplein, et al. 2009. Single domain antibodies: promising experimental and therapeutic tools in infection and immunity. Medical Microbiology and Immunology 198 (3):157–174. doi: 10.1007/s00430-009-0116-7.
  • Whangsuk, W., S. Thiengmag, J. Dubbs, S. Mongkolsuk, and S. Loprasert. 2016. Specific detection of the pesticide chlorpyrifos by a sensitive genetic-based whole cell biosensor. Analytical Biochemistry 493:11–13. doi: 10.1016/j.ab.2015.09.022.
  • Wu, S., F. Ma, J. He, Q. X. Li, B. D. Hammock, J. Tian, and T. Xu. 2021. Fusion expression of nanobodies specific for the insecticide fipronil on magnetosomes in Magnetospirillum gryphiswaldense MSR-1. Journal of Nanobiotechnology 19 (1):27. doi: 10.1186/s12951-021-00773-z.
  • Xiang, L., H. L. Wu, Z. X. Cui, and J. Z. Tang. 2019. Indirect competitive aptamer-based enzyme-linked immunosorbent assay (apt-ELISA) for the specific and sensitive detection of isocarbophos residues. Analytical Letters 52 (12):1966–1975. doi: 10.1080/00032719.2019.1587446.
  • Xing, L. G., Y. H. Zhang, and J. D. Yang. 2019. Graphene oxide-assisted non-immobilized SELEX of chiral drug ephedrine aptamers and the analytical binding mechanism. Biochemical and Biophysical Research Communications 514 (1):134–139. doi: 10.1016/j.bbrc.2019.04.067.
  • Xu, P. 2018. Production of chemicals using dynamic control of metabolic fluxes. Current Opinion in Biotechnology 53:12–19. doi: 10.1016/j.copbio.2017.10.009.
  • Xu, Z. L., J. X. Dong, H. Wang, Z. F. Li, R. C. Beier, Y. M. Jiang, H. T. Lei, Y. D. Shen, J. Y. Yang, and Y. M. Sun. 2012. Production and characterization of a single-chain variable fragment linked alkaline phosphatase fusion protein for detection of O,O-diethyl organophosphorus pesticides in a one-step enzyme-linked immunosorbent assay. Journal of Agricultural and Food Chemistry 60 (20):5076–5083. doi: 10.1021/jf300570q.
  • Xu, G. L., D. Q. Huo, J. Z. Hou, C. Zhang, Y. N. Zhao, C. J. Hou, J. Bao, X. Yao, and M. Yang. 2021. An electrochemical aptasensor of malathion based on ferrocene/DNA-hybridized MOF, DNA coupling-gold nanoparticles and competitive DNA strand reaction. Microchemical Journal 162:105829. doi: 10.1016/j.microc.2020.105829.
  • Xu, G., D. Huo, C. Hou, Y. Zhao, J. Bao, M. Yang, and H. Fa. 2018. A regenerative and selective electrochemical aptasensor based on copper oxide nanoflowers-single walled carbon nanotubes nanocomposite for chlorpyrifos detection. Talanta 178:1046–52. doi: 10.1016/j.talanta.2017.08.086.
  • Xu, Y., H. Li, and X. Su. 2018. Review of optical sensors for pesticides. Trac: Trends in Analytical Chemistry 103:1–20. doi: 10.1016/j.trac.2018.03.004.
  • Xu, B. J., K. Wang, N. Vasylieva, H. Zhou, X. L. Xue, B. M. Wang, Q. X. Li, B. D. Hammock, and T. Xu. 2021. Development of a nanobody-based ELISA for the detection of the insecticides cyantraniliprole and chlorantraniliprole in soil and the vegetable bok choy. Analytical and Bioanalytical Chemistry 413 (9):2503–2511. doi: 10.1007/s00216-021-03205-x.
  • Xu, C. X., Y. Yang, L. W. Liu, J. H. Liu, X. Q. Liu, X. Zhang, Y. Liu, C. Z. Zhang, and X. J. Liu. 2018. Microcystin-LR nanobody screening from an alpaca phage display nanobody library and its expression and application. Ecotoxicology and Environmental Safety 151:220–227. doi: 10.1016/j.ecoenv.2018.01.003.
  • Yamaki, Y., S. Tomizawa, T. Masubuchi, K. Kamijo, T. Nakajima, S. Yoshikawa, E. Hasegawa, Y. Kokaji, S. Watanabe, T. Hashimoto, et al. 2021. Evaluation on a simultaneous analytical method of pesticide residues in limes. Shokuhin Eiseigaku Zasshi. Journal of the Food Hygienic Society of Japan 62 (1):33–36. doi: 10.3358/shokueishi.62.33.
  • Yang, T., M. L. Chen, and J. H. Wang. 2015. Genetic and chemical modification of cells for selective separation and analysis of heavy metals of biological or environmental significance. Trac: Trends in Analytical Chemistry 66:90–102. doi: 10.1016/j.trac.2014.11.016.
  • Zeng, G., C. Zhang, D. Huang, C. Lai, L. Tang, Y. Zhou, P. Xu, H. Wang, L. Qin, and M. Cheng. 2017. Practical and regenerable electrochemical aptasensor based on nanoporous gold and thymine-Hg2+-thymine base pairs for Hg2+ detection. Biosensors & Bioelectronics 90:542–548. doi: 10.1016/j.bios.2016.10.018.
  • Zhang, C., Z. Jiang, M. Jin, P. Du, G. Chen, X. Cui, Y. Zhang, G. Qin, F. Yan, A. M. Abd El-Aty, et al. 2020. Fluorescence immunoassay for multiplex detection of organophosphate pesticides in agro-products based on signal amplification of gold nanoparticles and oligonucleotides. Food Chemistry 326:126813. doi: 10.1016/j.foodchem.2020.126813.
  • Zhang, Y., B. Lai, and M. Juhas. 2019. recent advances in aptamer discovery and applications. Molecules 24 (5):941. doi: 10.3390/molecules24050941.
  • Zhang, J.-r., Y. Wang, J.-x. Dong, J.-y. Yang, Y.-q. Zhang, F. Wang, R. Si, Z.-l. Xu, H. Wang, Z.-l. Xiao, et al. 2019. Development of a simple pretreatment immunoassay based on an organic solvent-tolerant nanobody for the detection of carbofuran in vegetable and fruit samples. Biomolecules 9 (10):576. doi: 10.3390/biom9100576.
  • Zhang, C., L. Wang, Z. Tu, X. Sun, Q. He, Z. Lei, C. Xu, Y. Liu, X. Zhang, J. Yang, et al. 2014. Organophosphorus pesticides detection using broad-specific single-stranded DNA based fluorescence polarization aptamer assay. Biosensors & Bioelectronics 55:216–219. doi: 10.1016/j.bios.2013.12.020.
  • Zhang, C., X. X. Wu, D. Y. Li, J. N. Hu, D. B. Wan, Z. Zhang, and B. D. Hammock. 2021. Development of nanobody-based flow-through dot ELISA and lateral-flow immunoassay for rapid detection of 3-phenoxybenzoic acid dagger. Analytical Methods: Advancing Methods and Applications 13 (14):1757–1765. doi: 10.1039/d1ay00129a.
  • Zhang, X., D. Wu, X. Zhou, Y. Yu, J. Liu, N. Hu, H. Wang, G. Li, and Y. Wu. 2019. Recent progress in the construction of nanozyme-based biosensors and their applications to food safety assay. Trac: Trends in Analytical Chemistry 121:115668. doi: 10.1016/j.trac.2019.115668.
  • Zhang, Y.-Q., Z.-L. Xu, F. Wang, J. Cai, J.-X. Dong, J.-R. Zhang, R. Si, C.-L. Wang, Y. Wang, Y.-D. Shen, et al. 2018. Isolation of bactrian camel single domain antibody for parathion and development of one-step dc-FEIA method using VHH-alkaline phosphatase fusion protein. Analytical Chemistry 90 (21):12886–12892. doi: 10.1021/acs.analchem.8b03509.
  • Zhang, H., H. Ye, S. J. Wu, and Z. P. Wang. 2016. Progress on application of aptamers on food safety detection. Food and Machinery 32 (10):194–199.
  • Zhao, F. C., R. R. Shi, R. X. Liu, Y. Tian, and Z. Y. Yang. 2021. Application of phage-display developed antibody and antigen substitutes in immunoassays for small molecule contaminants analysis: A mini-review. Food Chemistry 339:128084. doi: 10.1016/j.foodchem.2020.128084.
  • Zhao, F. C., Y. Tian, H. M. Wang, J. Y. Liu, X. Han, and Z. Y. Yang. 2016. Development of a biotinylated broad-specificity single-chain variable fragment antibody and a sensitive immunoassay for detection of organophosphorus pesticides. Analytical and Bioanalytical Chemistry 408 (23):6423–6430. doi: 10.1007/s00216-016-9760-0.
  • Zimmermann, A. C., L. M. White, and J. D. Kahn. 2020. Nucleic acid-cleaving catalytic DNA for sensing and therapeutics. Talanta 211:120709. doi: 10.1016/j.talanta.2019.120709.
  • Zou, D. C., L. Jin, B. Wu, L. W. Hu, X. G. Chen, G. H. Huang, and J. S. Zhang. 2019. Rapid detection of Salmonella in milk by biofunctionalised magnetic nanoparticle cluster sensor based on nuclear magnetic resonance. International Dairy Journal 91:82–88. doi: 10.1016/j.idairyj.2018.11.011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.