2,257
Views
26
CrossRef citations to date
0
Altmetric
Reviews

Recent advances in industrial applications of seaweeds

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Abdelhamid, A., S. Lajili, M. A. Elkaibi, Y. Ben Salem, A. Abdelhamid, C. D. Muller, H. Majdoub, J. Kraiem, and A. Bouraoui. 2019. Optimized extraction, preliminary characterization and evaluation of the in vitro anticancer activity of phlorotannin-rich fraction from the brown seaweed, Cystoseira sedoides. Journal of Aquatic Food Product Technology 28 (9):892–909. doi: 10.1080/10498850.2019.1662865.
  • Abdel-Rahim, M., O. Bahattab, F. Nossir, Y. Al-Awthan, R. H. Khalil, and R. Mohamed. 2021. Dietary supplementation of brown seaweed and/or nucleotides improved shrimp performance, health status and cold-tolerant gene expression of juvenile whiteleg shrimp during the winter season. Marine Drugs 19 (3):175. doi: 10.3390/md19030175.
  • Abdul Khalil, H. P. S., C. K. Saurabh, Y. Y. Tye, T. K. Lai, A. M. Easa, E. Rosamah, M. R. N. Fazita, M. I. Syakir, A. S. Adnan, H. M. Fizree, et al. 2017. Seaweed based sustainable films and composites for food and pharmaceutical applications: A review. Renewable and Sustainable Energy Reviews 77:353–62. doi: 10.1016/j.rser.2017.04.025.
  • Admassu, H., M. A. A. Gasmalla, R. Yang, and W. Zhao. 2018. Bioactive peptides derived from seaweed protein and their health benefits: Antihypertensive, antioxidant, and antidiabetic properties. Journal of Food Science 83 (1):6–16. doi: 10.1111/1750-3841.14011.
  • Adrien, A., A. Bonnet, D. Dufour, S. Baudouin, T. Maugard, and N. Bridiau. 2017. Pilot production of ulvans from Ulva sp. and their effects on hyaluronan and collagen production in cultured dermal fibroblasts. Carbohydrate Polymers 157:1306–14. doi: 10.1016/j.carbpol.2016.11.014.
  • Afonso, C., A. P. Correia, M. V. Freitas, T. Baptista, M. Neves, and T. Mouga. 2021. Seasonal changes in the nutritional composition of Agarophyton vermiculophyllum (Rhodophyta, Gracilariales) from the center of Portugal. Foods 10(5):1145. doi: 10.3390/foods10051145.
  • Aftabuddin, S., M. A. M. Siddique, A. Habib, S. Akter, S. Hossen, P. Tanchangya, and M. Abdullah Al. 2021. Effects of seaweeds extract on growth, survival, antibacterial activities, and immune responses of Penaeus monodon against Vibrio parahaemolyticus. Italian Journal of Animal Science 20 (1):243–55. doi: 10.1080/1828051X.2021.1878943.
  • Agregán, R., P. E. S. Munekata, D. Franco, R. Dominguez, J. Carballo, and J. M. Lorenzo. 2017. Phenolic compounds from three brown seaweed species using LC-DAD-ESI-MS/MS. Food Research International 99 (Pt 3):979–85. doi: 10.1016/j.foodres.2017.03.043.
  • Agregán, R., D. Franco, J. Carballo, I. Tomasevic, F. J. Barba, B. Gómez, V. Muchenje, and J. M. Lorenzo. 2018. Shelf life study of healthy pork liver pâté with added seaweed extracts from Ascophyllum nodosum, Fucus vesiculosus and Bifurcaria bifurcata. Food Research International 112:400–11. doi: 10.1016/j.foodres.2018.06.063.
  • Agregán, R., F. J. Barba, M. Gavahian, D. Franco, A. M. Khaneghah, J. Carballo, I. C. F. R. Ferreira, A. C. da Silva Barretto, and J. M. Lorenzo. 2019. Fucus vesiculosus extracts as natural antioxidants for improvement of physicochemical properties and shelf life of pork patties formulated with oleogels. Journal of the Science of Food and Agriculture 99 (10):4561–70. doi: 10.1002/jsfa.9694.
  • Ahmed, D. A. E. A., S. F. Gheda, and G. A. Ismail. 2021. Efficacy of two seaweeds dry mass in bioremediation of heavy metal polluted soil and growth of radish (Raphanus sativus L.) plant. Environmental Science and Pollution Research International 28 (10):12831–46. doi: 10.1007/s11356-020-11289-8.
  • Ahn, J. H., Y. I. Yang, K. T. Lee, and J. H. Choi. 2015. Dieckol, isolated from the edible brown algae Ecklonia cava, induces apoptosis of ovarian cancer cells and inhibits tumor xenograft growth. Journal of Cancer Research and Clinical Oncology 141 (2):255–68. doi: 10.1007/s00432-014-1819-8.
  • Albertos, I., A. B. Martin-Diana, M. Burón, and D. Rico. 2019. Development of functional bio-based seaweed (Himanthalia elongata and Palmaria palmata) edible films for extending the shelflife of fresh fish burgers. Food Packaging and Shelf Life 22:100382. doi: 10.1016/j.fpsl.2019.100382.
  • Al-Juthery, H. W., H. A. Drebee, B. M. Al-Khafaji, and R. F. Hadi. 2020. Plant Biostimulants, Seaweeds Extract as a Model (Article Review). IOP Conference Series: Earth and Environmental Science 553 (1):012015. doi: 10.1088/1755-1315/553/1/012015.
  • Ale, M. T., H. Maruyama, H. Tamauchi, J. D. Mikkelsen, and A. S. Meyer. 2011. Fucoidan from Sargassum sp. and Fucus vesiculosus reduces cell viability of lung carcinoma and melanoma cells in vitro and activates natural killer cells in mice in vivo. International Journal of Biological Macromolecules 49 (3):331–6. doi: 10.1016/j.ijbiomac.2011.05.009.
  • Almeida, T. P., A. A. Ramos, J. Ferreira, A. Azqueta, and E. Rocha. 2020. Bioactive compounds from seaweed with anti-leukemic activity: A mini-review on carotenoids and phlorotannins. Mini-Reviews in Medicinal Chemistry 20 (1):39–53. doi: 10.2174/1389557519666190311095655.
  • Alves, C., J. Silva, S. Pinteus, H. Gaspar, M. C. Alpoim, L. M. Botana, and R. Pedrosa. 2018. From marine origin to therapeutics: The antitumor potential of marine algae-derived compounds. Frontiers in Pharmacology 9:777. doi: 10.3389/fphar.2018.00777.
  • Andrade, M. A., C. H. Barbosa, V. G. Souza, I. M. Coelhoso, J. Reboleira, S. Bernardino, R. Ganhao, S. Mendes, A. L. Fernando, F, Vilarinho, et al. 2021. Novel active food packaging films based on whey protein incorporated with seaweed extract: Development, characterization, and application in fresh poultry meat. Coatings 11 (2):229. doi: 10.3390/coatings11020229.
  • Anonymous. 2021. https://www.drugpatentwatch.com/p/excipients/excipient/index.php?query.Alginic acid
  • Arioli, T., S. W. Mattner, G. Hepworth, D. McClintock, and R. McClinock. 2021. Effect of seaweed extract application on wine grape yield in Australia. Journal of Applied Phycology 33 (3):1883–91. doi: 10.1007/s10811-021-02423-1.
  • Arulkumar, A., S. Paramasivam, and J. M. Miranda. 2018. Combined effect of ıcing medium and red alga Gracilaria verrucosa on shelf life extension of Indian mackerel (Rastrelliger kanagurta). Food and Bioprocess Technology 11 (10):1911–22. doi: 10.1007/s11947-018-2154-x.
  • Arunkumar, K., R. Raja, V. B. S. Kumar, A. Joseph, T. Shilpa, and I. S. Carvalho. 2021. Antioxidant and cytotoxic activities of sulfated polysaccharides from five different edible seaweeds. Journal of Food Measurement and Characterization 15 (1):567–76. doi: 10.1007/s11694-020-00661-4.
  • Augusto, A., T. Simões, R. Pedrosa, and S. F. J. Silva. 2016. Evaluation of seaweed extracts functionality as post-harvest treatment for minimally processed Fuji apples. Innovative Food Science & Emerging Technologies 33:589–95. doi: 10.1016/j.ifset.2015.10.004.
  • Awad, H. A., M. Q. Wickham, H. A. Leddy, J. M. Gimble, and F. Guilak. 2004. Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials 25 (16):3211–22. doi: 10.1016/j.biomaterials.2003.10.045.
  • Ayoub, A., J. M. Pereira, L. E. Rioux, S. L. Turgeon, M. Beaulieu, and V. J. Moulin. 2015. Role of seaweed laminaran from Saccharina longicruris on matrix deposition during dermal tissue-engineered production. International Journal of Biological Macromolecules 75:13–20. doi: 10.1016/j.ijbiomac.2015.01.017.
  • Bai, X., Y. Wang, B. Hu, Q. Cao, M. Xing, S. Song, and A. Ji. 2020. Fucoidan induces apoptosis of HT-29 cells via the activation of DR4 and mitochondrial pathway. Marine Drugs 18 (4):220. doi: 10.3390/md18040220.
  • Baliano, A. P., E. F. Pimentel, A. R. Buzin, T. Z. Vieira, W. Romão, L. V. Tose, D. Lenz, T. U. d Andrade, M. Fronza, T. P. Kondratyuk, et al. 2016. Brown seaweed Padina gymnospora is a prominent natural wound-care product. Revista Brasileira de Farmacognosia 26 (6):714–9. doi: 10.1016/j.bjp.2016.07.003.
  • Balti, R., M. Ben Mansour, N. Zayoud, R. Le Balc’h, N. Brodu, A. Arhaliass, and A. Massé. 2020. Active exopolysaccharides based edible coatings enriched with red seaweed (Gracilaria gracilis) extract to improve shrimp preservation during refrigerated storage. Food Bioscience 34:100522. doi: 10.1016/j.fbio.2019.100522.
  • Banach, J. L., E. F. Hoek‐van den Hil, and H. J. Fels‐Klerx. 2020. Food safety hazards in the European seaweed chain. Comprehensive Reviews in Food Science and Food Safety 19 (2):332–64. doi: 10.1111/1541-4337.12523.
  • Bar-Shai, N., O. Sharabani-Yosef, M. Zollmann, A. Lesman, and A. Golberg. 2021. Seaweed cellulose scaffolds derived from green macroalgae for tissue engineering. Scienticif Reports 11:11843. doi: 10.1038/s41598-021-90903-2.
  • Bastonini, E., D. Kovacs, and M. Picardo. 2016. Skin pigmentation and pigmentary disorders: Focus on epidermal/dermal cross-talk. Annals of Dermatology 28 (3):279–89. doi: 10.5021/ad.2016.28.3.279.
  • Bauer, S., W. Jin, F. Zhang, and R. J. Linhardt. 2021. The application of seaweed polysaccharides and their derived products with potential for the treatment of Alzheimer’s disease. Marine Drugs 19 (2):89. doi: 10.3390/md19020089.
  • Beigi, M. H., A. Atefi, H. R. Ghanaei, S. Labbaf, F. Ejeian, and M. H. Nasr-Esfahani. 2018. Activated platelet-rich plasma improves cartilage regeneration using adipose stem cells encapsulated in a 3D alginate scaffold. Journal of Tissue Engineering and Regenerative Medicine 12 (6):1327–38. doi: 10.1002/term.2663.
  • Ben Gara, A., R. Ben Abdallah Kolsi, N. Jardak, R. Chaaben, A. El-Feki, L. Fki, H. Belghith, and K. Belghith. 2017. Inhibitory activities of Cystoseira crinita sulfated polysaccharide on key enzymes related to diabetes and hypertension: In vitro and animal study. Archives of Physiology and Biochemistry 123 (1):31–42. doi: 10.1080/13813455.2016.1232737.
  • Benslima, A., S. Sellimi, M. Hamdi, R. Nasri, M. Jridi, D. Cot, S. Li, M. Nasri, and N. Zouari. 2021. The brown seaweed Cystoseira schiffneri as a source of sodium alginate: Chemical and structural characterization, and antioxidant activities. Food Bioscience 40:100873. doi: 10.1016/j.fbio.2020.100873.
  • Berthon, J. Y., R. Nachat-Kappes, M. Bey, J. P. Cadoret, I. Renimel, and E. Filaire. 2017. Marine algae as attractive source to skin care. Free Radical Research 51 (6):555–67. doi: 10.1080/10715762.2017.1355550.
  • Bhadja, P., C. Y. Tan, J. M. Ouyang, and K. Yu. 2016. Repair effect of seaweed polysaccharides with different contents of sulfate group and molecular weights on damaged HK-2 cells. Polymers 8 (5):188. doi: 10.3390/polym8050188.
  • Bodin, J., A. Adrien, P. E. Bodet, D. Dufour, S. Baudouin, T. Maugard, and N. Bridiau. 2020. Ulva intestinalis protein extracts promote in vitro collagen and hyaluronic acid production by human dermal fibroblasts. Molecules 25 (9):2091. doi: 10.3390/molecules25092091.
  • Bradshaw, T. L., L. P. Berkett, M. C. Griffith, S. L. Kingsley-Richards, H. M. Darby, R. L. Parsons, R. E. Moran, and M. E. Garcia. 2012. Assessment of kelp extract biostimulants on tree growth, yield, and fruit quality in a certified organic apple orchard. Acta Horticulture 1001:191–8. doi: 10.17660/ActaHortic.2013.1001.21.
  • Brown, E. M., P. J. Allsopp, P. J. Magee, C. I. Gill, S. Nitecki, C. R. Strain, and E. M. Mcsorley. 2014. Seaweed and human health. Nutrition Reviews 72 (3):205–216. doi: 10.1111/nure.12091.
  • Cabral, E. M., M. Oliveira, J. R. M. Mondala, J. Curtin, B. K. Tiwari, and M. Garcia-Vaquero. 2021. Antimicrobials from seaweeds for food applications. Marine Drugs 19 (4):211. doi: 10.3390/md19040211.
  • Čagalj, M., D. Skroza, G. Tabanelli, F. Özogul, and V. Šimat. 2021. Maximizing the antioxidant capacity of Padina pavonica by choosing the right drying and extraction methods. Processes 9 (4):587. doi: 10.3390/pr9040587.
  • Calado, R., M. C. Leal, H. Gaspar, S. Santos, A. Marques, M. L. Nunes, and H. Vieira. 2018. How to succeed in marketing marine natural products for nutraceutical, pharmaceutical and cosmeceutical markets. In Grand challenges in biology and biotechnology, eds. P. Rampelotto, and A. Trincone, 317–403. Cham: Springer. doi: 10.1007/978-3-319-69075-9-9.
  • Cao, L., S. G. Lee, K. T. Lim, and H. R. Kim. 2020. Potential anti-aging substances derived from seaweeds. Marine Drugs 18 (11):564. doi: 10.3390/md18110564.
  • Carina, D., S. Sharma, A. K. Jaiswal, and S. Jaiswal. 2021. Seaweeds polysaccharides in active food packaging: A review of recent progress. Trends in Food Science & Technology 110:559–72. doi: 10.1016/j.tifs.2021.02.022.
  • Carrasco-Gil, S., R. Allende-Montalbán, L. Hernández-Apaolaza, and J. J. Lucena. 2021. Application of seaweed organic components increases tolerance to Fe deficiency in tomato plants. Agronomy 11 (3):507. doi: 10.3390/agronomy11030507.
  • Catarino, M. D., A. M. S. Silva, N. Mateus, and S. M. Cardoso. 2019. Optimization of phlorotannins extraction from Fucus vesiculosus and evaluation of their potential to prevent metabolic disorders. Marine Drugs 17 (3):162. doi: 10.3390/md17030162.
  • Ceylan, Z., G. F. U. Sengor, and M. T. Yilmaz. 2017. A novel approach to limit chemical deterioration of gilthead sea Bream (Sparus aurata) Fillets: Coating with electrospun nanofibers as characterized by molecular, thermal, and microstructural properties. Journal of Food Science 82 (5):1163–70. doi: 10.1111/1750-3841.13688.
  • Ceylan, Z., R. Meral, I. Cavidoglu, C. Y. Karakas, and M. T. Yilmaz. 2018. A new application on fatty acid stability of fish fillets: Coating with probiotic bacteria-loaded polymer-based characterized nanofibers. Journal of Food Safety 38 (6):e12547. doi: 10.1111/jfs.12547.
  • Chakraborty, K., and S. Dhara. 2020. First report of substituted 2H-pyranoids from brown seaweed Turbinaria conoides with antioxidant and anti-inflammatory activities. Natural Product Research 34 (24):3451–61. doi: 10.1080/14786419.2019.1578761.
  • Changotade, S. I. T., G. Korb, J. Bassil, B. Barroukh, C. Willig, S. Colliec-Jouault, and K. Senni. 2008. Potential effects of a low-molecular-weight fucoidan extracted from brown algae on bone biomaterial osteoconductive properties. Journal of Biomedical Material Research Part A 87:666–75. doi: 10.1002/jbm.a.31819.
  • Cho, Y. S., W. K. Jung, J. A. Kim, I. W. Choi, and S. K. Kim. 2009. Beneficial effects of fucoidan on osteoblastic MG-63 cell differentiation. Food Chemistry 116 (4):990–4. doi: 10.1016/j.foodchem.2009.03.051.
  • Choi, J. S., H. J. Bae, S. J. Kim, and I. S. Choi. 2011. In Vitro antibacterial and anti-inflammatory effects of seaweed extracts against acne-inducing bacteria, Propionibacterium acnes. Journal of Environmental Biology 32 (3):313–8.
  • Choi, J. S., K. Lee, B. B. Lee, Y. C. Kim, Y. D. Kim, Y. K. Hong, K. K. Cho, and I. S. Choi. 2014. Antibacterial activity of the phlorotannins dieckol and phlorofucofuroeckol-A from Ecklonia cava against Propionibacterium acnes. Botanical Sciences 92 (3):425–31. doi: 10.17129/botsci.102.
  • Chollet, L., P. Saboural, C. Chauvierre, J. N. Villemin, D. Letourneur, and F. Chaubet. 2016. Fucoidans in nanomedicine. Marine Drugs 14 (8):145. doi: 10.3390/md14080145.
  • Cirne-Santos, C. C., C. de Souza Barros, P. O. Esteves, M. W. L. Gomes, R. D. S. P. Gomes, D. N. Cavalcanti, J. M. C. Obando, C. J. B. Ramos, R. C. Villaca, V, Teixeira, et al. 2020. Antiviral activity against Chikungunya virus of diterpenes from the seaweed Dictyota menstrualis. Revista Brasileira de Farmacognosia 30 (5):709–14. doi: 10.1007/s43450-020-00083-9.
  • Cornish, M. L., and D. J. Garbary. 2010. Antioxidants from macroalgae: Potential applications in human health and nutrition. Algae 25 (4):155–71. doi: 10.4490/algae.2010.25.4.155.
  • Cotas, J., A. Leandro, P. Monteiro, D. Pacheco, A. Figueirinha, A. M. M. Gonçalves, G. J. da Silva, and L. Pereira. 2020. Seaweed ­phenolics: From extraction to applications. Marine Drugs 18 (8):384. doi: 10.3390/md18080384.
  • Cotas, J., A. Leandro, D. Pacheco, A. M. Gonçalves, and L. Pereira. 2020. A comprehensive review of the nutraceutical and therapeutic applications of red seaweeds (Rhodophyta). Life 10 (3):19. doi: 10.3390/life10030019.
  • Cui, M., J. Wu, S. Wang, H. Shu, M. Zhang, K. Liu, and K. Liu. 2019. Characterization and anti-inflammatory effects of sulfated polysaccharide from the red seaweed Gelidium pacificum Okamura. International ournal of iological acromolecules 129:377–85. doi: 10.1016/j.ijbiomac.2019.02.043.
  • Cunha, L., and A. Grenha. 2016. Sulfated seaweed polysaccharides as multifunctional materials in drug delivery applications. Marine Drugs 14 (3):42. doi: 10.3390/md14030042.
  • Daniel, E. C., and G. Fabio. 2020. An assessment of seaweed extracts: Innovation for sustainable agriculture. Agronomy 10 (9):1433. doi: 10.3390/agronomy10091433.
  • De Araújo, I. W. F., E. D. S. O. Vanderlei, J. A. G. Rodrigues, C. O. Coura, A. L. G. Quinderé, B. P. Fontes, I. N. L. De Queiroz, R. J. B. Jorge, M. M. Bezerra, A. A, Rodrigues E Silva, et al. 2011. Effects of a sulfated polysaccharide isolated from the red seaweed Solieria filiformis on models of nociception and inflammation. Carbohydrate Polymers 86 (3):1207–15. doi: 10.1016/j.carbpol.2011.06.016.
  • De Sousa Oliveira Vanderlei, E., I. W. De Araújo, A. L. Quinderé, B. P. Fontes, Y. R. Eloy, J. A. Rodrigues, A. A. eSilva, H. V. Chaves, R. J. Jorge, D. B. De Menezes, et al. 2011. The involvement of the HO-1 pathway in the anti-inflammatory action of a sulfated polysaccharide isolated from the red seaweed Gracilaria birdiae. Inflammation Research 60 (12):1121–30. doi: 10.1007/s00011-011-0376-8.
  • Decker, E. A. 2002. Antioxidant mechanisms. In Food lipids: Chemistry, nutrition, and biotechnology, eds. C. C. Akoh & D. B. Min, 397–422. New York: Marcel Dekker.
  • Deepitha, R. P., K. A. M. Xavier, P. Layana, B. B. Nayak, and A. K. Balange. 2021. Quality improvement of pangasius fillets using aqueous seaweed (Padina tetrastromatica) extract. 137:110418. doi: 10.1016/j.lwt.2020.110418.
  • de Oliveira, L. S., D. A. Tschoeke, A. S. de Oliveira, L. J. Hill, W. C. Paradas, L. T. Salgado, C. C. Thompson, R. C. Pereira, and F. L. Thompson. 2015. New Insights on the terpenome of the red seaweed Laurencia dendroidea (Florideophyceae, Rhodophyta). Marine Drugs 13 (2):879–902. doi: 10.3390/md13020879.
  • Delasoie, J., and F. Zobi. 2019. Natural diatom Biosilica as microshuttles in drug delivery systems. Pharmaceutics 11 (10):537. doi: 10.3390/pharmaceutics11100537.
  • Delma, C. R., S. T. Somasundaram, G. P. Srinivasan, M. Khursheed, M. D. Bashyam, and N. Aravindan. 2015. Fucoidan from Turbinaria conoides: A multifaceted “ ‘deliverable’ to combat pancreatic cancer progression”. International Journal of Biological Macromolecules 74:447–57. doi: 10.1016/j.ijbiomac.2014.12.031.
  • Demirel, Z., F. Yilmaz-Koz, U. Karabay-Yavasoglu, G. Ozdemir, and A. Sukatar. 2009. Antimicrobial and antioxidant activity of brown algae from the Aegean Sea. Journal of the Serbian Chemical Society 74 (6):619–28. doi: 10.2298/JSC0906619D.
  • Di Filippo-Herrera, D. A., R. M. Hernández-Herrera, H. Ocampo-Alvarez, C. V. Sánchez-Hernández, M. Muñoz-Ochoa, and G. Hernández-Carmona. 2021. Seaweed liquid extracts induce hormetic growth responses in mung bean plants. Journal of Applied Phycology 33 (2):1263–72. doi: 10.1007/s10811-020-02347-2.
  • Dobos, G., C. Trojahn, B. D’Alessandro, S. Patwardhan, D. Canfield, U. Blume-Peytavi, and J. Kottner. 2016. Effects of intrinsic aging and photodamage on skin dyspigmentation: An explorative study. Journal of Biomedical Optics 21 (6):066016. doi: 10.1117/1.JBO.21.6.066016.
  • Dookie, M., Ali, O. Ramsubhag, A. and Jayaraman, J. 2021. Flowering gene regulation in tomato plants treated with brown seaweed extracts. Scientia Horticulturae 276:109715. doi: 10.1016/j.scienta.2020.109715.
  • Dore, C. M. P. G., M. G. D. C. Faustino Alves, L. S. E. Pofírio Will, T. G. Costa, D. A. Sabry, L. A. R. De Souza Rêgo, C. M. Accardo, H. A. O. Rocha, L. G. A. Filgueira, and E. L. Leite. 2013. A sulfated polysaccharide, fucans, isolated from brown algae Sargassum vulgare with anticoagulant, antithrombotic, antioxidant and anti-inflammatory effects. Carbohydrate Polymers 91 (1):467–75. doi: 10.1016/j.carbpol.2012.07.075.
  • Drakaki, E., C. Dessinioti, and C. V. Antoniou. 2014. Air pollution and the skin. Frontiers in Environmental Science 2:11. doi: 10.3389/fenvs.2014.00011.
  • Eccles, R., C. Meier, M. Jawad, R. Weinmüllner, A. Grassauer, and E. Prieschl-Grassauer. 2010. Efficacy and safety of an antiviral Iota-Carrageenan nasal spray: A randomized, double-blind, placebo-controlled exploratory study in volunteers with early symptoms of the common cold. Respiratory Research 11:108. doi: 10.1186/1465-9921-11-108.
  • Edmondson, R., J. J. Broglie, A. F. Adcock, and L. Yang. 2014. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. ASSAY and Drug Development Technologies 12 (4):207–18. doi: 10.1089/adt.2014.573.
  • Eef, B., D. Marlies, K. Van Swam, A. Veen, and L. Burger. 2018. Identification of the Seaweed Biostimulant Market (Phase 1). AD Den Haag, The Netherlands: The North Sea Farm Foundation.
  • El Alaoui-Talibi, Z., Tadlaoui-Ouafi, A.El Boutachfaiti, R.Petit, E.Douira, A.Courtois, B.Courtois, J. and El Modafar, C. 2017. Glucuronan and oligoglucuronans isolated from green algae activate natural defense responses in apple fruit and reduce postharvest blue and gray mold decay. Journal of Applied Phycology 29 (1):471–80. doi: 10.1007/s10811-016-0926-0.
  • El Gamal, A. A. 2012. Biological importance of marine algae. In Handbook of marine macroalgae: Biotechnology and applied phycology, ed. S.K. Kim, 567. Hoboken, NJ: Wiley.
  • Elleuch, M., D. Bedigian, O. Roiseux, S. Besbes, C. Blecker, and H. Attia. 2011. Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: A review. Food Chemistry 124 (2):411–21. doi: 10.1016/j.foodchem.2010.06.077.
  • El-Shafay, S. M., S. S. Ali, and M. M. El-Sheekh. 2016. Antimicrobial activity of some seaweeds species from Red Sea, against multidrug resistant bacteria. The Egyptian Journal of Aquatic Research 42 (1):65–74. doi: 10.1016/j.ejar.2015.11.006.
  • Entcheva, E., H. Bien, L. Yin, C. Y. Chung, M. Farrell, and Y. Kostov. 2004. Functional cardiac cell constructs on cellulose-based scaffolding. Biomaterials 25 (26):5753–62. doi: 10.1016/j.biomaterials.2004.01.024.
  • Erpel, F., R. Mateos, J. Pérez-Jiménez, and J. R. Pérez-Correa. 2020. Phlorotannins: From isolation and structural characterization, to the evaluation of their antidiabetic and anticancer potential. Food Research International (Ottawa, Ont.) 137:109589. doi: 10.1016/j.foodres.2020.109589.
  • Farage, M. A., K. W. Miller, P. Elsner, and H. I. Maibach. 2008. Intrinsic and extrinsic factors in skin ageing: A review. International Journal of Cosmetic Science 30 (2):87–95. doi: 10.1111/j.1468-2494.2007.00415.x.
  • Fard, S. G., R. T. Tan, A. A. Mohamed, Y. M. Goh, S. K. Syed Muhammad, K. A. Al-Jashamy, and S. Mohamed. 2011. Wound healing properties of Eucheuma cottonii extracts in Sprague-Dawley rats. Journal of Medicinal Plant Research 5 (27):6373–80. doi: 10.5897/JMPR10.902.
  • Farvin, K. H. S., C. Jacobsen, K. H. Sabeena Farvin, and C. Jacobsen. 2013. Phenolic compounds and antioxidant activities of selected species of seaweeds from Danish coast. Food Chemistry 138 (2–3):1670–81. doi: 10.1016/j.foodchem.2012.10.078.
  • FDA. 2021. Drugs@ FDA: FDA-Approved Drugs. https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=BasicSearch.process
  • Fernando, I. P. S., K. K. A. Sanjeewa, H. G. Lee, H.-S. Kim, A. P. J. P. Vaas, H. I. C. De Silva, C. M. Nanayakkara, D. T. U. Abeytunga, D.-S. Lee, J.-S. Lee, et al. 2020. Fucoidan purified from Sargassum polycystum induces apoptosis through mitochondria-mediated pathway in HL-60 and MCF-7 cells. Marine Drugs 18 (4):196. doi: 10.3390/md18040196.
  • Fernando, I. P. S., K. K. A. Sanjeewa, K. W. Samarakoon, H.-S. Kim, U. K. D. S. S. Gunasekara, Y.-J. Park, D. T. U. Abeytunga, W. W. Lee, and Y.-J. Jeon. 2018. The potential of fucoidans from Chnoospora minima and Sargassum polycystum in cosmetics: Antioxidant, anti-inflammatory, skin-whitening, and antiwrinkle activities. Journal of Applied Phycology 30 (6):3223–32. doi: 10.1007/s10811-018-1415-4.
  • Figueroa, V., M. Farfán, and J. M. Aguilera. 2021. Seaweeds as novel foods and source of culinary flavors. Food Reviews Internatıonal. 1–26. doi: 10.1080/87559129.2021.1892749.
  • Firdaus, M., and A. Awaludin Prihanto. 2014. A-amylase and a-glucosidase inhibition by brown seaweed (Sargassum sp) extracts. Research Journal of Life Science 1 (1):6–11. doi: 10.21776/ub.rjls.2014.001.01.2.
  • Fisher, G. J., S. Kang, J. Varani, Z. Bata-Csorgo, Y. Wan, S. Datta, and J. J. Voorhees. 2002. Mechanisms of photoaging and chronological skin aging. Archives of Dermatology 138 (11):1462–70. doi: 10.1001/archderm.138.11.1462.
  • Fitton, J. H., D. S. Stringer, A. Y. Park, and S. N. Karpiniec. 2019. Therapies from fucoidan: New developments. Marine Drugs 17:571. https://doi.org/10.3390/md17100571
  • Fleurence, J., M. Ele Morançais, J. Dumay, P. Decottignies, V. Turpin, M. Munier, N. Garcia-Bueno, and P. Jaouen. 2012. What are the prospects for using seaweed in human nutrition and for marine animals raised through aquaculture? Trends in Food Science & Technology 27 (1):57–61. doi: 10.1016%2Fj.tifs.2012.03.004.
  • Flores, P., Pedreño, M. A.Almagro, L.Hernández, V.Fenoll, J. and Hellín, P. 2021. Increasing nutritional value of broccoli with seaweed extract and trilinolein. Journal of Food Composition and Analysis 98 (103834):103834. doi: 10.1016/j.jfca.2021.103834.
  • Freile-Pelegrín, Y., and D. Tasdemir. 2019. Seaweeds to the rescue of forgotten diseases: A review. Botanica Marina 62 (3):211–26. doi: 10.1515/bot-2018-0071.
  • Gallimore, W. 2017. Marine metabolites: Oceans of opportunity. In Pharmacognosy: Fundamentals, applications and strategy, eds. S. Badal and R. Delgoda, 377–400. London: Academic Press. doi: 10.1016/B978-0-12-802104-0.00018-4.
  • Garai, S., K. Brahmachari, S. Sarkar, M. Mondal, H. Banerjee, M. K. Nanda, and K. Chakravarty. 2021. Impact of seaweed sap foliar application on growth, yield, and tuber quality of potato (Solanum tuberosum L.). Journal of Applied Phycology 33 (3):1893–1904. doi: 10.1007/s10811-021-02386-3.
  • Gaubert, J., C. E. Payri, C. Vieira, H. Solanki, and O. P. Thomas. 2019. High metabolic variation for seaweeds in response to environmental changes: A case study of the brown algae Lobophora in coral reefs. Scientific Reports 9 (1):993. doi: 10.1038/s41598-018-38177-z.
  • Generalić Mekinić, I., D. Skroza, V. Šimat, I. Hamed, M. Čagalj, and Z. P. Perković. 2019. Phenolic content of brown algae (Pheophyceae) species: Extraction, identification, and quantification. Biomolecules 9 (6):244. doi: 10.3390/biom9060244.
  • Gharravi, A. M., M. Orazizadeh, K. Ansari-Asl, S. Banoni, S. Izadi, and M. Hashemitabar. 2012. Design and fabrication of anatomical bioreactor systems containing alginate scaffolds for cartilage tissue engineering. Avicenna Journal of Medical Biotechnology 4 (2):65–74.
  • Gheda, S., M. A. Naby, T. Mohamed, L. Pereira, and A. Khamis. 2021. Antidiabetic and antioxidant activity of phlorotannins extracted from the brown seaweed Cystoseira compressa in streptozotocin-induced diabetic rats. Environmental Science and Pollution Research International 28 (18):22886–901. doi: 10.1007/s11356-021-12347-5.
  • Gomez-Zavaglia, A., M. A. Prieto Lage, C. Jimenez-Lopez, J. C. Mejuto, and J. Simal-Gandara. 2019. The potential of seaweeds as a source of functional ingredients of prebiotic and antioxidant value. Antioxidants 8 (9):406. doi: 10.3390/antiox8090406.
  • Guiry, M. D., and G. M. Guiry. (2021). AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Accessed September 15, 2021. http://www.algaebase.org.
  • Gullón, B., Gagaoua, M.Barba, F. J.Gullón, P.Zhang, W. and Lorenzo, J. M. 2020. Seaweeds as promising resource of bioactive compounds: Overview of novel extraction strategies and design of tailored meat products. Trends in Food Science & Technology 100:1–18. doi: 10.1016/j.tifs.2020.03.039.
  • Gutiérrez‐Gamboa, G., T. Garde‐Cerdán, P. Rubio‐Bretón, and E. P. Pérez‐Álvarez. 2021. Effects on must and wine volatile composition after biostimulation with a brown alga to Tempranillo grapevines in two seasons. Journal of the Science of Food and Agriculture 101 (2):525–35. doi: 10.1002/jsfa.10661.
  • Gutiérrez-Rodríguez, A. G., Juárez-Portilla, C.Olivares-Bañuelos, T. and Zepeda, R. C. 2018. Anticancer activity of seaweeds. Drug iscovery oday 23 (2):434–47. doi: http://doi.org/10.1016/j.drudis.2017.10.019.
  • Hanjabam, M. D., A. A. Zynudheen, G. Ninan, and S. Panda. 2017. Seaweed as an ingredient for nutritional improvement of fish jerky. Journal of Food Processing and Preservation 41 (2):e12845–8. doi: 10.1111/jfpp.12845.
  • Hayes, M. 2015. Seaweeds: A nutraceutical and health food. In Seaweed sustainability: Food and non-food applications, eds. B. K. Tiwari and D. J. Troy, 365–87. Waltham, MA: Academic Press.
  • Hentati, F., C. Delattre, C. Gardarin, J. Desbrières, D. Le Cerf, C. Rihouey, P. Michaud, S. Abdelkafi, and G. Pierre. 2020a. Structural features and rheological properties of a sulfated xylogalactan-rich fraction isolated from Tunisian red seaweed, Jania adhaerens. Applied Sciences 10 (5):1655. doi: 10.3390/app10051655.
  • Hentati, F., L. Tounsi, D. Djomdi, G. Pierre, C. Delattre, A. V. Ursu, I. Fendri, S. Abdelkafi, and P. Michaud. 2020b. Bioactive polysaccharides from seaweeds. Molecules 25 (14):3152. doi: 10.3390/molecules25143152.
  • Heo, S. J., S. C. Ko, S. M. Kang, S. H. Cha, S. H. Lee, D. H. Kang, W. K. Jung, A. Affan, C. Oh, and Y. J. Jeon. 2010. Inhibitory effect of diphlorethohydroxycarmalol on melanogenesis and its protective effect against UV-B radiation-induced cell damage. Food and Chemical Toxicology 48 (5):1355–61. doi: 10.1016/j.fct.2010.03.001.
  • Heo, S. J., and Y. J. Jeon. 2009. Protective effect of fucoxanthin isolated from Sargassum siliquastrum on UV-B induced cell damage. Journal of Photochemistry and Photobiology B: Biology 95 (2):101–7. doi: 10.1016/j.jphotobiol.2008.11.011.
  • Heo, S.-J., S.-C. Ko, S.-H. Cha, D.-H. Kang, H.-S. Park, Y.-U. Choi, D. Kim, W.-K. Jung, and Y.-J. Jeon. 2009. Effect of phlorotannins isolated from Ecklonia cava on melanogenesis and their protective effect against photo-oxidative stress induced by UV-B radiation. Toxicology in Vitro 23 (6):1123–30. doi: 10.1016/j.tiv.2009.05.013.
  • Hermund, D. B. 2018. Antioxidant properties of seaweed-derived substances. In Bioactive seaweeds for food applications, ed. Y. Qin, 201–21. London: Elsevier Inc. doi: 10.1016/B978-0-12-813312-5.00010-8.
  • Hermund, D. B., M. Plaza, C. Turner, R. Jónsdóttir, H. G. Kristinsson, C. Jacobsen, and K. Fog. 2018. Structure dependent antioxidant capacity of phlorotannins from Icelandic Fucus vesiculosus by UHPLC-DAD-ECD-QTOFMS. Food Chemistry 240:904–9. doi: 10.1016/j.foodchem.2017.08.032.
  • Hickey, R. J., and A. E. Pelling. 2019. Cellulose biomaterials for tissue engineering. Frontiers Bioengineering Biotechnology 7:45. doi: 10.3389/fbioe.2019.00045.
  • Hoang, M. H., J. Y. Kim, J. H. Lee, S. G. You, and S. J. Lee. 2015. Antioxidative, hypolipidemic, and anti-inflammatory activities of sulfated polysaccharides from Monostroma nitidum. Food Science and Biotechnology 24 (1):199–205. doi: 10.1007/s10068-015-0027-x.
  • Hussain, H. I., N. Kasinadhuni, and T. Arioli. 2021. The effect of seaweed extract on tomato plant growth, productivity and soil. Journal of Applied Phycology 33 (2):1305–14. doi: 10.1007/s10811-021-02387-2.
  • Imbs, T. I., and T. N. Zvyagintseva. 2018. Phlorotannins are polyphenolic metabolites of brown algae. Russian Journal of Marine Biology 44 (4):263–73. doi: 10.1134/S106307401804003X.
  • Indira, K., S. Balakrishnan, M. Srinivasan, S. Bragadeeswaran, and T. Balasubramanian. 2013. Evaluation of in vitro antimicrobial property of seaweed (Halimeda tuna) from Tuticorin coast, Tamil Nadu, Southeast coast of India. African Journal of Biotechnology 12:284–9. doi: 10.5897/AJB12.014.
  • Jacobsen, C., A. D. M. Sørensen, S. L. Holdt, C. C. Akoh, and D. B. Hermund. 2019. Source, extraction, characterization, and applications of novel antioxidants from seaweed. Annual Review of Food Science and Technology 10 (1):541–68. doi: 10.1146/annurev-food-032818-121401.
  • Jafarlou, M. B., B. Pilehvar, M. Modarresi, and M. Mohammadi. 2021. Performance of algae extracts priming for enhancing seed germination ındices and salt tolerance in Calotropis procera (Aiton) WT. Iranian Journal of Science and Technology, Transactions A: Science 45:493–502. https://www.x-mol.com/paperRedirect/1376370465224241152.
  • Jahromi, S. T., S. Pourmozaffar, A. Jahanbakhshi, H. Rameshi, M. Gozari, M. Khodadadi, J. Sohrabipour, S. Behzadi, N. Barzkar, R. Nahavandi, et al. 2021. Effect of different levels of dietary Sargassum cristaefolium on growth performance, hematological parameters, histological structure of hepatopancreas and intestinal microbiota of Litopenaeus vannamei. Aquaculture 533:736130. doi: 10.1016/j.aquaculture.2020.736130.
  • Janarthanan, M., and M. Senthil Kumar. 2018. The properties of bioactive substances obtained from seaweeds and their applications in textile industries. Journal of Industrial Textiles 48 (1):361–401. doi: 10.1177/1528083717692596.
  • Jannat-Alipour, H., M. Rezaei, B. Shabanpour, M. Tabarsa, and F. Rafipour. 2019. Addition of seaweed powder and sulphated polysaccharide on shelf_life extension of functional fish surimi restructured product. Journal of Food Science and Technology 56 (8):3777–89. doi: 10.1007/s13197-019-03846-y.
  • Jayawardena, T. U., L. Wang, K. K. A. Sanjeewa, S. I. Kang, J. S. Lee, and Y. J. Jeon. 2020. Antioxidant potential of sulfated polysaccharides from Padina boryana; Protective effect against oxidative stress in in vitro and in vivo zebrafish model. Marine Drugs 18 (4):212. doi: 10.3390/md18040212.
  • Jesumani, V., H. Du, M. Aslam, P. Pei, and N. Huang. 2019. Potential use of seaweed bioactive compounds in skincare-A Review. Marine Drugs 17 (12):688. doi: 10.3390/md17120688.
  • Jin, G., and G. H. Kim. 2011. Rapid-prototyped PCL/fucoidan composite scaffolds for bone tissue regeneration: Design, fabrication, and physical/biological properties. Journal of Materials Chemistry 21 (44):17710–8. doi: 10.1039/c1jm12915e.
  • Jin, W., Q. Zhang, J. Wang, and W. Zhang. 2013. A comparative study of the anticoagulant activities of eleven fucoidans. Carbohydrate Polymers 91 (1):1–6. doi: 10.1016/j.carbpol.2012.07.067.
  • Joe, M. J., S. N. Kim, H. Y. Choi, W. S. Shin, G. M. Park, D. W. Kang, and Y. K. Kim. 2006. The inhibitory effects of eckol and dieckol from Ecklonia stolonifera on the expression of matrix metalloproteinase-1 in human dermal fibroblasts. Biological and Pharmaceutical Bulletin 29 (8):1735–9. doi: 10.1248/bpb.29.1735.
  • Joshi, S., R. Kumari, and V. N. Upasani. 2018. Applications of algae in cosmetics: An Overview. International Journal of Innovative Research in Science, Engineering and Technology 7 (2):1269–78. doi: 10.15680/IJIRSET.2018.0702038.
  • Jönsson, M., L. Allahgholi, R. R. R. Sardari, G. O. Hreggviðsson, and E. Nordberg Karlsson. 2020. Extraction and modification of macroalgal polysaccharides for current and next-generation applications. Molecules 25 (4):930. doi: 10.3390/molecules25040930.
  • Jung, S. M., S. H. Kim, S. K. Min, and H. S. Shin. 2012. Controlled activity of mouse astrocytes on electrospun PCL nanofiber containing polysaccharides from brown seaweed. In Vitro Cellular & Developmental Biology - Animal 48 (10):633–40. doi: 10.1007/s11626-012-9566-0.
  • Kang, H. S., Kim, H. R.Byun, D. S.Son, B. W.Nam, T. J. and Choi, J. S. 2004. Tyrosinase inhibitors isolated from the edible brown alga Ecklonia stolonifera. Archives of Pharmacal Research 27:1226–32. doi: 10.1007/BF02975886.
  • Kang, M. C., W. A. J. P. Wijesinghe, S. H. Lee, S. M. Kang, S. C. Ko, X. Yang, N. Kang, B. T. Jeon, J. Kim, D. H. Lee, et al. 2013. Dieckol isolated from brown seaweed Ecklonia cava attenuates type II diabetes in db/db mouse model. Food and Chemical Toxicology 53:294–8. doi: 10.1016/j.fct.2012.12.012.
  • Karpiński, T. M., and A. Adamczak. 2019. Fucoxanthin-an antibacterial carotenoid. Antioxidants 8 (8):239. doi: 10.3390/antiox8080239.
  • Katakula, A. A. N., W. Gawanab, F. Itanna, and H. A. Mupambwa. 2020. The potential fertilizer value of Namibian beach-cast seaweed (Laminaria pallida and Gracilariopsis funicularis) biochar as a nutrient source in organic agriculture. Scientific African 10:e00592. doi: 10.1016/j.sciaf.2020.e00592.
  • Kaur, I. 2020. Seaweeds: Soil health boosters for sustainable agriculture. In Soil Health, Soil Biology, eds. B. Giri, and A. Varma, vol 59, 163–82. Cham: Springer. doi: 10.1007/978-3-030-44364-1-10.
  • Khalid, S., M. Abbas, F. Saeed, H. Bader-Ul-Ain, and H. A. R. Suleria. 2018. Therapeutic potential of seaweed bioactive compounds. In Seaweed biomaterials, ed. S. Maiti, 1–19. London: IntechOpen. doi: 10.5772/intechopen.74060.
  • Kim, C. R., Y. M. Kim, M. K. Lee, I. H. Kim, Y. H. Choi, and T. J. Nam. 2017. Pyropia yezoensis peptide promotes collagen synthesis by activating the TGF-β/Smad signaling pathway in the human dermal fibroblast cell line Hs27. International Journal of Molecular Medicine 39 (1):31–8. doi: 10.3892/ijmm.2016.2807.
  • Kim, E., J. Cui, I. Kang, G. Zhang, and Y. Lee. 2021. Potential antidiabetic effects of seaweed extracts by upregulating glucose utilization and alleviating inflammation in C2C12 myotubes. International Journal of Environmental Research and Public Health 18 (3):1367. doi: 10.3390/ijerph18031367.
  • Kim, J. A., B. N. Ahn, C. S. Kong, and S. K. Kim. 2013. The chromene sargachromanol E inhibits ultraviolet A-induced ageing of skin in human dermal fibroblasts. British Journal of Dermatology 168 (5):968–76. doi: 10.1111/bjd.12187.
  • Kim, S. K., and S. W. A. Himaya. 2011. Medicinal effects of phlorotannins from marine brown algae. Advances in Food and Nutrition Research 64:97–109. doi: 10.1016/B978-0-12-387669-0.00008-9.
  • Kim, S. K., and I. Wijesekara.2010. Development and biological activities of marine-derived bioactive peptides: A review. Journal of Functional Foods 2(1):1–9. doi: 10.1016/j.jff.2010.01.003.
  • Kolanjinathan, K., P. Ganesh, and P. Saranraj. 2014. Pharmacological importance of seaweeds: A review. World Journal of Fish and Marine Sciences 6 (1):1–15. doi: 10.5829/idosi.wjfms.2014.06.01.76195.
  • Kumar, B., R. Pathak, P. B. Mary, D. Jha, K. Sardana, and H. K. Gautam. 2016. New insights into acne pathogenesis: Exploring the role of acne-associated microbial populations. Dermatologica Sinica 34 (2):67–73. doi: 10.1016/j.dsi.2015.12.004.
  • Kumari, P., M. Kumar, V. Gupta, C. R. K. Reddy, and B. Jha. 2010. Tropical marine macroalgae as potential sources of nutritionally important PUFAs. Food Chemistry 120 (3):749–57. doi: 10.1016/j.foodchem.2009.11.006.
  • Kyriacou, M. C., and Y. Rouphael. 2018. Towards a new definition of quality for fresh fruits and vegetables. Scientia Horticulturae 234:463–9. doi: 10.1016/j.scienta.2017.09.046.
  • Lafarga, T., F. G. Acién-Fernández, and M. Garcia-Vaquero. 2020. Bioactive peptides and carbohydrates from seaweed for food applications: Natural occurrence, isolation, purification, and identification. Algal Research 48:101909. doi: 10.1016/j.algal.2020.101909.
  • Lalzawmliana, V., A. Anand, P. Mukherjee, S. Chaudhuri, B. Kundu, S. K. Nandi, and N. L. Thakur. 2019. Marine organisms as a source of natural matrix for bone tissue engineering. Ceramics International 45 (2):1469–81. doi: 10.1016/j.ceramint.2018.10.108.
  • Langhans, S. A. 2018. Three-dimensional in vitro cell culture models in drug discovery and drug repositioning. Frontiers in Pharmacology 9:6. doi: 10.3389/fphar.2018.00006.
  • Leandro, A., L. Pereira, and A. M. M. Gonçalves. 2019. Diverse applications of marine macroalgae. Marine Drugs 18 (1):17. doi: 10.3390/md18010017.
  • Lee, G. S., J. H. Park, U. S. Shin, and H. W. Kim. 2011. Direct deposited porous scaffolds of calcium phosphate cement with alginate for drug delivery and bone tissue engineering. Acta Biomater 7 (8):3178–86. doi: 10.1016/j.actbio.2011.04.008
  • Lee, H. G., Y. A. Lu, X. Li, J. M. Hyun, H. S. Kim, J. J. Lee, T. H. Kim, H. M. Kim, M. C. Kang, and Y. J. Jeon. 2020. Anti-Obesity effects of Grateloupia elliptica, a red seaweed, in mice with high-fat diet-induced obesity via suppression of adipogenic factors in white adipose tissue and increased thermogenic factors in brown adipose tissue. Nutrients 12 (2):308. doi: 10.3390/nu12020308.
  • Lee, J. B., S. Koizumi, K. Hayashi, and T. Hayashi. 2010. Structure of rhamnan sulfate from the green algea Monostroma nitidum and its anti-herpetic effect. Carbohydrate Polymers 81 (3):572–7. doi: 10.1016/j.carbpol.2010.03.014.
  • Lee, J. H., S. H. Eom, E. H. Lee, Y. J. Jung, H. J. Kim, M. R. Jo, K. T. Son, H. J. Lee, J. H. Kim, M. S. Lee, et al. 2014. In vitro antibacterial and synergistic effect of phlorotannins isolated from edible brown seaweed Eisenia bicyclis against acne-related bacteria. Algae 29 (1):47–55. doi: 10.4490/algae.2014.29.1.047.
  • Lee, J. S., G. H. Jin, M. G. Yeo, C. H. Jang, H. Lee, and G. H. Kim. 2012. Fabrication of electrospun biocomposites comprising polycaprolactone/fucoidan for tissue regeneration. Carbohydrate Polymers 90 (1):181–8. doi: 10.1016/j.carbpol.2012.05.012.
  • Lee, K. Y., and D. J. Mooney. 2012. Alginate: Properties and biomedical applications. Progress in Polymer Science 37 (1):106–26. doi:10.1016/j.progpolymsci.2011.06.003
  • Lee, M. H., K. B. Lee, S. M. Oh, B. H. Lee, and H. Y. Chee. 2010. Antifungal activities of dieckol isolated from the marine brown alga Ecklonia cava against Trichophyton rubrum. Journal of the Korean Society for Applied Biological Chemistry 53 (4):504–7. doi: 10.3839/jksabc.2010.076.
  • Lee, S. H., and Y. J. Jeon. 2015. Efficacy and safety of a dieckol-rich extract (AG-dieckol) of brown algae, Ecklonia cava, in pre-diabetic individuals: A double-blind, randomized, placebo-controlled clinical trial. Food & Function 6 (3):853–8. 10.1039/c4fo00940a.
  • Li, N., W. Mao, M. Yan, X. Liu, Z. Xia, S. Wang, B. Xiao, C. Chen, L. Zhang, and S. Cao. 2015. Structural characterization and anticoagulant activity of a sulfated polysaccharide from the green alga Codium divaricatum. Carbohydrate Polymers 121:175–82. doi: 10.1016/j.carbpol.2014.12.036.
  • Li, N., X. Liu, X. He, S. Wang, S. Cao, Z. Xia, H. Xian, L. Qin, and W. Mao. 2017. Structure and anticoagulant property of a sulfated polysaccharide isolated from the green seaweed Monostroma angicava. Carbohydrate Polymers 159:195–206. doi: 10.1016/j.carbpol.2016.12.013.
  • Li, X., J. Wang, H. Zhang, and Q. Zhang. 2017. Renoprotective effect of low-molecular-weight sulfated polysaccharide from the seaweed Laminaria japonica on glycerol-induced acute kidney injury in rats. International Journal of Biological Macromolecules 95:132–7. doi: 10.1016/j.ijbiomac.2016.11.051.
  • Li, Y., Z. Yang, and J. Li. 2017. Shelf-life extension of Pacific white shrimp using algae extracts during refrigerated storage. Journal of the Science of Food and Agriculture 97 (1):291–8. doi: 10.1002/jsfa.7730.
  • Li, Z., H. R. Ramay, K. D. Hauch, D. Xiao, and M. Zhang. 2005. Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials 26 (18):3919–28. doi: 10.1016/j.biomaterials.2004.09.062.
  • Lim, C., S. Yusoff, C. G. Ng, P. E. Lim, and Y. C. Ching. 2021. Bioplastic made from seaweed polysaccharides with green production methods. Journal of Environmental Chemical Engineering 9 (5):105895. doi: 10.1016/j.jece.2021.105895.
  • Liu, J., S. Luthuli, Q. Wu, M. Wu, J. Choi Il, and H. Tong. 2020. Pharmaceutical and nutraceutical potential applications of Sargassum fulvellum. BioMed Research International 2020:12. doi: 10.1155/2020/2417410.
  • Liu, J., X. Zhan, J. Wan, Y. Wang, and C. Wang. 2015. Review for carrageenan-based pharmaceutical biomaterials: Favourable physical features versus adverse biological effects. Carbohydrate Polymers 121:27–36. doi: 10.1016/j.carbpol.2014.11.063.
  • Liu, Q. M., S. S. Xu, L. Li, T. M. Pan, C. L. Shi, H. Liu, M. J. Cao, W. J. Su, and G. M. Liu. 2017. In vitro and in vivo immunomodulatory activity of sulfated polysaccharide from Porphyra haitanensis. Carbohydrate Polymers 165:189–96. doi: 10.1016/j.carbpol.2017.02.032.
  • Liu, X., X. He, W. Mao, S. Cao, L. Qin, M. He, X. He, and W. Mao. 2018. Anticoagulant properties of a green algal rhamnan-type sulfated polysaccharide and its low-molecular-weight fragments prepared by mild acid degradation. Marine Drugs 16 (11):445. doi: 10.3390/md16110445.
  • Lynam, D. A., D. Shahriari, K. J. Wolf, P. A. Angart, J. Koffler, M. H. Tuszynski, C. Chan, P. Walton, and J. Sakamoto. 2015. Brain derived neurotrophic factor release from layer-by-layer coated agarose nerve guidance scaffolds. Acta Biomaterialia 18:128–31. doi: 10.1016/j.actbio.2015.02.014.
  • Lomartire, S., J. Cotas, D. Pacheco, J. C. Marques, L. Pereira, and A. M. M. Gonçalves. 2021. Environmental impact on seaweed phenolic production and activity: An important step for compound exploitation. Marine Drugs 19 (5):245. doi: 10.3390/md19050245.
  • Lopes, N., S. Ray, S. F. Espada, W. A. Bomfim, B. Ray, L. C. Faccin-Galhardi, R. E. C. Linhares, and C. Nozawa. 2017. Green seaweed Enteromorpha compressa (Chlorophyta, Ulvaceae) derived sulphated polysaccharides inhibit herpes simplex virus. International Journal of Biological Macromolecules 102:605–12. doi: 10.1016/j.ijbiomac.2017.04.043.
  • Lordan, S., T. J. Smyth, A. Soler-Vila, C. Stanton, and R. Paul Ross. 2013. The α-amylase and α-glucosidase inhibitory effects of Irish seaweed extracts. Food Chemistry 141 (3):2170–6. doi: 10.1016/j.foodchem.2013.04.123.
  • Lu, Y. A., H. G. Lee, X. Li, J. M. Hyun, H. S. Kim, T. H. Kim, H. M. Kim, J. J. Lee, M. C. Kang, and Y. J. Jeon. 2020. Anti-obesity effects of red seaweed, Plocamium telfairiae, in C57BL/6 mice fed a high-fat diet. Food & Function 11 (3):2299–308. doi: 10.1039/c9fo02924a.
  • Luthuli, S., S. Wu, Y. Cheng, X. Zheng, M. Wu, and H. Tong. 2019. Therapeutic effects of fucoidan: A review on recent studies. Marine Drugs 17 (9):487. doi: 10.3390/md17090487.
  • MacArtain, P., C. I. Gill, M. Brooks, R. Campbell, and I. R. Rowland. 2007. Nutritional value of edible seaweeds. Nutrition Reviews 65 (12 Pt 1):535–43. doi: 10.1301/nr.2007.dec.535-543.
  • Martelli, F., M. Cirlini, C. Lazzi, E. Neviani, and V. Bernini. 2020. Edible seaweeds and spirulina extracts for food application: In vitro and in situ evaluation of antimicrobial activity towards foodborne pathogenic bacteria. Foods 9 (10):1442. doi: 10.3390/foods9101442.
  • Martins, A., H. Vieira, H. Gaspar, and S. Santos. 2014. Marketed marine natural products in the pharmaceutical and cosmeceutical industries: Tips for success. Marine Drugs 12 (2):1066–101. doi: 10.3390/md12021066.
  • Medlineplus. 2021. https://medlineplus.gov/druginfo/meds/a697032.html.
  • Mercurio, D. G., T. A. L. Wagemaker, V. M. Alves, C. G. Benevenuto, L. R. Gaspar, and P. M. Campos. 2015. In vivo photoprotective effects of cosmetic formulations containing UV filters, vitamins, Ginkgo biloba and red algae extracts. Journal of Photochemistry & Photobiology, B: Biology 15:121–6. doi: 10.1016/j.jphotobiol.2015.09.016.
  • Merlin Rajesh Lal, R., G. K. Suraishkumar, and P. D. Nair. 2017. Chitosan-agarose scaffolds supports chondrogenesis of Human Wharton’s Jelly mesenchymal stem cells. Journal of Biomedical Materials Research Part A 105 (7):1845–55. doi: 10.1002/jbm.a.36054.
  • Mesa-Arango, A. C., F.-M. Sv, and G. Sanclemente. 2017. Mechanisms of skin aging. Iatreia 30 (2):160–70. doi: 10.17533/udea.iatreia.v30n2a05.
  • Miyashita, K., N. Mikami, and M. Hosokawa. 2013. Chemical and nutritional characteristics of brown seaweed lipids: A review. Journal of Functional Foods 5 (4):1507–17. doi: 10.1016/j.jff.2013.09.019.
  • Moga, M. A., L. Dima, A. Balan, A. Blidaru, O. G. Dimienescu, C. Podasca, and S. Toma. 2021. Are bioactive molecules from seaweeds a novel and challenging option for the prevention of HPV ınfection and cervical cancer therapy?-A Review. International Journal of Molecular Sciences 22 (2):629. doi: 10.3390/ijms22020629.
  • Muñoz-Ochoa, M.,. J. I. Murillo-Alvarez, L. A. Zermeño-Cervantes, S. Martínez-Diaz, and R. Rodríguez-Riosmena. 2010. Screening of extracts of algae from Baja California sur, Mexico as reversers of the antibiotic resistance of some pathogenic bacteria. European Review for Medical and Pharmacological Sciences 14 (9):739–47.
  • Nadeeshani, H., A. Hassouna, and J. Lu. 2021. Proteins extracted from seaweed Undaria pinnatifida and their potential uses as foods and nutraceuticals. Critical Reviews in Food Science and Nutrition. 1–17. doi: 10.1080/10408398.2021.1898334.
  • Nakaoka, R., Y. Hirano, D. J. Mooney, T. Tsuchiya, and A. Matsuoka. 2013. Study on the potential of RGD- and PHSRN-modified alginates as artificial extracellular matrices for engineering bone. Journal of Artificial Organs 16 (3):284–93. doi: 10.1007/s10047-013-0703-7.
  • Nicol, K., C. Swailes, L. Alahmari, and E. Combet. 2020. Using seaweed as a supplement or a food ingredient to increase iodine status in women with low habitual intake. Proceedings of the Nutrition Society 79:OCE2. doi: 10.1017/S0029665120006655.
  • Nielsen, C. W., T. Rustad, and S. L. Holdt. 2021. Vitamin C from seaweed: A review assessing seaweed as contributor to daily intake. Foods 10 (1):198. doi: 10.3390/foods10010198.
  • Nisizawa, K., H. Noda, R. Kikuchi, and T. Watanabe. 1987. The main seaweeds food in Japan. Hydrobiologia 151–152 (1):5–29. doi: 10.1007/BF00046102.
  • Olasehinde, T. A., L. V. Mabinya, A. O. Olaniran, and A. I. Okoh. 2019. Chemical characterization, antioxidant properties, cholinesterase inhibitory and anti-amyloidogenic activities of sulfated polysaccharides from some seaweeds. Bioactive Carbohydrates and Dietary Fibre 18:100182–10. doi: 10.1016/j.bcdf.2019.100182.
  • O’Sullivan, A. M., M. N. O’Grady, Y. C. O’Callaghan, T. J. Smyth, N. M. O’Brien, and J. P. Kerry. 2016. Seaweed extracts as potential functional ingredients in yogurt. Innovative Food Science & Emerging Technologies 37:293–9. doi: 10.1016/j.ifset.2016.07.031.
  • Oshige, T., Y. Nakamura, Y. Sasaki, S. Kawano, T. Ohki, M. Tsuruta, I. Tokubuchi, H. Nakayama, K. Yamada, K. Ashida, et al. 2019. Bromocriptine as a potential glucose-lowering agent for the treatment of prolactinoma with type2 diabetes. Internal Medicine 58 (21):3125–8. doi: 10.2169/internalmedicine.2755-19.
  • Pacheco, D., G. S. Araújo, J. Cotas, R. Gaspar, J. M. Neto, and L. Pereira. 2020. Invasive seaweeds in the Iberian Peninsula: A contribution for food supply. Marine Drugs 18 (11):560. doi: 10.3390/md18110560.
  • Pandithurai, M., M. Subbiah, S. Vajiravelu, and S. N. Thamizh. 2015. Antifungal activity of various solvent extracts of marine brown alga Spatoglossum asperum. International Journal of Pharmaceutical Chemistry 5:277–80. doi: 10.7439/ijpc.v5i8.2370.
  • Pangestuti, R., K. H. Shin, and S. K. Kim. 2021. Anti-photoaging and potential skin health benefits of seaweeds. Marine Drugs 19 (3):172. doi: 10.3390/md19030172.
  • Pantidos, N., A. Boath, V. Lund, S. Conner, and G. J. McDougall. 2014. Phenolic-rich extracts from the edible seaweed, Ascophyllum nodosum, inhibit α-amylase and α-glucosidase: Potential anti-hyperglycemic effects. Journal of Functional Foods 10:201–9. doi: 10.1016/j.jff.2014.06.018.
  • Park, D. J., B. H. Choi, S. J. Zhu, J. Y. Huh, B. Y. Kim, and S. H. Lee. 2005. Injectable bone using chitosan-alginate gel/mesenchymal stem cells/BMP-2 composites. Journal of Cranio-Maxillo-Facial Surgery 33 (1):50–4. doi: 10.1016/j.jcms.2004.05.011.
  • Park, S. B., K. R. Chun, J. K. Kim, K. Suk, Y. M. Jung, and W. H. Lee. 2010. The differential effect of high and low molecular weight fucoidans on the severity of collagen-induced arthritis in mice. Phytotherapy Research 24 (9):1384–91. doi: 10.1002/ptr.3140.
  • Park, S. R., J. H. Kim, H. D. Jang, S. Y. Yang, and Y. H. Kim. 2018. Inhibitory activity of minor phlorotannins from Ecklonia cava on α-glucosidase. Food Chemistry 257:128–34. doi: 10.1016/j.foodchem.2018.03.013.
  • Passos, R., A. P. Correia, I. Ferreira, P. Pires, D. Pires, E. Gomes, B. do Carmo, P. Santos, M. Simões, C. Afonso, et al. 2021. Effect on health status and pathogen resistance of gilthead seabream (Sparus aurata) fed with diets supplemented with Gracilaria gracilis. Aquaculture 531:735888–12. doi: 10.1016/j.aquaculture.2020.735888.
  • Patel, J. S., and A. Mukherjee. 2021. Seaweed and associated products: Natural biostimulant for ımprovement of plant health. In Emerging trends in plant pathology, eds. K. P. Singh, S. Jahagirdar, and B. K. Sarma, 317–30. Singapore: Springer.
  • Paul, W., and C. P. Sharma. 2014. Alginates: Wound dressings. In Encyclopedia of biomedical polymers and polymeric biomaterials, ed. M. Mishra, 134–46. Boca Raton, FL: CRC Press. doi: 10.1081/E-EBPP-120051065.
  • Peñalver, R., J. M. Lorenzo, G. Ros, R. Amarowicz, M. Pateiro, and G. Nieto. 2020. Seaweeds as a functional ingredient for a healthy diet. Marine Drugs 18 (6):301. doi: 10.3390/md18060301.
  • Pereira, R. C., and L. V. Costa-Lotufo. 2012. Bioprospecting for bioactives from seaweeds: Potential, obstacles and alternatives. Revista Brasileira de Farmacognosia 22 (4):894–905. doi: 10.1590/S0102-695X2012005000077.
  • Pereira, L. 2018a. Nutritional composition of the main edible algae. In Therapeutic and nutritional uses of algae, ed. L. Pereira, 65–127. Boca Raton, FL: CRC Press.
  • Pereira, L. 2018b. The cardio-protective activity of edible seaweeds and their extracts. In Therapeutic and nutritional uses of algae, ed. L. Pereira, 143–74. Boca Raton, FL: CRC Press.
  • Perera, K. Y., S. Sharma, D. Pradhan, A. K. Jaiswal, and S. Jaiswal. 2021. Seaweed polysaccharide in food contact materials (active ­packaging, intelligent packaging, edible films, and coatings). Foods 10 (9):2088. doi: 10.3390/foods10092088.
  • Pérez, M. J., E. Falqué, and H. Domínguez. 2016. Antimicrobial action of compounds from marine seaweed. Marine Drugs 14 (3):52. doi: 10.3390/md14030052.
  • Petruzzi, L., M. R. Corbo, M. Sinigaglia, and A. Bevilacqua. 2017. Microbial spoilage of foods: Fundamentals. In The microbiological quality of food: Foodborne spoilers, eds. A. Bevilacqua, M. R. Corbo, and M. Sinigaglia, 1–21. Cambridge, MA: Elsevier. doi: 10.1016/B978-0-08-100502-6.00002-9.
  • Pindi, W., H. W. Mah, E. Munsu, and N. Ab Wahab. 2017. Effects of addition of Kappaphycus alvarezii on physicochemical properties and lipid oxidation of mechanically deboned chicken meat (MDCM) sausages. British Food Journal 119 (10):2229–39. doi: 10.1108/BFJ-10-2016-0501.
  • Popa, E. G., S. G. Caridade, J. F. Mano, R. L. Reis, and M. E. Gomes. 2015. Chondrogenic potential of injectable κ-carrageenan hydrogel with encapsulated adipose stem cells for cartilage tissue-engineering applications. Journal of Tissue Engineering and Regenerative Medicine 9 (5):550–63. doi: 10.1002/term.1683.
  • Premarathna, A. D., T. H. Ranahewa, S. K. Wijesekera, R. R. M. K. K. Wijesundara, A. P. Jayasooriya, V. Wijewardana, and R. P. V. J. Rajapakse. 2019. Wound healing properties of aqueous extracts of Sargassum illicifolium: An in vitro assay. Wound Medicine 24 (1):1–7. doi: 10.1016/j.wndm.2018.11.001.
  • Premarathna, A. D., T. H. Ranahewa, S. K. Wijesekera, D. L. Harishchandra, K. J. K. Karunathilake, R. N. Waduge, R. R. M. K. K. Wijesundara, A. P. Jayasooriya, V. Wijewardana, and R. P. V. J. Rajapakse. 2020. Preliminary screening of the aqueous extracts of twenty-three different seaweed species in Sri Lanka with in-vitro and in-vivo assays. Heliyon 6 (6):e03918. doi: 10.1016/j.heliyon.2020.e03918.
  • Qi, X., W. Mao, Y. Gao, Y. Chen, Y. Chen, C. Zhao, N. Li, C. Wang, M. Yan, C. Lin, et al. 2012. Chemical characteristic of an anticoagulant-active sulfated polysaccharide from Enteromorpha clathrata. Carbohydrate Polymers 90 (4):1804–910. doi: 10.1016/j.carbpol.2012.07.077.
  • Qin, Y. 2018. Applications of bioactive seaweed substances in functional food products. In Bioactive seaweeds for food applications, ed. Y. Qin, 111–34. London: Academic Press. doi: 10.1016/B978-0-12-813312-5.00006-6.
  • Quah, C. C., K. H. Kim, M. S. Lau, W. R. Kim, S. H. Cheah, and R. Gundamaraju. 2014. Pigmentation and dermal conservative effects of the astonishing algae Sargassum polycystum and Padina tenuis on guinea pigs, human epidermal melanocytes (HEM) and Chang cells. African Journal of Traditional, Complementary and Alternative Medicines 11 (4):77–83. doi: 10.4314/ajtcam.v11i4.13.
  • Qu, W., H. Ma, Z. Pan, L. Luo, Z. Wang, and R. He. 2010. Preparation and antihypertensive activity of peptides from Porphyra yezoensis. Food Chemistry 123 (1):14–20. doi: 10.1016/j.foodchem.2010.03.091.
  • Rahman, A., S. Ehteshamul-Haque, F. K. Habiba, and J. Ara. 2021. Biocontrol potential of endophytic Pseudomonas aeruginosa and brown seaweed enhances the plant growth and activity of antioxidant defensive enzymes in glycıne max against Macrophomina phaseolina. International Journal of Biology and Biotechnology 18 (1):103–11.
  • Rahmati, M., Z. Alipanahi, and M. Mozafari. 2019. Emerging biomedical applications of algal polysaccharides. Current Pharmaceutical Design 25 (11):1335–44. doi: 10.2174/1381612825666190423160357.
  • Rajauria, G., R. Ravindran, M. Garcia-Vaquero, D. K. Rai, T. Sweeney, and J. O’Doherty. 2021. Molecular characteristics and antioxidant activity of laminarin extracted from the seaweed species Laminaria hyperborea, using hydrothermal-assisted extraction and a multi-step purification procedure. Food Hydrocolloids 112:106332. doi: 10.1016/j.foodhyd.2020.106332.
  • Raposo, M. F. D. J., A. M. M. B. De Morais, and R. M. S. C. De Morais. 2016. Emergent sources of prebiotics: Seaweeds and ­microalgae. Marine Drugs 14:27. doi: 10.3390/md14020027.
  • Reski, S., M. E. Mahata, Y. Rizal, and R. Pazla. 2021. Influence of brown seaweed (Turbinaria murayana) in optimizing performance and carcass quality characteristics in broiler chickens. Advances in Animal and Veterinary Sciences 9:407–15. doi: 10.17582/journal.aavs/2021/9.3.407.415.
  • Reyes, M. E., I. Riquelme, T. Salvo, L. Zanella, P. Letelier, and P. Brebi. 2020. Brown seaweed fucoidan in cancer: Implication in metastasis and drug resistance. Marine Drugs 18 (5):232. doi: 10.3390/md18050232.
  • Righini, H., O. Francioso, M. Di Foggia, A. Prodi, A. M. Quintana, and R. Roberti. 2021. Tomato seed biopriming with water extracts from Anabaena minutissima, Ecklonia maxima and Jania adhaerens as a new agro-ecological option against Rhizoctonia solani. Scientia Horticulturae 281:109921. doi: 10.1016/j.scienta.2021.109921.
  • Ristivojević, P., V. Jovanović, D. M. Opsenica, J. Park, J. M. Rollinger, and T. Ć. Velicković. 2021. Rapid analytical approach for bioprofiling compounds with radical scavenging and antimicrobial activities from seaweeds. Food Chemistry 334:127562–8. doi: 10.1016/j.foodchem.2020.127562.
  • Rocha, D. H. A., A. M. L. Seca, and D. C. G. A. Pinto. 2018. Seaweed secondary metabolites in vitro and in vivo anticancer activity. Marine Drugs 16 (11):410. doi: 10.3390/md16110410.
  • Rohof, W. O., R. J. Bennink, A. J. P. M. Smout, E. Thomas, and G. E. Boeckxstaens. 2013. An alginate-antacid formulation localizes to the acid pocket to reduce acid reflux in patients with gastroesophageal reflux disease. Clinical Gastroenterology and Hepatology 11 (12):1585–91. doi: 10.1016/j.cgh.2013.04.046.
  • Roohinejad, S., M. Koubaa, F. J. Barba, S. Saljoughian, M. Amid, and R. Greiner. 2017. Application of seaweeds to develop new food products with enhanced shelf-life, quality and health-related beneficial properties. Food Research International (Ottawa, Ont.) 99 (Pt 3):1066–83. doi: 10.1016/j.foodres.2016.08.016.
  • Roque, B. M., M. Venegas, R. D. Kinley, R. de Nys, T. L. Duarte, X. Yang, and E. Kebreab. 2021. Red seaweed (Asparagopsis taxiformis) supplementation reduces enteric methane by over 80 percent in beef steers. Plos One 16 (3):e0247820. doi: 10.1371/journal.pone.0247820.
  • Rosemary, T., A. Arulkumar, S. Paramasivam, A. Mondragon-Portocarrero, and J. M. Miranda. 2019. Biochemical, micronutrient and physicochemical properties of the dried red seaweeds Gracilaria edulis and Gracilaria corticata. Molecules 24 (12):2225. doi: 10.3390/molecules24122225.
  • Rupérez, P. 2002. Mineral content of edible marine seaweeds. Food Chemistry 79 (1):23–6.
  • Rupérez, P., and G. Toledano. 2003. Indigestible fraction of edible marine seaweeds. Journal of the Science of Food and Agriculture 83 (12):1267–72. doi: 10.1002/jsfa.1536.
  • Rusu, A. V., F. L. Criste, D. Mierliţă, C. T. Socol, and M. Trif. 2020. Formulation of lipoprotein microencapsulated beadlets by ionic complexes in algae-based carbohydrates. Coatings 10 (3):302. doi: 10.3390/coatings10030302.
  • Ryu, B., Z. J. Qian, M. M. Kim, K. W. Nam, and S. K. Kim. 2009. Anti-photoaging activity and inhibition of matrix metalloproteinase (MMP) by marine red alga, Corallina pilulifera methanol extract. Radiation Physics and Chemistry 78 (2):98–105. doi: http://dx.doi.org/10.3390/md8041189.
  • Saeed, M., M. A. Arain, S. Ali Fazlani, I. B. Marghazani, M. Umar, J. Soomro, A. E. Noreldin, M. E. Abd El-Hack, S. S. Elnesr, K. Dhama, et al. 2021. A comprehensive review on the health benefits and nutritional significance of fucoidan polysaccharide derived from brown seaweeds in human, animals and aquatic organisms. Aquaculture Nutrition 27:633–654. doi: 10.1111/anu.13233.
  • Sáez, M. I., M. D. Suárez, F. J. Alarcón, and T. F. Martínez. 2021. Assessing the potential of algae extracts for extending the shelf life of Rainbow trout (Oncorhynchus mykiss) fillets. Foods 10 (5):910. doi: 10.3390/foods10050910.
  • Salma, S., E. Nurida, N. L, and A. Dariah. 2021. Bio-decomposer of seaweed composting. IOP Conference Series: Earth and Environmental Science 637 (1):012080. doi: 10.1088/1755-1315/637/1/012080.
  • Salvi, K. P., W. da Silva Oliveira, P. A. Horta, L. R. Rörig, and E. de Oliveira Bastos. 2021. A new model of Algal Turf Scrubber for bioremediation and biomass production using seaweed aquaculture principles. Journal of Applied Phycology 33:2577–2586. doi: 10.1007/s10811-021-02430-2.
  • Sánchez-Machado, D. I., J. López-Cervantes, J. Lopez-Hernandez, and P. Paseiro-Losada. 2004. Fatty acids, total lipid, protein and ash contents of processed edible seaweeds. Food Chemistry 85 (3):439–44. doi: 10.1016/j.foodchem.2003.08.001.
  • Sang, V. T., N. D. Hung, and K. Se-Kwon. 2019. Pharmaceutical properties of marine polyphenols: An overview. ACTA Pharmaceutica Sciencia 57 (2):217–42. doi: 10.23893/1307-2080.APS.05714.
  • Sanjeewa, K. A., N. Kang, G. Ahn, Y. Jee, Y. T. Kim, and Y. J. Jeon. 2018. Bioactive potentials of sulfated polysaccharides isolated from brown seaweed Sargassum spp. in related to human health applications: A review. Food Hydrocolloids 81:200–8. doi: 10.1016/j.foodhyd.2018.02.040.
  • Sanjeewa, K. K. A., I. P. S. Fernando, E. A. Kim, G. Ahn, Y. Jee, and Y. J. Jeon. 2017. Anti-inflammatory activity of a sulfated polysaccharide isolated from an enzymatic digest of brown seaweed Sargassum horneri in RAW 264.7 cells. Nutrition Research and Practice 11 (1):3–10. doi: 10.4162/nrp.2017.11.1.3.
  • Santos, S. A. O., R. Félix, A. C. S. Pais, S. M. Rocha, and A. J. D. Silvestre. 2019. The quest for phenolic compounds from macroalgae: A review of extraction and identification methodologies. Biomolecules 9 (12):847. doi: 10.3390/biom9120847.
  • Sari, D. M., E. Anwar, N. Nurjanah N, and A. E. Arifianti. 2019. Antioxidant and tyrosinase inhibitor activities of ethanol extracts of Brown Seaweed (Turbinaria conoides) as lightening ingredient. Pharmacognosy Journal 11 (2):379–82. doi: 10.5530/pj.2019.11.58.
  • Schmid, M., L. G. K. Kraft, L. M. Van Der Loos, G. T. Kraft, P. Virtue, P. D. Nichols, and C. L. Hurd. 2018. Southern Australian seaweeds: A promising resource for omega-3 fatty acids. Food Chemistry 265:70–7. doi: 10.1016/j.foodchem.2018.05.060.
  • Seedevi, P., M. Moovendhan, S. Sudharsan, S. Vasanthkumar, A. Srinivasan, S. Vairamani, and A. Shanmugam. 2015. Structural characterization and bioactivities of sulfated polysaccharide from Monostroma oxyspermum. International Journal of Biological Macromolecules 72:1459–65. doi: 10.1016/j.ijbiomac.2014.09.062.
  • Sellimi, S., A. Benslima, G. Ksouda, V. B. Montero, M. Hajji, and M. Nasri. 2018. Safer and healthier reduced nitrites Turkey meat sausages using lyophilized Cystoseira barbata seaweed extract. Journal of Complementary and Integrative Medicine 15 (1):1–14. doi: 10.1515/jcim-2017-0061.
  • Shannon, E., and N. Abu-Ghannam. 2016. Antibacterial derivatives of marine algae: An overview of pharmacological mechanisms and applications. Marine Drugs 14 (4):81. doi: 10.3390/md14040081.
  • Shao, P., X. Chen, and P. Sun. 2013. In vitro antioxidant and antitumor activities of different sulfated polysaccharides isolated from three algae. International Journal of Biological Macromolecules 62:155–61. doi: 10.1016/j.ijbiomac.2013.08.023.
  • Shibata, T., K. Fujimoto, K. Nagayama, K. Yamaguchi, and T. Nakamura. 2002. Inhibitory activity of brown algal phlorotannins against hyaluronidase. International Journal of Food Science and Technology 37 (6):703–9. doi: 10.1046/j.1365-2621.2002.00603.x.
  • Shrestha, S., W. Zhang, and S. D. Smid. 2021. Phlorotannins: A review on biosynthesis, chemistry and bioactivity. Food Bioscience 39:100832. doi: 10.1016/j.fbio.2020.100832.
  • Šimat, V., M. Čagalj, D. Skroza, F. Gardini, G. Tabanelli, C. Montanari, A. Hassoun, and F. Özogul. 2021. Sustainable sources for antioxidant and antimicrobial compounds used in meat and seafood products. In Advances in food and nutrition research, ed. F. Toldrá, 55–118. Academic Press. doi: 10.1016/bs.afnr.2021.03.001.
  • Singh, D., S. M. Zo, D. Singh, and S. S. Han. 2019. Interpenetrating alginate on gelatin–poly (2-hydroxyethyl methacrylate) as a functional polymeric matrix for cartilage tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials 68 (10):551–63. doi: 10.1080/00914037.2016.1252349.
  • Skroza, D., V. Šimat, S. Smole Možina, V. Katalinić, N. Boban, and I. Generalić Mekinić. 2019. Interactions of resveratrol with other phenolics and activity against food-borne pathogens. Food Science & Nutrition 7 (7):2312–8. doi: 10.1002/fsn3.1073.
  • Smyrniotopoulos, V., C. Merten, D. Firsova, H. Fearnhead, and D. Tasdemir. 2020. Oxygenated acyclic diterpenes with anticancer activity from the Irish brown seaweed Bifurcaria bifurcata. Marine Drugs 18 (11):581. doi: 10.3390/md18110581.
  • Smyth, P. P. 2021. Iodine, seaweed, and the thyroid. European Thyroid Journal 10 (2):101–16. doi: 10.1159/000512971.
  • Solanki, R. D., and N. H. Joshi. 2021. Effect of seaweed Caulerpa spp. as dietary ingredient on growth performance and survival of Labeo rohita (Hamilton, 1822) fry. Journal of Entomology and Zoology Studies 9 (1):618–21.
  • Song, R., M. Murphy, C. Li, K. Ting, C. Soo, and Z. Zheng. 2018. Current development of biodegradable polymeric materials for biomedical applications. Drug Design, Development and Therapy 12:3117–45. doi: 10.2147/DDDT.S165440.
  • Souza, B. W. S., M. A. Cerqueira, J. T. Martins, M. A. C. Quintas, A. C. S. Ferreira, J. A. Teixeira, and A. A. Vicente. 2011. Antioxidant potential of two red seaweeds from the Brazilian Coasts. Journal of Agricultural and Food Chemistry 59 (10):5589–94. doi: 10.1021/jf200999n.
  • Sozio, P., L. S. Cerasa, L. Marinelli, and A. Di Stefano. 2012. Transdermal donepezil on the treatment of Alzheimer’s disease. Neuropsychiatric Disease and Treatment 8:361–8. doi: 10.2147/NDT.S16089.
  • Stengel, D. B., S. Connan, and Z. A. Popper. 2011. Algal chemodiversity and bioactivity: Sources of natural variability and implications for commercial application. Biotechnology Advances 29 (5):483–501. doi: 10.1016/j.biotechadv.2011.05.016.
  • Stock, K., M. F. Estrada, S. Vidic, K. Gjerde, A. Rudisch, V. E. Santo, M. Barbier, S. Blom, S. C. Arundkar, I. Selvam, et al. 2016. Capturing tumor complexity in vitro: Comparative analysis of 2D and 3D tumor models for drug discovery. Scientific Reports 6:28951. doi: 10.1038/srep28951.
  • Stout, E. P., J. Prudhomme, K. Le Roch, C. R. Fairchild, S. G. Franzblau, W. Aalbersberg, M. E. Hay, and J. Kubanek. 2010. Unusual antimalarial meroditerpenes from tropical red macroalgae. Bioorganic & Medicinal Chemistry Letters 20 (19):5662–5. doi: 10.1016/j.bmcl.2010.08.031.
  • Suganya, A. M., M. Sanjivkumar, M. N. Chandran, A. Palavesam, and G. Immanuel. 2016. Pharmacological importance of sulphated polysaccharide carrageenan from red seaweed Kappaphycus alvarezii in comparison with commercial carrageenan. Biomedicine & Pharmacotherapy 84:1300–12. doi: 10.1016/j.biopha.2016.10.067.
  • Sutapa, B. M., A. Dhruti, and R. B. Gopa. 2017. Pharmacological, pharmaceutical, cosmetic and diagnostic applications of sulfated polysaccharides from marine algae and bacteria. African Journal of Pharmacy and Pharmacology 11 (5):68–77. doi: 10.5897/AJPP2016.4695.
  • Sutthapitaksakul, L., C. R. Dass, and P. Sriamornsak. 2021. Donepezil-an updated review of challenges in dosage form design. Journal of Drug Delivery Science and Technology 63:102549. doi: 10.1016/j.jddst.2021.102549.
  • Szekalska, M., A. Puciłowska, E. Szymańska, P. Ciosek, and K. Winnicka. 2016. Alginate: Current use and future perspectives in pharmaceutical and biomedical applications. International Journal of Polymer Science 2016:1–17. doi: 10.1155/2016/7697031.
  • Takahashi, M., K. Takahashi, S. Abe, K. Yamada, M. Suzuki, M. Masahisa, M. Endo, K. Abe, R. Inoue, and H. Hoshi. 2020. Improvement of psoriasis by alteration of the gut environment by oral administration of fucoidan from Cladosiphon okamuranus. Marine Drugs 18 (3):154. doi: 10.3390/md18030154.
  • Tang, J., W. Wang, and W. Chu. 2020. Antimicrobial and anti-quorum sensing activities of phlorotannins from seaweed (Hizikia fusiforme). Frontiers in Cellular and Infection Microbiology 10:652. doi: 10.3389/fcimb.2020.586750.
  • Takeuchi, Y., R. Usui, H. Ikezaki, K. Tahara, and H. Takeuchi. 2017. Characterization of orally disintegrating films: A feasibility study using an electronic taste sensor and a flow-through cell. Journal of Drug Delivery Science and Technology 39:104–12. doi: 10.1016/j.jddst.2017.03.010.
  • Thépot, V., A. H. Campbell, M. A. Rimmer, and N. A. Paul. 2021. Meta‐analysis of the use of seaweeds and their extracts as immunostimulants for fish: A systematic review. Reviews in Aquaculture 13 (2):907–33. doi: 10.1111/raq.12504.
  • Thiyagarasaiyar, K., B.-H. Goh, Y.-J. Jeon, and Y.-Y. Yow. 2020. Algae metabolites in cosmeceutical: An overview of current applications and challenges. Marine Drugs 18 (6):323. doi: 10.3390/md18060323.
  • Tomori, M., T. Nagamine, and M. Iha. 2020. Are Helicobacter pylori infection and fucoidan consumption associated with fucoidan absorption? Marine Drugs 18 (5):235. doi: 10.3390/md18050235.
  • Trif, M., D. C. Vodnar, L. Mitrea, A. V. Rusu, and C. T. Socol. 2019. Design and development of oleoresins rich in carotenoids coated microbeads. Coatings 9 (4):235. doi: 10.3390/coatings9040235.
  • Vala, M., A. Augusto, A. Horta, S. Mendes, and M. M. Gil. 2017. Effect of tuna skin gelatin-based coating enriched with seaweed extracts on the quality of tuna fillets during storage at 4 °C. International Journal of Food Studies 6 (2):201–21. doi: 10.7455/ijfs/6.2.2017.a7.
  • Van Weelden, G., M. Bobiński, K. Okła, W. J. Van Weelden, A. Romano, and J. M. A. Pijnenborg. 2019. Fucoidan structure and activity in relation to anti-cancer mechanisms. Marine Drugs 17 (1):32. doi: 10.3390/md17010032.
  • Venkatesan, J., I. Bhatnagar, and S.-K. Kim. 2014. Chitosan-alginate biocomposite containing fucoidan for bone tissue engineering. Marine Drugs 12 (1):300–16. doi: 10.3390/md12010300.
  • Vieira, E. F., C. Soares, S. Machado, M. Correia, M. J. Ramalhosa, M. T. Oliva-Teles, A. Paula Carvalho, V. F. Domingues, F. Antunes, T. A. C. Oliveira, et al. 2018. Seaweeds from the Portuguese coast as a source of proteinaceous material: Total and free amino acid composition profile. Food Chemistry 269:264–75. doi: 10.1016/j.foodchem.2018.06.145.
  • Vigors, S., J. O’Doherty, R. Rattigan, and T. Sweeney. 2021. Effect of supplementing seaweed extracts to pigs until d35 post-weaning on performance and aspects of intestinal health. Marine Drugs 19 (4):183. doi: 10.3390/md19040183.
  • Vilar, E. G., H. Ouyang, M. G. O. Sullivan, J. P. Kerry, R. M. Hamill, M. O. Grady, O. Halimah, and K. N. Kilcawley. 2020. Effect of salt reduction and inclusion of 1% edible seaweeds on the chemical, sensory and volatile component profile of reformulated frankfurters. Meat Science 161:108001. doi: 10.1016/j.meatsci.2019.108001.
  • Vishchuk, O. S., S. P. Ermakova, and T. N. Zvyagintseva. 2011. Sulfated polysaccharides from brown seaweeds Saccharina japonica and Undaria pinnatifida: Isolation, structural characteristics, and antitumor activity. Carbohydrate Research 346 (17):2769–6. doi: 10.1016/j.carres.2011.09.034.
  • Vona, D., M. Lo Presti, S. R. Cicco, F. Palumbo, R. Ragni, and G. M. Farinola. 2016. Light emitting silica nanostructures by surface functionalization of diatom algae shells with a triethoxysilane-functionalized π conjugated fluorophore. MRS Advances 1 (57):3817–3823. doi: 10.1557/adv.2015.21.
  • Wan-Loy, C., and P. Siew-Moi. 2016. Marine algae as a potential source for anti-obesity agents. Marine Drugs 14 (12):222. doi: 10.3390/md14120222.
  • Wang, H. D., X. C. Li, D. J. Lee, and J. S. Chang. 2017. Potential biomedical applications of marine algae. Bioresource Technology 244:1407–1415. doi: 10.1016/j.biortech.2017.05.198.
  • Wang, L., W. Lee, J. Oh, Y. Cui, B. Ryu, and Y. J. Jeon. 2018. Protective effect of sulfated polysaccharides from celluclast-assisted extract of hizikia fusiforme against ultraviolet b-induced skin damage by regulating NF-κB, AP-1, and MAPKs signaling pathways in vitro in human dermal fibroblasts. Marine Drugs 16 (7):239. doi: 10.3390/md16070239.
  • Wang, L., Y. R. Cui, H. W. Yang, H. G. Lee, J. Y. Ko, and Y. J. Jeon. 2019. A mixture of seaweed extracts and glycosaminoglycans from sea squirts inhibits α-MSH-induced melanogenesis in B16F10 melanoma cells. Fisheries and Aquatic Science 22:11. doi: 10.1186/s41240-019-0126-3.
  • Wang, S., S. Zhao, B. B. Uzoejinwa, A. Zheng, Q. Wang, J. Huang, and A. E. F. Abomohra. 2020. A state-of-the-art review on dual purpose seaweeds utilization for wastewater treatment and crude bio-oil production. Energy Conversion and Management 222:113253–16. doi: 10.1016/j.enconman.2020.113253.
  • Wang, S., S. Zhao, X. Cheng, L. Qian, B. Barati, X. Gong, B. Cao, and C. Yuan. 2021. Study on two-step hydrothermal liquefaction of macroalgae for improving bio-oil. Bioresource Technology 319:124176. doi: 10.1016/j.biortech.2020.124176.
  • Wang, S., W. Wang, L. Hou, L. Qin, M. He, W. Li, and W. Mao. 2020. A sulfated glucuronorhamnan from the green seaweed Monostroma nitidum: Characteristics of its structure and antiviral activity. Carbohydrate Polymers 227:115280. doi: 10.1016/j.carbpol.2019.115280.
  • Wang, W., P. Zhang, C. Hao, X. E. Zhang, Z. Q. Cui, and H. S. Guan. 2011. In vitro inhibitory effect of carrageenan oligosaccharide on influenza A H1N1 virus. Antiviral Research 92 (2):237–46. doi: 10.1016/j.antiviral.2011.08.010.
  • Wang, X., Z. Zhang, Z. Yao, M. Zhao, and H. Qi. 2013. Sulfation, anticoagulant and antioxidant activities of polysaccharide from green algae Enteromorpha linza. International Journal of Biological Macromolecules 58:225–30. doi: 10.1016/j.ijbiomac.2013.04.005.
  • Wang, Y., M. Xing, Q. Cao, A. Ji, H. Liang, and S. Song. 2019. Biological activities of fucoidan and the factors mediating its therapeutic effects: A review of recent studies. Marine Drugs 17 (3):183. doi: 10.3390/md17030183.
  • Westermeier, R., P. Murúa, M. Robles, M. Barria, D. J. Patino, L. Munoz, and D. G. Müller. 2020. Population biology and chemical composition of the red alga Callophyllis variegata (Rhodophyta; Cryptonemiales) in southern Chile. Journal of Applied Phycology 32 (4):2505–13. doi: 10.1007/s10811-019-01988-2.
  • WHO. 2021. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death.
  • Widowati, L. L., S. B. Prayitno, S. Rejeki, T. Elfitasari, P. W. Purnomo, R. W. Ariyati, and R. H. Bosma. 2021. Organic matter reduction using four densities of seaweed (Gracilaria verrucosa) and green mussel (Perna viridis) to improve water quality for aquaculture in Java, Indonesia. Aquatic Living Resources 34:5. doi: 10.1051/alr/2021002.
  • Wijesinghe, W. A. J. P., Y. Athukorala, and Y.-J. Jeon. 2011. Effect of anticoagulative sulfated polysaccharide purified from enzyme-assistant extract of a brown seaweed Ecklonia cava on Wistar rats. Carbohydrate Polymers 86 (2):917–21. doi: 10.1016/j.carbpol.2011.05.047.
  • Wu, G. J., S. M. Shiu, M. C. Hsieh, and G. J. Tsai. 2016. Anti-inflammatory activity of a sulfated polysaccharide from the brown alga Sargassum cristaefolium. Food Hydrocolloids. 11:3–10. doi: 10.1016/j.foodhyd.2015.01.019.
  • Xu, T., S. Sutour, H. Casabianca, F. Tomi, M. Paoli, M. Garrido, V. Pasqualini, A. Aiello, V. Castola, and A. Bighelli. 2015. Rapid screening of chemical compositions of Gracilaria dura and Hypnea musciformis (Rhodophyta) from Corsican Lagoon. International Journal of Phytocosmetics and Natural Ingredients 2 (1):8. doi: 10.15171/ijpni.2015.08.
  • Yan, M. D., H. Y. Lin, and P. A. Hwang. 2019. The anti-tumor activity of brown seaweed oligo-fucoidan via lncRNA expression modulation in HepG2 cells. Cytotechnology 71 (1):363–74. doi: 10.1007/s10616-019-00293-7.
  • Yang, Y. I., J. H. Ahn, Y. S. Choi, and J. H. Choi. 2015. Brown algae phlorotannins enhance the tumoricidal effect of cisplatin and ameliorate cisplatin nephrotoxicity. Gynecologic Oncology 136 (2):355–64. doi: 10.1016/j.ygyno.2014.11.015.
  • Yin, R., Q. Chen, and M. R. Hamblin. 2015. Skin aging and photoaging. In Skin photoaging, 1–4. San Rafael, CA: Morgan & Claypool Publishers.
  • Yoon, M., J.-S. Kim, M. Y. Um, H. Yang, J. Kim, Y. T. Kim, C. Lee, S.-B. Kim, S. Kwon, and S. Cho. 2017. Extraction optimization for phlorotannin recovery from the edible brown seaweed Ecklonia cava. Journal of Aquatic Food Product Technology 26 (7):801–10. doi: 10.1080/10498850.2017.1313348.
  • Yu, C.-C., J.-J. Chang, Y.-H. Lee, Y.-C. Lin, M.-H. Wu, M.-C. Yang, and C.-T. Chien. 2013. Electrospun scaffolds composing of alginate, chitosan, collagen and hydroxyapatite for applying in bone tissue engineering. Materials Letters 93:133–6. doi: 10.1016/j.matlet.2012.11.040.
  • Yu, M., Y. Ji, Z. Qi, D. Cui, G. Xin, B. Wang, Y. Cao, and D. Wang. 2017. Anti-tumor activity of sulfated polysaccharides from Sargassum fusiforme. Saudi Pharmaceutical Journal 25 (4):464–78. doi: 10.1016/j.jsps.2017.04.007.
  • Zang, L., Y. Shimada, T. Tanaka, and N. Nishimura. 2015. Rhamnan sulphate from Monostroma nitidum attenuates hepatic steatosis by suppressing lipogenesis in a diet-induced obesity zebrafish model. Journal of Functional Foods 17:364–70. doi: 10.1016/j.jff.2015.05.041.
  • Zarrintaj, P., B. Bakhshandeh, I. Rezaeian, B. Heshmatian, and M. R. Ganjali. 2017. A novel electroactive agarose-aniline pentamer platform as a potential candidate for neural tissue engineering. Scientific Reports 7 (1):17187. doi: 10.1038/s41598-017-17486-9.
  • Zhang, Z., F. Wang, X. Wang, X. Liu, Y. Hou, and Q. Zhang. 2010. Extraction of the polysaccharides from five algae and their potential antioxidant activity in vitro. Carbohydrate Polymers 82 (1):118–21. doi: 10.1016/j.carbpol.2010.04.031.
  • Zhao, D., J. Xu, and X. Xu. 2018. Bioactivity of fucoidan extracted from Laminaria japonica using a novel procedure with high yield. Food Chemistry 245:911–8. doi: 10.1016/j.foodchem.2017.11.083.
  • Zhao, Y., Y. Zheng, J. Wang, S. Ma, Y. Yu, W. L. White, S. Yang, F. Yang, and J. Lu. 2018. Fucoidan extracted from Undaria pinnatifida: Source for nutraceuticals/functional foods. Marine Drugs 16 (9):321. doi: 10.3390/md16090321.
  • Zhong, R., X. Wan, D. Wang, C. Zhao, D. Liu, L. Gao, M. Wang, C. Wu, S. M. Nabavid, M. Daglia, et al. 2020. Polysaccharides from marine Enteromorpha: Structure and function. Trends in Food Science & Technology 99:11–20. doi: 10.1016/j.tifs.2020.02.030.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.