1,159
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Review of harmful chemical pollutants of environmental origin in honey and bee products

ORCID Icon & ORCID Icon

References

  • Abdullah, H. M., K. S. Jassim, and I. H. Kadhim. 2019. The natural radioactivity distribution and radiation hazard in honey bees samples. Plant Archives 19 (1):1549–53.
  • Adaškevičiūtė, V., V. Kaškonienė, P. Kaškonas, K. Barčauskaitė, and A. Maruška. 2019. Comparison of physicochemical properties of bee pollen with other bee products. Biomolecules 9 (12):819. doi: 10.3390/biom9120819.
  • Adugna, E., A. Hymete, G. Birhanu, and A. Ashenef. 2020. Determination of some heavy metals in honey from different regions of Ethiopia. Cogent Food & Agriculture 6 (1):1764182. doi: 10.1080/23311932.2020.1764182.
  • Agency for Toxic Substances and Disease (ATSDR). 2018. Registry case studies in environmental medicine polychlorinated biphenyls (PCBs) toxicity. Accessed July 27, 2021. https://www.atsdr.cdc.gov/csem/pcb/docs/pcb.pdf.
  • Al-Alam, J., Z. Fajloun, A. Chbani, and M. Millet. 2017. A multiresidue method for the analysis of 90 pesticides, 16 PAHs, and 22 PCBs in honey using QuEChERS-SPME. Analytical and Bioanalytical Chemistry 409 (21):5157–69. doi: 10.1007/s00216-017-0463-y.
  • Al-Alam, J., Z. Fajloun, A. Chbani, and M. Millet. 2019. Determination of 16 PAHs and 22 PCBs in honey samples originated from different region of Lebanon and used as environmental biomonitors sentinel. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering 54 (1):9–15. doi: 10.1080/10934529.2018.1500782.
  • Al-Kafaween, M. A., H. A. N. Al-Jamal, A. B. M. Hilmi, N. A. Elsahoryi, N. Jaffar, and M. K. Zahri. 2020. Antibacterial properties of selected Malaysian Tualang honey against Pseudomonas aeruginosa and Streptococcus pyogenes. Iranian Journal of Microbiology 12 (6):565–76. doi: 10.18502/ijm.v12i6.5031.
  • Aldgini, H., A. Abdullah Al-Abbadi, E. Abu-Nameh, and R. O. Alghazeer. 2019. Determination of metals as bio indicators in some selected bee pollen samples from Jordan. Saudi Journal of Biological Sciences 26 (7):1418–22. doi: 10.1016/j.sjbs.2019.03.005.
  • Alqarni, A. S., A. I. Rushdi, A. A. Owayss, H. S. Raweh, A. H. El-Mubarak, and B. R. Simoneit. 2015. Organic tracers from asphalt in propolis produced by urban honey bees, Apis mellifera Linn. PLoS One 10 (6):e0128311. doi: 10.1371/journal.pone.0128311.
  • Alghamdi, B. A., E. S. Alshumrani, M. Saeed, G. M. Rawas, N. T. Alharthi, M. N. Baeshen, N. M. Helmi, M. Z. Alam, and M. Suhail. 2020. Analysis of sugar composition and pesticides using HPLC and GC-MS techniques in honey samples collected from Saudi Arabian markets. Saudi Journal of Biological Sciences 27 (12):3720–6. doi: 10.1016/j.sjbs.2020.08.018.
  • Alim, E. C., and E. Yarsan. 2020. Metal contents in honey samples from different regions in Ankara. Israel Journal of Veterinary Medicine 75 (3):148–52.
  • Aliu, H., S. Makolli, S. Dizman, S. Kadiri, and G. Hodolli. 2020. Impact of environmental conditions on heavy metal concentration in honey samples. Journal of Environmental Protection and Ecology 21:351–8.
  • Amorena, M., P. Visciano, A. Giacomelli, E. Marinelli, A. G. Sabatini, P. Medrzycki, L. P. Oddo, F. M. De Pace, P. Belligoli, G. D. Serafino, et al. 2009. Monitoring of levels of polycyclic aromatic hydrocarbons in bees caught from beekeeping: Remark 1. Veterinary Research Communications 33 (S1):165–7. doi: 10.1007/s11259-009-9283-7.
  • Andreo-Martínez, P., J. Oliva, J. J. Giménez-Castillo, M. Motas, J. Quesada-Medina, and M. Á. Cámara. 2020. Science production of pesticide residues in honey research: A descriptive bibliometric study. Environmental Toxicology and Pharmacology 79:103413. doi: 10.1016/j.etap.2020.103413.
  • Asama, T., T. Hiraoka, A. Ohkuma, N. Okumura, A. Yamaki, and K. Urakami. 2021. Cognitive Improvement and Safety Assessment of a Dietary Supplement Containing Propolis Extract in Elderly Japanese: A Placebo-Controlled, Randomized, Parallel-Group, Double-Blind Human Clinical Study. Evidence-Based Complementary and Alternative Medicine : eCAM 2021 :6664217. doi: 10.1155/2021/6664217.
  • Bartha, S., I. Taut, G. Goji, I. A. Vlad, and F. Dinulică. 2020. Heavy metal content in polyfloral honey and potential health risk. A case study of Copșa Mică. International Journal of Environmental Research and Public Health 17 (5):1507. doi: 10.3390/ijerph17051507.
  • Battaloglua, R., F. Yalcinb, E. Yakupoglua, N. Ilbeylic, and M. G. Yalcin. 2016. Multivariate analyses to determine the origin of some polycyclic aromatic hydrocarbons (PAHS) in honey samples. Oxidation Communications 39 (2):1547–54.
  • Bayram, E. N. 2021. Vitamin, mineral, polyphenol, amino acid profile of bee pollen from Rhododendron ponticum (source of “mad honey”): Nutritional and palynological approach. Food Measure 15:2659–66. doi: 10.1007/s11694-021-00854-5.
  • Bazeyad, A. Y., A. S. Al-Sarar, A. I. Rushdi, A. S. Hassanin, and Y. Abobakr. 2019. Levels of heavy metals in a multifloral Saudi honey. Environmental Science and Pollution Research International 26 (4):3946–53. doi: 10.1007/s11356-018-3909-7.
  • Ben Mukiibi, S., S. A. Nyanzi, J. Kwetegyeka, C. Olisah, A. M. Taiwo, E. Mubiru, E. Tebandeke, H. Matovu, S. Odongo, J. J. M. Abayi, et al. 2021. Organochlorine pesticide residues in Uganda’s honey as a bioindicator of environmental contamination and reproductive health implications to consumers. Ecotoxicology and Environmental Safety 214:112094. doi: 10.1016/j.ecoenv.2021.112094.
  • Beňová, K., P. Dvořák, and M. Špalková. 2019. Radiocaesium in honey from Košice and Prešov regions in eastern Slovakia. Folia Veterinaria 63 (4):27–32. doi: 10.2478/fv-2019-0034.
  • Belina-Aldemita, M. D., V. Fraberger, M. Schreiner, K. J. Domig, and S. D’Amico. 2020. Safety aspects of stingless bee pot-pollen from the Philippines. Die Bodenkultur: Journal of Land Management, Food and Environment 71 (2):87–100. doi: 10.2478/boku-2020-0009.
  • Bilandžić, N., M. Sedak, M. Đokić, A. G. Bošković, T. Florijančić, I. Bošković, M. Kovačić, Z. Puškadija, and M. Hruškar. 2019. Element content in ten Croatian honey types from different geographical regions during three seasons. Journal of Food Composition and Analysis 84:103305. doi: 10.1016/j.jfca.2019.103305.
  • Bilandžić, N., M. Sedak, M. Đokić, A. G. Bošković, T. Florijančić, I. Bošković, M. Kovačić, Z. Puškadija, and M. Hruškar. 2020. Assessment of toxic and trace elements in multifloral honeys from two regions of continental Croatia. Bulletin of Environmental Contamination and Toxicology 104 (1):84–9. doi: 10.1007/s00128-019-02764-1.
  • Bommuraj, V., Y. Chen, H. Klein, R. Sperling, S. Barel, and J. A. Shimshoni. 2019. Pesticide and trace element residues in honey and beeswax combs from Israel in association with human risk assessment and honey adulteration. Food Chemistry 299:125123. doi: 10.1016/j.foodchem.2019.125123.
  • Boryło, A., G. Romańczyk, J. Wieczorek, D. Strumińska-Parulska, and M. Kaczor. 2019. Radioactivity of honey from northern Poland. Journal of Radioanalytical and Nuclear Chemistry 319 (1):289–96. doi: 10.1007/s10967-018-6343-x.
  • Bosancic, B., M. Zabic, D. Mihajlovic, J. Samardzic, and G. Mirjanic. 2020. Comparative study of toxic heavy metal residues and other properties of honey from different environmental production systems. Environmental Science and Pollution Research International 27 (30):38200–11. doi: 10.1007/s11356-020-09882-y.
  • Boutoub, O., S. El-Guendouz, A. Manhita, C. B. Dias, L. M. Estevinho, V. B. Paula, J. Carlier, M. C. Costa, B. Rodrigues, S. Raposo, et al. 2021. Comparative study of the antioxidant and enzyme inhibitory activities of two types of Moroccan euphorbia entire honey and their phenolic extracts. Foods 10 (8):1909. doi: 10.3390/foods10081909.
  • Bulubasa, G., D. Costinel, A. F. Miu, and M. R. Ene. 2021. Activity concentrations of 238U, 232Th, 226Ra 137Cs and 40K radionuclides in honey samples from Romania. Lifetime cancer risk estimated. Journal of Environmental Radioactivity 234:106626. doi: 10.1016/j.jenvrad.2021.106626.
  • Capitani, G., G. Papa, M. Pellecchia, and I. Negri. 2021. Disentangling multiple PM emission sources in the Po Valley (Italy) using honey bees. Heliyon 7 (2):e06194. doi: 10.1016/j.heliyon.2021.e06194.
  • Chiesa, L. M., G. F. Labella, A. Giorgi, S. Panseri, R. Pavlovic, S. Bonacci, and F. Arioli. 2016. The occurrence of pesticides and persistent organic pollutants in Italian organic honeys from different productive areas in relation to potential environmental pollution. Chemosphere 154:482–90. doi: 10.1016/j.chemosphere.2016.04.004.
  • Chiesa, L. M., S. Panseri, M. Nobile, F. Ceriani, and F. Arioli. 2018. Distribution of POPs, pesticides and antibiotic residues in organic honeys from different production areas. Food Additives & Contaminants: Part A: Chemistry, Analysis, Control, Exposure & Risk Assessment 35 (7):1340–55. doi: 10.1080/19440049.2018.1451660.
  • Ciecierska, M., M. Obiedziński, and M. Albin. 2008. Contamination of fruit and herbal teas with polycyclic aromatic hydrocarbons. ŻYWNOŚĆ. Nauka. Technologia. Jakość 4 (59):283–9.
  • Ćirić, J., D. Spirić, T. Baltić, I. B. Lazić, D. Trbović, N. Parunović, R. Petronijević, and V. Đorđević. 2021. Honey bees and their products as indicators of environmental element deposition. Biological Trace Element Research 199 (6):2312–9. doi: 10.1007/s12011-020-02321-6.
  • Cochard, P., M. Laurie, B. Veyrand, B. Le Bizec, B. Poirot, and P. Marchand. 2021. PAH7 concentration reflects anthropization: A study using environmental biomonitoring with honeybees. The Science of the Total Environment 751:141831. doi: 10.1016/j.scitotenv.2020.141831.
  • Commission Recommendation (EU) of 11 September 2014 amending the Annex to Recommendation 2013/711/EU on the reduction of the presence of dioxins, furans and PCBs in feed and food. Accessed August 8, 2021. http://file:///C:/Users/Ada/AppData/Local/Temp/D-3.pdf.
  • Commission Regulation (EU) No 835/2011 of 19 August 2011 amending Regulation (EC) No 1881/2006 as regards maximum levels for polycyclic aromatic hydrocarbons in foodstuffs. Accessed July 27, 2021. https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:215:0004:0008:EN:PDF.
  • Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs (amended 09.08.2021). Accessed November 21, 2021. https://eur-lex.europa.eu/eli/reg/2021/1317/oj.
  • Council Regulation (Euratom) 2016/2016 52 of 15 January 2016 laying down maximum permitted levels of radioactive contamination of food and feed following a nuclear accident or any other case of radiological emergency, and repealing Regulation (Euratom) No 3954/87 and Commission Regulations (Euratom) No 944/89 and (Euratom) No 770/90. Accessed September 1, 2021. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0052&from=EN.
  • Commission Regulation (EU) 2021/1323 of 10 August 2021 amending Regulation (EC) No 1881/2006 as regards maximum levels of cadmium in certain foodstuffs. Accessed November 21, 2021. https://eur-lex.europa.eu/eli/reg/2021/1323/oj.
  • Darvishnejad, M., and H. Ebrahimzadeh. 2019. Phenyl propyl functionalized hybrid sol-gel reinforced aluminum strip as a thin film microextraction device for the trace quantitation of eight PCBs in liquid foodstuffs. Talanta 199:547–55. doi: 10.1016/j.talanta.2019.02.095.
  • Demir Kanbur, E., T. Yuksek, V. Atamov, and A. E. Ozcelik. 2021. A comparison of the physicochemical properties of chestnut and highland honey: The case of Senoz Valley in the Rize province of Turkey. Food Chemistry 345:128864. doi: 10.1016/j.foodchem.2020.128864.
  • Deng, W., A. Huang, Q. Zheng, L. Yu, X. Li, H. Hu, and Y. Xiao. 2021. A density-tunable liquid-phase microextraction system based on deep eutectic solvents for the determination of polycyclic aromatic hydrocarbons in tea, medicinal herbs and liquid foods. Food Chemistry 352:129331. doi: 10.1016/j.foodchem.2021.129331.
  • Di Bella, G., P. Licata, A. G. Potortì, R. Crupi, V. Nava, B. Qada, R. Rando, G. Bartolomeo, G. Dugo, and V. L. Turco. 2020. Mineral content and physico-chemical parameters of honey from North regions of Algeria. Natural Product Research. doi: 10.1080/14786419.2020.1791110.
  • Díaz, S., S. Paz, C. Rubio, Á. J. Gutiérrez, D. González-Weller, C. Revert, A. Bentabol, and A. Hardisson. 2019. Toxic metals and trace elements in artisanal honeys from the Canary Islands. Biological Trace Element Research 190 (1):242–50. doi: 10.1007/s12011-018-1538-0.
  • Diaz-Basantes, M. F., J. A. Conesa, and A. Fullana. 2020. Microplastics in honey, beer, milk and refreshments in ecuador as emerging contaminants. Sustainability 12 (14):5514. doi: 10.3390/su12145514.
  • Dizman, S., G. Hodolli, G. Kadiri, H. Aliu, and S. Makolli. 2020. Radioactivity in Kosovo honey samples. Polish Journal of Environmental Studies 29 (2):1119–27. doi: 10.15244/pjoes/105968.
  • Djuric, G., D. Popovic, D. Popeskovic, and B. Petrovic. 1991. The level of natural and fallout radionuclides in honey. Acta Veterinaria (Yugoslavia) 38 (5–6):293–8.
  • Dobrinas, S., S. Birghila, and V. Coatu. 2008. Assessment of polycyclic aromatic hydrocarbons in honey and propolis produced from various flowering trees and plants in Romania. Journal of Food Composition and Analysis 21 (1):71–7. doi: 10.1016/j.jfca.2007.07.003.
  • Đogo Mračević, S., M. Krstić, A. Lolić, and S. Ražić. 2020. Comparative study of the chemical composition and biological potential of honey from different regions of Serbia. Microchemistry Journal 152:104420. doi: 10.1016/j.microc.2019.104420.
  • dos Santos, M. C. S. Vareli, B. Janisch, I. R. Pizzutti, J. Fortes, C. K. Sautter, and I. H. Costabeber. 2021. Contamination of polychlorinated biphenyls in honey from the Brazilian state of Rio Grande do Sul. Food Additives & Contaminants: Part A: Chemistry, Analysis, Control, Exposure & Risk Assessment 38 (3):452–63. doi: 10.1080/19440049.2020.1865578.
  • Edo, C., A. R. Fernández-Alba, F. Vejsnaes, J. J. M. van der Steen, F. Fernández-Piñas, and R. Rosal. 2021. Honeybees as active samplers for microplastics. Science of the Total Environment 767:144481. doi: 10.1016/j.scitotenv.2020.144481.
  • El-Nahhal, Y. 2020. Pesticide residues in honey and their potential reproductive toxicity. Science of the Total Environment 741:139953. doi: 10.1016/j.scitotenv.2020.139953.
  • EPA. 2021. U.S. Environmental Protection Agency: Conducting a human health risk assessment. Accessed July 23, 2021. https://www.epa.gov/risk/conducting-human-health-risk-assessment.
  • Erdoğrul, Ö. 2007. Levels of selected pesticides in honey samples from Kahramanmaraş, Turkey. Food Control 18 (7):866–71. doi: 10.1016/j.foodcont.2006.05.001.
  • European Commission. 2020. Opinion of the SCF on the risk assessment of dioxins and dioxin-like PCBs in food. Accessed November 14, 2021. https://ec.europa.eu/food/system/files/2020-12/sci-com_scf_out78_en.pdf.
  • European Commission. 2021. Honey Market Presentation, 20 May 2021. Accessed August 3, 2021. https://ec.europa.eu/info/food-farming-fisheries/animals-and-animal-products/animal-products/honey_en.
  • European Food Safety Authority (EFSA). 2004. The EFSA’s 1st scientific colloquium report—Dioxins. Accessed August 8, 2021. doi: 10.2903/sp.efsa.2004.EN-124.
  • European Food Safety Authority (EFSA). 2008. Polycyclic aromatic hydrocarbons in food. Scientific opinion of the Panel on Contaminations in the Food Chain. EFSA Journal 724:1–114.
  • European Food Safety Authority (EFSA). 2011. Scientific opinion on polybrominated diphenyl ethers (PBDEs) in food. EFSA Journal 9:2156.
  • European Food Safety Authority (EFSA). 2012. Perfluoroalkylated substances in food: Occurrence and dietary exposure. EFSA Journal 10 (6):2743. doi: 10.2903/j.efsa.2012.2743.
  • European Parliament legislative resolution of 9 July 2015 on the proposal for a Council regulation laying down maximum permitted levels of radioactive contamination of food and feed following a nuclear accident or any other case of radiological emergency. Accessed August 8, 2021. https://www.europarl.europa.eu/doceo/document/TA-8-2015-0267_EN.html#top.
  • Fakhri, Y., M. Abtahi, A. Atamaleki, A. Raoofi, H. Atabati, A. Asadi, A. Miri, E. Shamloo, A. Alinejad, H. Keramati, et al. 2019. The concentration of potentially toxic elements (PTEs) in honey: A global systematic review and meta-analysis and risk assessment. Trends in Food Science & Technology 91:498–506. doi: 10.1016/j.tifs.2019.07.011.
  • Fazaieli, F., M. R. A. Mogaddam, M. A. Farajzadeh, B. Feriduni, and A. Mohebbi. 2020. Development of organic solvents-free mode of solidification of floating organic droplet-based dispersive liquid-liquid microextraction for the extraction of polycyclic aromatic hydrocarbons from honey samples before their determination by gas chromatography-mass spectrometry. Journal of Separation Science 43 (12):2393–400. doi: 10.1002/jssc.202000136.
  • Fischer, A., B. Brodziak-Dopierała, J. Bem, and B. Ahnert. 2021. Analysis of mercury concentration in honey from the point of view of human body exposure. Biological Trace Element Research. doi: 10.1007/s12011-021-02744-9.
  • Food and Agriculture Organization (FAO). Fact sheet on codex guideline levels for radionuclides in foods contaminated following a nuclear or radiological emergency, May 2011. Accessed August 5, 2021. http://www.fao.org/fileadmin/user_upload/agns/pdf/codex_guideline_for_radionuclitide_contaminated_food.pdf.
  • Food and Agriculture Organization (FAO) and the World Health Organization (WHO). Codex Alimentarius, international Food Standards, Standard for honey (CXS12-1981, adopted in 1981, revised in 1987, 2001. Amended in 2019). Accessed July 28, 2021. http://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B12-1981%252FCXS_012e.pdf
  • Food and Agriculture Organization (FAO) and the World Health Organization (WHO). Evaluation of certain food additives and contaminants. Seventy-third report of the Joint FAO/WHO Expert Committee on Food Additives, 2011. Accessed November 25, 2021. http://apps.who.int/iris/bitstream/handle/10665/44515/WHO_TRS_960_eng.pdf;jsessionid=C34D3D1137123577AA2C1723DB9F3B4C?sequence=1.
  • Food and Agriculture Organization (FAO) and the World Health Organization (WHO). Evaluation of certain food additives and contaminants. Seventy-seven report of the Joint FAO/WHO Expert Committee on Food Additives, 2013. Accessed November 25, 2021. https://apps.who.int/iris/bitstream/handle/10665/98388/9789241209830_eng.pdf?sequence=1.
  • Food and Drug Administration (FDA). 2020. Lead in food, foodwares, and dietary supplements. Accessed August 27, 2021. https://www.fda.gov/food/metals-and-your-food/lead-food-foodwares-and-dietary-supplements.
  • Food Safety News. 2021. WHO wants data on heavy metals in food. Accessed July 27, 2021. https://www.foodsafetynews.com/2021/07/who-wants-data-on-heavy-metals-in-food/.
  • Franić, Z., and G. Branica. 2019. Long-term Investigations of 134Cs and 137Cs activity concentrations in honey from Croatia. Bulletin of Environmental Contamination and Toxicology 102 (4):462–7. doi: 10.1007/s00128-019-02571-8.
  • Friedle, C., K. Wallner, P. Rosenkranz, D. Martens, and W. Vetter. 2021. Pesticide residues in daily bee pollen samples (April–July) from an intensive agricultural region in Southern Germany. Environmental Science and Pollution Research International 28 (18):22789–803. doi: 10.1007/s11356-020-12318-2.
  • Gaweł, M., T. Kiljanek, A. Niewiadowska, S. Semeniuk, M. Goliszek, O. Burek, and A. Posyniak. 2019. Determination of neonicotinoids and 199 other pesticide residues in honey by liquid and gas chromatography coupled with tandem mass spectrometry. Food Chemistry 282:36–47. doi: 10.1016/j.foodchem.2019.01.003.
  • Gómez-Ramos, M. M., S. Ucles, C. Ferrer, A. R. Fernández-Alba, and M. D. Hernando. 2019. Exploration of environmental contaminants in honeybees using GC-TOF-MS and GC-Orbitrap-MS. Science of the Total Environment 647:232–44. doi: 10.1016/j.scitotenv.2018.08.009.
  • Graham, K. K., M. O. Milbrath, Y. Zhang, A. Soehnlen, N. Baert, S. McArt, and R. Isaacs. 2021. Identities, concentrations, and sources of pesticide exposure in pollen collected by managed bees during blueberry pollination. Scientific Reports 11 (1):16857. doi: 10.1038/s41598-021-96249-z.
  • Grainger, M. N. C., H. Klaus, N. Hewitt, and A. D. French. 2021. Investigation of inorganic elemental content of honey from regions of North Island, New Zealand. Food Chemistry 361:130110. doi: 10.1016/j.foodchem.2021.130110.
  • Gutiérrez, M., R. Molero, M. Gaju, J. van der Steen, P. Porrini, and J. A. Ruiz. 2020. Assessing heavy metal pollution by biomonitoring honeybee nectar in Córdoba (Spain). Environmental Science and Pollution Research International 27 (10):10436–48. doi: 10.1007/s11356-019-07485w.
  • Günes, M. E., M. F. Sari, and F. Esen. 2021. Organochlorine pesticides in honeybee, pollen and honey in Bursa, Turkey. Food Additives & Contaminants: Part B Surveillance 14 (2):126–32. doi: 10.1080/19393210.2021.1896583.
  • Han, Y., Z. Wang, J. Zhou, H. Che, M. Tian, H. Wang, G. Shi, F. Yang, S. Zhang, and Y. Chen. 2021. PM2.5-Bound heavy metals in Southwestern China: Characterization, sources, and health risks. Atmosphere 12 (7):929. doi: 10.3390/atmos12070929.
  • Harizanis, P. C., E. Alissandrakis, P. A. Tarantilis, and M. Polissiou. 2008. Solid-phase microextraction/gas-chromatographic/mass spectrometric analysis of p-dichlorobenzene and naphthalene in honey. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 25 (10):1272–7. doi: 10.1080/02652030802007546.
  • Hazrat, A., and K. Ezzat. 2018. What are heavy metals? Long-standing controversy over the scientific use of the term ‘heavy metals’—Proposal of a comprehensive definition. Toxicological and Environmental Chemistry 100 (1):6–19. doi: 10.1080/02772248.2017.1413652.
  • Herrera, A., C. Pérez-Arquillué, P. Conchello, S. Bayarri, R. Lázaro, C. Yagüe, and A. Ariño. 2005. Determination of pesticides and PCBs in honey by solid-phase extraction cleassssssnup followed by gas chromatography with electron-capture and nitrogen-phosphorus detection. Analytical and Bioanalytical Chemistry 381 (3):695–701. doi: 10.1007/s00216-004-2924.
  • Hertz-Picciotto, I., M. J. Charles, R. A. James, J. A. Keller, E. Willman, and S. Teplin. 2005. In utero polychlorinated biphenyl exposures in relation to fetal and early childhood growth. Epidemiology (Cambridge, Mass.) 16 (5):648–56. doi: 10.1097/01.ede.0000173043.85834.f3.
  • Hungerford, N. L., M. T. Fletcher, H. H. Tsai, D. Hnatko, L. J. Swann, C. L. Kelly, S. R. Anuj, U. Tinggi, D. C. Webber, S. T. Were, et al. 2021. Occurrence of environmental contaminants (pesticides, herbicides, PAHs) in Australian/Queensland Apis mellifera honey. Food Additives & Contaminants. Part B, Surveillance 14 (3):193–213. doi: 10.1080/19393210.2021.1914743.
  • International Agency for Research on Cancer (IARC). 2006. Monographs on the evaluation of carcinogenic risks to humans: Inorganic and organic lead compounds. Volume 87. Lyon: IARC.
  • International Agency for Research on Cancer (IARC). 2010. Monographs on the evaluation of carcinogenic risks to humans: Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. Volume 92. Lyon: IARC.
  • International Agency for Research on Cancer (IARC). 2012. Monographs on the evaluation of carcinogenic risk to human: Arsenic, metals, fibres, and dusts a review of human carcinogens. Volume 100C. Lyon: IARC.
  • International Agency for Research on Cancer (IARC). 2016. Monographs on the evaluation of carcinogenic risk to human: Polychlorinated biphenyls and polybrominated biphenyls. Volume 107. Lyon: IARC.
  • International Agency for Research on Cancer (IARC). 2021. Monographs on the identification of carcinogenic hazards to humans, list of classification, agents classified by the IARC monographs, volumes 1–129, update 22 July 2021. Accessed August 10, 2021. https://monographs.iarc.who.int/list-of-classifications.
  • International Commission on Radiological Protection (ICRP). 2007. The 2007 recommendations of the International Commission on Radiological Protection (No. ICRP Publication 103).
  • Iwegbue, C. M. A., G. O. Tesi, G. Obi, G. E. Obi-Iyeke, U. A. Igbuku, and B. S. Martincigh. 2016. Concentrations, health risks and sources of polycyclic aromatic hydrocarbons in Nigerian honey. Toxicology and Environmental Health Sciences 8 (1):28–42. doi: 10.1007/s135300160259-z.
  • Joint FAO/WHO Expert Committee on Food Additives. 1989. Evaluation of certain food additives and contaminants. WHO Technical Report Series, No. 776. Geneva: WHO. Accessed August 30, 2021. https://apps.who.int/iris/bitstream/handle/10665/39252/WHO_TRS_776.pdf?sequence=1&isAllowed=y.
  • Joint FAO/WHO Expert Committee on Food Additives. 2010. Evaluation of certain food additives and contaminants. WHO Technical Report Series, No. 959. Geneva: WHO. Accessed August 30, 2021. https://apps.who.int/iris/bitstream/handle/10665/44514/WHO_TRS_959_eng.pdf?sequence=1&isAllowed=y.
  • Jovetić, M. S., A. S. Redžepović, N. M. Nedić, D. Vojt, S. Z. Đurđić, I. D. Brčeski, and D. M. Milojković-Opsenica. 2018. Urban honey—The aspects of its safety. Arhiv za higijenu rada i toksikologiju 69 (3):264–74. doi: 10.2478/aiht-2018-69-3126.
  • Kargar, N., G. Matin, A. A. Matin, and H. B. Buyukisik. 2017. Biomonitoring, status and source risk assessment of polycyclic aromatic hydrocarbons (PAHs) using honeybees, pine tree leaves, and propolis. Chemosphere 186:140–50. doi: 10.1016/j.chemosphere.2017.07.127.
  • Kast, C., V. Kilchenmann, and J. D. Charrière. 2021. Long-term monitoring of lipophilic acaricide residues in commercial Swiss beeswax. Pest Management Science 77 (9):4026–33. doi: 10.1002/ps.6427.
  • Kaste, J. M., P. Volante, and A. J. Elmore. 2021. Bomb 137Cs in modern honey reveals a regional soil control on pollutant cycling by plants. Nature Communications 12 (1):1937. doi: 10.1038/s41467-021-22081-8.
  • Kastrati, G., M. Paçarizi, F. Sopaj, K. Tašev, T. Stafilov, and M. K. Mustafa. 2021. Investigation of concentration and distribution of elements in three environmental compartments in the region of Mitrovica, Kosovo: Soil, honey and bee pollen. International Journal of Environmental Research and Public Health 18 (5):2269. doi: 10.3390/ijerph18052269.
  • Kazazic, M., M. Djapo-Lavic, E. Mehic, and L. Jesenkovic-Habul. 2020. Monitoring of honey contamination with polycyclic aromatic hydrocarbons in Herzegovina region. Chemistry and Ecology 36 (8):726–32. doi: 10.1080/02757540.2020.1770737.
  • Keuth, O., H. U. Humpf, and P. Fürst. 2021. Determination of pyrrolizidine alkaloids in tea and honey with automated SPE clean-up and ultra-performance liquid chromatography/tandem mass spectrometry. Food Additives & Contaminants: Part A: Chemistry, Analysis, Control, Exposure & Risk Assessment. Foreword 26:1–9. doi: 10.1080/19440049.2021.1982149.
  • Klima, V., R. Chadyšienė, R. Ivanec-Goranina, D. Jasaitis, and V. Vasiliauskienė. 2020. Assessment of air pollution with polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofuranes (PCDFs) in Lithuania. Atmosphere 11 (7):759. doi: 10.3390/atmos11070759.
  • Korhonen, M., M. Verta, S. Salo, J. Vuorenmaa, H. Kiviranta, and P. Ruokojärvi. 2016. Atmospheric bulk deposition of polychlorinated dibenzo-p-dioxins, dibenzofurans, and polychlorinated biphenyls in Finland. Journal of Marine Science and Engineering 4 (3):56. doi: 10.3390/jmse4030056.
  • Kostić, A. Ž., D. D. Milinčić, M. B. Barać, M. A. Shariati, ŽL. Tešić, and M. B. Pešić. 2020. The Application of Pollen as a Functional Food and Feed Ingredient—The Present and Perspectives. Biomolecules 10 (1):84. doi: 10.3390/biom10010084.
  • Kummer, U., J. Pacyna, E. Pacyna, and R. Friedrich. 2009. Assessment of heavy metal releases from the use phase of road transport in Europe. Atmospheric Environment 43 (3):640–7. doi: 10.1016/j.atmosenv.2008.10.007.
  • Lambert, O., B. Veyrand, S. Durand, P. Marchand, B. L. Bizec, M. Piroux, S. Puyo, C. Thorin, F. Delbac, and H. Pouliquen. 2012. Polycyclic aromatic hydrocarbons: Bees, honey and pollen as sentinels for environmental chemical contaminants. Chemosphere 86 (1):98–104. doi: 10.1016/j.chemosphere.2011.09.025.
  • Lawley, R., L. Curtis, and J. Davis. 2012. Biological toxins. In The food safety hazard guidebook, 296–8. London, UK: RSC Publishing. doi: 10.1039/9781849734813.
  • Lazarus, M., B. Tariba Lovaković, T. Orct, A. Sekovanić, N. Bilandžić, M. Đokić, B. Solomun Kolanović, I. Varenina, A. Jurič, M. D. Lugomer, et al. 2021. Difference in pesticides, trace metal(loid)s and drug residues between certified organic and conventional honeys from Croatia. Chemosphere 266:128954. doi: 10.1016/j.chemosphere.2020.128954.
  • Lau, P., V. Bryant, J. D. Ellis, Z. Y. Huang, J. Sullivan, D. R. Schmehl, A. R. Cabrera, and J. Rangel. 2019. Seasonal variation of pollen collected by honey bees (Apis mellifera) in developed areas across four regions in the United States. PLoS One 14 (6):e0217294. doi: 10.1371/journal.pone.0217294.
  • Leska, A., A. Nowak, I. Nowak, and A. Górczyńska. 2021. Effects of chemical and microbiological contaminants on Apis mellifera health. Molecules 26 (16):5080. doi: 10.3390/molecules26165080.
  • Liebezeit, G., and E. Liebezeit. 2013. Non-pollen particulates in honey and sugar. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 30 (12):2136–40. doi: 10.1080/19440049.2013.843025.
  • Liebezeit, G., and E. Liebezeit. 2015. Origin of synthetic particles in honeys. Polish Journal of Food and Nutrition Sciences 65 (2):143–7. doi: 10.1515/pjfns-2015-0025.
  • Lekduhur, G. J., P. O. Onuwa, I. S. Eneji, and SAto Rufus. 2021. Analysis of selected pesticide residues and heavy metals in honey obtained from Plateau State, Nigeria. Journal of Analytical Sciences, Methods and Instrumentation 11 (1):1–13. doi: 10.4236/jasmi.2021.111001.
  • Li, W. C., and H. F. Tse. 2015. Health risk and significance of mercury in the environment. Environmental Science and Pollution Research International 22 (1):192–201. doi: 10.1007/s11356-014-3544-x.
  • Louppis, A. P., I. K. Karabagias, C. Papastephanou, and A. Badeka. 2019. Two-way characterization of beekeepers’ honey according to botanical origin on the basis of mineral content analysis using ICP-OES implemented with multiple chemometric tools. Foods 8 (6):210. doi: 10.3390/foods8060210.
  • Malhat, F., K. M. Kasiotis, A. S. Hassanin, and S. A. Shokr. 2019. An MIP-AES study of heavy metals in Egyptian honey: Toxicity assessment and potential health hazards to consumers. Journal of Elementology 24 (2):473–88. doi: 10.5601/jelem.2018.23.4.1685.
  • Marcolin, L. C., L. R. Lima, L. L. de Oliveira Arias, A. C. B. Berrio, L. Kupski, S. C. Barbosa, and E. G. Primel. 2021. Meliponinae and Apis mellifera honey in southern Brazil: Physicochemical characterization and determination of pesticides. Food Chemistry 36:130175. doi: 10.1016/j.foodchem.2021.
  • Martinello, M., C. Manzinello, N. Dainese, I. Giuliato, A. Gallina, and F. Mutinelli. 2021. The honey bee: An active biosampler of environmental pollution and a possible warning biomarker for human health. Applied Sciences 11 (14):6481. doi: 10.3390/app11146481.
  • Masad, R. J., S. M. Haneefa, Y. A. Mohamed, A. Al-Sbiei, G. Bashir, M. J. Fernandez-Cabezudo, and B. K. Al-Ramadi. 2021. The immunomodulatory effects of honey and associated flavonoids in cancer. Nutrients 13 (4):1269. doi: 10.3390/nu13041269.
  • Matuszewska, E., A. Klupczynska, K. Maciołek, Z. J. Kokot, and J. Matysiak. 2021. Multielemental Analysis of bee pollen, propolis, and royal jelly collected in West-Central Poland. Molecules 26 (9):2415. doi: 10.3390/molecules26092415.
  • Medici, S. K., M. Blando, E. Sarlo, M. Maggi, J. P. Espinosa, S. Ruffinengo, B. Bianchi, M. Eguaras, and M. Recavarren. 2020. Pesticide residues used for pest control in honeybee colonies located in agroindustrial areas of Argentina. International Journal of Pest Management 66 (2):163–72. doi: 10.1080/09670874.2019.1597996.
  • Meli, M. A., D. Desideri, C. Roselli, L. Feduzi, and C. Benedetti. 2016. Radioactivity in honey of the central Italy. Food Chemistry 202:349–55. doi: 10.1016/j.foodchem.2016.02.010.
  • Meli, M. A., D. Desideri, P. Battisti, I. Giardina, D. Gorietti, and C. Roselli. 2020. Assessment of radioactivity in commercially available honey in Italy. Food Control 110:107001. doi: 10.1016/j.foodcont.2019.107001.
  • Meng, L., B. Song, H. Zhong, X. Ma, Y. Wang, D. Ma, Y. Lu, W. Gao, Y. Wang, and G. Jiang. 2021. Legacy and emerging per- and polyfluoroalkyl substances (PFAS) in the Bohai Sea and its inflow rivers. Environment International 156:106735. doi: 10.1016/j.envint.2021.106735.
  • Menzel, J., K. Abraham, S. Dietrich, H. Fromme, W. Völkel, T. Schwerdtle, and C. Weikert. 2021. Internal exposure to perfluoroalkyl substances (PFAS) in vegans and omnivores. International Journal of Hygiene and Environmental Health 237:113808. doi: 10.1016/j.ijheh.2021.113808.
  • Mohr, S., A. García-Bermejo, L. Herrero, B. Gómara, I. H. Costabeber, and M. J. González. 2014. Determination of polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs) and dioxin-like polychlorinated biphenyls (DL-PCBs) in commercial honeys from Brazil and Spain. Organohalogen Compounds 76:530–3.
  • Murashova, E. A., G. M. Tunikov, S. A. Nefedova, O. A. Karelina, N. G. Byshova, and O. V. Serebryakova. 2020. Major factors determining accumulation of toxic elements by bees and honey products. International Transaction Journal of Engineering, Management, and Applied Sciences and Technologies 11 (3):11A03N. doi: 10.14456/ITJEMAST.2020.54.
  • Murcia-Morales, M., F. J. Díaz-Galiano, F. Vejsnaes, O. Kilpinen, J. J.M. Van der Steen, and A. R. Fernández-Alba. 2021. Environmental monitoring study of pesticide contamination in Denmark through honey bee colonies using APIStrip-based sampling. Environmental Pollution (Barking, Essex: 1987) 290:117888. doi: 10.1016/j.envpol.2021.117888.
  • Mühlschlegel, P., A. Hauk, U. Walter, and R. Sieber. 2017. Lack of evidence for microplastic contamination in honey. Food Additives & Contaminants: Part A: Chemistry, Analysis, Control, Exposure & Risk Assessment 34 (11):1982–9. doi: 10.1080/19440049.2017.1347281.
  • Negri, I., C. Mavris, G. D. Prisco, E. Caprio, and M. Pellecchia. 2015. Honey bees (Apis mellifera, L.) as active samplers of airborne particulate matter. PLoS One 10 (7):e0132491. doi: 10.1371/journal.pone.0132491.
  • Nega, A., E. Mulugeta, and A. Abebaw. 2020. Physicochemical analysis and determination of the levels of some heavy metals in honey samples collected from three district area of East Gojjam zone of Amhara region. Ethiopia. Journal of Agricultural Science and Food Research 11 (4):279. doi: 10.35248/2593-9173.20.11.279.
  • Nigra, A. E., P. Olmedo, M. Grau-Perez, R. O’Leary, M. O’Leary, A. M. Fretts, J. G. Umans, L. G. Best, K. A. Francesconi, W. Goessler, et al. 2019. Dietary determinants of inorganic arsenic exposure in the strong heart family study. Environmental Research 177:108616. doi: 10.1016/j.envres.2019.108616.
  • Organisation for Economic Co-operation and Development (OECD). 2018. Toward a new comprehensive global database of per-and polyfluoroalkyl substances (PFASs): Summary report on updating the OECD 2007 list of per-andpolyfluoroalkyl substances (PFASs), May 2018. Accessed August 9, 2021. https://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=ENV-JM-MONO(2018)7&doclanguage=en.
  • Oliveira, S. S., C. N. Alves, E. S. Boa Morte, A. F. Santos Júnior, R. G. Oliveira Araujo, and D. C. Muniz Batista Santos. 2019. Determination of essential and potentially toxic elements and their estimation of bioaccessibility in honeys. Microchemical Journal 151:104221. doi: 10.1016/j.microc.2019.104221.
  • Orisakwe, O. E., H. A. Ozoani, I. L. Nwaogazie, and A. N. Ezejiofor. 2019. Probabilistic health risk assessment of heavy metals in honey, Manihot esculenta, and Vernonia amygdalina consumed in Enugu State, Nigeria. Environmental Monitoring and Assessment 191 (7):424. doi: 10.1007/s10661-019-7549-2.
  • Özcan, M. M., F. Aljuhaimi, E. E. Babiker, N. Uslu, D. A. Ceylan, K. Ghafoor, M. M. Özcan, N. Dursun, I. M. Ahmed, F. G. Jamiu, et al. 2019. Determination of antioxidant activity, phenolic compound, mineral contents and fatty acid compositions of bee pollen grains collected from different locations. Journal of Apicultural Science 63 (1):69–79. doi: 10.2478/jas-2019-0004.
  • Özkök, A., Sorkun, K. G.Çakıroğulları, H. G. Çelik, Yağlı, I. Alsan, B. Bektaş, and D. Kılıç. 2017. Dioxin analysis in pine honey from Turkey. Acta Biologica Szegediensis 61 (1):69–75.
  • Özkök, A., G. Ç. Çakıroğulları, K. Sorkun, H. G. Yağlı, İ. Alsan, B. Bektaş, and D. Kılıç. 2018. Dioxin analysis of bee pollen pellets collected by Apis mellifera L. in rural area of Turkey. Journal of Apicultural Science 62 (1):79–88. doi: 10.2478/jas-2018-0011.
  • Ozoani, H., A. N. Ezejiofor, C. N. Amadi, I. Chijioke-Nwauche, and O. E. Orisakwe. 2020. Safety of honey consumed in Enugu State, Nigeria: A public health risk assessment of lead and polycyclic aromatic hydrocarbons. Annals of the National Institute of Hygiene 71 (1):57–66. doi: 10.32394/rpzh.2020.0102.
  • Panseri, S., E. Bonerba, M. Nobile, F. Di Cesare, G. Mosconi, F. Cecati, F. Arioli, G. Tantillo, and L. Chiesa. 2020. Pesticides and environmental contaminants in organic honeys according to their different productive areas toward food safety protection. Foods 9 (12):1863. doi: 10.3390/foods9121863.
  • Papa, G., G. Capitani, E. Capri, M. Pellecchia, and I. Negri. 2021. Vehicle-derived ultrafine particulate contaminating bees and bee products. Science of the Total Environment 750:141700. doi: 10.1016/j.scitotenv.2020.141700.
  • Pavlova, D., J. Atanassova, I. Karadjova, and A. Bani. 2021. Pollen and chemical content of beebreads from serpentine areas in Albania and Bulgaria. Biological Trace Element Research. doi: 10.1007/s12011-021-02638-w.
  • Pellecchia, M., and I. Negri. 2018. Particulate matter collection by honey bees (Apis mellifera, L.) near to a cement factory in Italy. PeerJ 6:e5322. doi: 10.7717/peerj.5322.
  • Perugini, M., G. D. Serafino, A. Giacomelli, P. Medrzycki, A. G. Sabatini, L. Persano Oddo, E. Marinelli, and M. Amorena. 2009. Monitoring of polycyclic aromatic hydrocarbons in bees (Apis mellifera) and honey in urban areas and wildlife reserves. Journal of Agricultural and Food Chemistry 57 (16):7440–4. doi: 10.1021/jf9011054.
  • Petrović, J., B. Kartalović, R. Ratajac, D. Spirić, B. Djurdjević, V. Polaček, and M. Pucarević. 2019. PAHs in different honeys from Serbia. Food Additives & Contaminants: Part B 12 (2):116–23. doi: 10.1080/19393210.2019.1569727.
  • Pinheiro, C. G. M. D. E., F. A. D. S. Oliveira, S. C. S. Oloris, J. B. A. da Silva, and B. Soto-Blanco. 2020. Pesticide residues in honey from stingless bee Melipona subnitida (Meliponini, Apidae). Journal of Apicultural Science 64 (1):29–36. doi: 10.2478/jas-2020-0010.
  • Pipoyan, D., S. Stepanyan, M. Beglaryan, S. Stepanyan, S. Asmaryan, A. Hovsepyan, and N. Merendino. 2020. Carcinogenic and non-carcinogenic risk assessment of trace elements and POPs in honey from Shirak and Syunik regions of Armenia. Chemosphere 239:124809. doi: 10.1016/j.chemosphere.2019.124809.
  • Piven, O. T., M. S. Khimych, V. Z. Salata, B. V. Gutyj, O. V. Naidich, H. A. Skrypka, Z. B. Koreneva, I. V. Dvylyuk, O. M. Gorobey, and V. O. Rud. 2020. Contamination of heavy metals and radionuclides in the honey with different production origin. Ukrainian Journal of Ecology 10 (2):405–9. doi: 10.15421/2020_117.
  • Rand, E., S. Smit, M. Beukes, Z. Apostolides, C. Pirk, and S. W. Nicolson. 2015. Detoxification mechanisms of honey bees (Apis mellifera) resulting in tolerance of dietary nicotine. Scientific Reports 5:11779. doi: 10.1038/srep11779.
  • Roszko, M. Ł., M. Kamińska, K. Szymczyk, and R. Jędrzejczak. 2016. Levels of selected persistent organic pollutants (PCB, PBDE) and pesticides in honey bee pollen sampled in Poland. PloS One 11 (12):e0167487. doi: 10.1371/journal.pone.0167487.
  • Russo, M. V., P. Avino, and I. Notardonato. 2017. PAH Residues in honey by ultrasound-vortex-assisted liquid-liquid micro-extraction followed by GC-FID/IT-MS. Food Analytical Methods 10 (7):2132–42. doi: 10.1007/s12161-016-0783-0.
  • Sadepovich Maikanov, B., Z. S. Adilbekov, R. H. Mustafina, and L. T. Auteleyeva. 2017. Honey contamination in the Republic of Kazakhstan. International Journal of Nutrition and Food Engineering 11 (7):554–7.
  • Sager, M. 2017. The honey as a bioindicator of the environment. Ecological Chemistry and Engineering S 24 (4):583–94. doi: 10.1515/eces-2017-0038.
  • Saitta, M., G. D. Bella, M. R. Fede, V. Lo Turco, A. G. Potortì, R. Rando, M. T. Russo, and G. Dugo. 2017. Gas chromatography-tandem mass spectrometry multi-residual analysis of contaminants in Italian honey samples. Food Additives & Contaminants: Part A: Chemistry, Analysis, Control, Exposure & Risk Assessment 34 (5):800–8. doi: 10.1080/19440049.2017.1292054.
  • Sajtos, Z., P. Herman, S. Harangi, and E. Baranyai. 2019. Elemental analysis of Hungarian honey samples and bee products by MP-AES method. Microchemical Journal 149:103968. doi: 10.1016/j.microc.2019.103968.
  • Salama, A. S., A. M. Etorki, and M. H. Awad. 2019. Determination of physicochemical properties and toxic heavy metals levels in honey samples from West of Libya. Journal of Advanced Chemical Sciences 5 (1):618–20. doi: 10.30799/jacs.207.19050104.
  • Sari, M. F., E. G. Ayyildiz, and F. Esen. 2020. Determination of polychlorinated biphenyls in honeybee, pollen, and honey samples from urban and semi-urban areas in Turkey. Environmental Science and Pollution Research 27 (4):4414–22. doi: 10.1007/s11356-019-07013-w.
  • Sari, M. F., F. Esen, and Y. Tasdemir. 2021. Levels of polychlorinated biphenyls (PCBs) in honeybees and bee products and their evaluation with ambient air concentrations. Atmospheric Environment 244:117903. doi: 10.1016/j.atmosenv.2020.117903.
  • Scripcă, L. A., and S. Amariei. 2021. The Influence of Chemical Contaminants on the physicochemical properties of unifloral and multifloral honey. Foods 10 (5):1039. doi: 10.3390/foods10051039.
  • Sgargi, D., B. Adam, L. T. Budnik, G. Dinelli, H. R. Moldovan, M. J. Perry, P. T. Scheepers, V. Schlünssen, J. P. Teixeira, D. Mandrioli, et al. 2020. Protocol for a systematic review and meta-analysis of human exposure to pesticide residues in honey and other bees’ products. Environmental Research 186:109470. doi: 10.1016/j.envres.2020.109470.
  • Shahi, M., A. Javadi, M. R. Afshar Mogaddam, H. Mirzaei, and M. Nemati. 2021. Preparation of multiwall carbon nanotube/urea-formaldehyde nanocomposite as a new sorbent in solid-phase extraction and its combination with deep eutectic solvent-based dispersive liquid-liquid microextraction for extraction of antibiotic residues in honey. Journal of Separation Science 44 (2):576–84. doi: 10.1002/jssc.202000679.
  • Silva, M. S., Y. Rabadzhiev, M. R. Eller, I. Iliev, I. Ivanova, and W. C. Santana. 2017. Microorganisms in honey, honey analysis, Vagner de Alencar Arnaut de Toledo. InTechOpen. doi: 10.5772/67262.
  • Silva-Carvalho, R., F. Baltazar, and C. Almeida-Aguiar. 2015. Propolis: A complex natural product with a plethora of biological activities that can be explored for drug development. Evidence-Based Complementary and Alternative Medicine: eCAM 2015:206439. doi: 10.1155/2015/206439.
  • Simsek, I., O. Kuzukiran, B. Yurdakok-Dikmen, T. Snoj, and A. Filazi. 2021a. Determination of persistent Organic Pollutants (POPs) in propolis by solid-phase extraction (SPE) and gas chromatography–mass spectrometry (GC-MS). Analytical Letters 54 (10):1668–82. doi: 10.1080/00032719.2020.1821208.
  • Simsek, I., O. Kuzukiran, B. Yurdakok-Dikmen, U. T. Sireli, M. Beykaya, and A. Filazi. 2021b. Comparison of selected lipophilic compound residues in honey and propolis. Journal of Food Composition and Analysis 102:104068. doi: 10.1016/j.jfca.2021.104068.
  • Škaljac, S., M. Jokanović, V. Tomović, M. Ivić, T. Tasić, P. Ikonić, B. Šojić, N. Džinić, and L. Petrović. 2018. Influence of smoking in traditional and industrial conditions on colour and content of polycyclic aromatic hydrocarbons in dry fermented sausage “Petrovská klobása.” LWT - Food Science and Technology 87:158–62. doi: 10.1016/j.lwt.2017.08.038.
  • Skorbiłowicz, M., E. Skorbiłowicz, and I. Cieśluk. 2018. Bees as bioindicators of environmental pollution with metals in an urban area. Journal of Ecological Engineering 19 (3):229–34. doi: 10.12911/22998993/85738.
  • Smaropoulos, E., and N. A. J. Cremers. 2021. Medical-grade honey for the treatment of extravasation-induced injuries in preterm neonates: A case series. Advances in Neonatal Care 21 (2):122–32. doi: 10.1097/ANC.0000000000000781.
  • Solayman, M., M. A. Islam, S. Paul, Y. Ali, M. I. Khalil, N. Alam, and S. H. Gan. 2016. Physicochemical properties, minerals, trace elements, and heavy metals in honey of different origins: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety 15 (1):219–33. doi: 10.1111/1541-4337.12182.
  • Sonter, C. A., R. Rader, G. Stevenson, J. R. Stavert, and S. C. Wilson. 2021. Biological and behavioral responses of European honey bee (Apis mellifera) colonies to perfluorooctane sulfonate exposure. Integrated Environmental Assessment and Management 17 (4):673–83. doi: 10.1002/ieam.4421.
  • Souza Tette, P. A., L. Rocha Guidi, M. B. de Abreu Glória, and C. Fernandes. 2016. Pesticides in honey: A review on chromatographic analytical methods. Talanta 149:124–41. doi: 10.1016/j.talanta.2015.11.045.
  • Spilioti, E., M. Jaakkola, T. Tolonen, M. Lipponen, V. Virtanen, I. Chinou, E. Kassi, S. Karabournioti, and P. Moutsatsou. 2014. Phenolic acid composition, antiatherogenic and anticancer potential of honeys derived from various regions in Greece. PLoS One 9 (4):e94860. doi: 10.1371/journal.pone.0094860.
  • Spirić, D., J. Ćirić, V. Đorđević, D. Nikolić, S. Janković, A. Nikolić, Z. Petrović, N. Katanić, and V. Teodorović. 2019. Toxic and essential element concentrations in different honey types. International Journal of Environmental Analytical Chemistry 99 (5):474–85. doi: 10.1080/03067319.2019.1593972.
  • Stansfield, C. M. 2003. Legislation, contaminants and adulterants. In Encyclopedia of food sciences and nutrition. 2nd ed., ed. B. Caballero. Cambridge, MA: Academic Press.
  • Surma, M., H. Zieliński, and M. Piskuła. 2016. Levels of contamination by perfluoroalkyl substances in honey from selected European ­countries. Bulletin of Environmental Contamination and Toxicology 97 (1):112–8. doi: 10.1007/s00128-016-1840-5.
  • Swaileh, K. M., and A. Abdulkhaliq. 2013. Analysis of aflatoxins, caffeine, nicotine and heavy metals in Palestinian multifloral honey from different geographic regions. Journal of the Science of Food and Agriculture 93 (9):2116–20. doi: 10.1002/jsfa.6014.
  • Taulavuori, K., R. Julkunen-Tiitto, V. Hyöky, and E. Taulavuori. 2013. Blue mood for superfood. Natural Product Communications 8 (6):1934578X1300800-794. doi: 10.1177/1934578X1300800627.
  • Tanaka, K., H. Adachi, H. Akasaka, J. Tamaoki, Y. Fuse, M. Kobayashi, T. Kitazawa, and H. Teraoka. 2021. Oxidative stress inducers potentiate 2,3,7,8-tetrachlorodibenzo-p-dioxin-mediated pre-cardiac edema in larval zebrafish. The Journal of Veterinary Medical Science 83 (7):1050–8. doi: 10.1292/jvms.21-0081.
  • Teran, K., G. Žibret, and M. Fanetti. 2020. Impact of urbanization and steel mill emissions on elemental composition of street dust and corresponding particle characterization. Journal of Hazardous Materials 384:120963. doi: 10.1016/j.jhazmat.2019.120963.
  • Toms, L. M., L. Hearn, K. Kennedy, F. Harden, M. Bartkow, C. Temme, and J. F. Mueller. 2009. Concentrations of polybrominated diphenyl ethers (PBDEs) in matched samples of human milk, dust and indoor air. Environment International 35 (6):864–9. doi: 10.1016/j.envint.2009.03.001.
  • Tulini, S. M. R., R. M. Specchia, O. R. Lae, C. Mucciolo, M. Amorena, and G. Crescenzo. 2020. Trend of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/PCDFS) in beehive matrices. Italian Journal of Food Science 32 (4):858–72.
  • Tutun, H., H. A. Kahraman, Y. Aluc, T. Avci, and H. Ekici. 2019. Investigation of some metals in honey samples from West Mediterranean region of Turkey. Veterinary Research Forum: An International Quarterly Journal 10 (3):181–6. doi: 10.30466/vrf.2019.96726.2312.
  • ‘t Mannetje, A., A. Eng, C. Walls, E. Dryson, D. McLean, M. Kogevinas, J. Fowles, B. Borman, P. O’Connor, S. Cheng, et al. 2016. Serum concentrations of chlorinated dibenzo-p-dioxins, furans and PCBs, among former phenoxy herbicide production workers and firefighters in New Zealand. International Archives of Occupational and Environmental Health 89 (2):307–18. doi: 10.1007/s00420-015-1074-6.
  • Umsza-Guez, M. A., N. P. Silva-Beltrán, B. A. S. Machado, and A. P. Balderrama-Carmona. 2021. Herbicide determination in Brazilian propolis using high pressure liquid chromatography. International Journal of Environmental Health Research 31 (5):507–17. doi: 10.1080/09603123.2019.1670335.
  • Végh, R., M. Csóka, C. Sörös, and L. Sipos. 2021. Food safety hazards of bee pollen—A review. Trends in Food Science & Technology 114:490–509. doi: 10.1016/j.tifs.2021.06.016.
  • Vijgen, J., B. De Borst, R. Weber, T. Stobiecki, and M. Forter. 2019. HCH and lindane contaminated sites: European and global need for a permanent solution for a long-time neglected issue. Environmental Pollution (Barking, Essex : 1987) 248:696–705. doi: 10.1016/j.envpol.2019.02.029.
  • Villalba, A., M. Maggi, P. M. Ondarza, N. Szawarski, and K. S. B. Miglioranza. 2020. Influence of land use on chlorpyrifos and persistent organic pollutant levels in honey bees, bee bread and honey: Beehive exposure assessment. The Science of the Total Environment 713:136554. doi: 10.1016/j.scitotenv.2020.136554.
  • Vukašinović-Pešić, V., N. Blagojević, S. Brašanac-Vukanović, A. Savić, and V. Pešić. 2020. Using chemometric analyses for tracing the regional origin of multifloral honeys of Montenegro. Foods 9 (2):210. doi: 10.3390/foods9020210.
  • Wang, Q., Zhang, S. Chen, L. Cheng, X. Jing, X. Wang, S. Guan, W. Song, and Q. Rao. 2021. Determination of polybrominated diphenyl ethers in water samples using effervescent-assisted dispersive liquid-liquid icroextraction with solidification of the aqueous phase. Molecules 26 (5):1376. doi: 10.3390/molecules26051376.
  • Wang, Y. H., D. M. Xu, C. H. Hung, S. R. Cheng, J. Y. Yu, M. S. Lee, P. P. Yu, and G. P. Chang-Chien. 2011. Investigation of PCDD/Fs, dioxin-like PCBs and metal element in honey from Taiwan and mainland China. Advanced Materials Research 356–360:908–13. doi: 10.4028/www.scientific.net/amr.356-360.908.
  • Wang, W., S. Zhang, Z. Li, J. Li, X. Yang, C. Wang, and Z. Wang. 2020. Construction of covalent triazine-based frameworks and application to solid phase microextraction of polycyclic aromatic hydrocarbons from honey samples. Food Chemistry 322:126770. doi: 10.1016/j.foodchem.2020.126770.
  • Wang, X., Z. Wang, S. Di, X. Xue, Y. Jin, P. Qi, X. Wang, L. Han, Y. Xiao, and S. Min. 2020. Determination of 14 lipophilic pesticide residues in raw propolis by selective sample preparation and gas chromatography–tandem mass spectrometry. Food Analytical Methods (9)13:1726–35. doi: 10.1007/s12161-020-01712-8.
  • Wang, K., J. Li, L. Zhao, X. Mu, C. Wang, M. Wang, X. Xue, S. Qi, and L. Wu. 2021. Gut microbiota protects honey bees (Apis mellifera L.) against polystyrene microplastics exposure risks. Journal of Hazardous Materials 402:123828. doi: 10.1016/j.jhazmat.2020.123828.
  • Wieczorek, J., A. Baran, K. Urbański, R. Mazurek, and A. Klimowicz-Pawlas. 2018. Assessment of the pollution and ecological risk of lead and cadmium in soils. Environmental Geochemistry and Health 40 (6):2325–42. doi: 10.1007/s10653-018-0100-5.
  • Wieczorek, J., M. Kaczor, G. Romańczyk, M. Grońska, and A. Boryło. 2020. Radioactivity of honey in central and southern Poland. Journal of Environmental Radioactivity 222:106376. doi: 10.1016/j.jenvrad.2020.106376.
  • Winiarska-Mieczan, A., B. Wargocka, K. Jachimowicz, E. Baranowska-Wójcik, K. Kwiatkowska, and M. Kwiecień. 2021. Evaluation of consumer safety of Polish honey—The content of Cd and Pb in multifloral, monofloral and honeydew honeys. Biological Trace Element Research 199 (11):4370–83. doi: 10.1007/s12011-020-02535-8.
  • World Health Organisation (WHO). 1992. Environmental Health Criteria 134—Cadmium International Programme on Chemical Safety (IPCS) Monograph.
  • World Health Organisation (WHO). 2010. Exposure to arsenic: A major public health concern. Accessed August 27, 2021. https://www.who.int/ipcs/features/arsenic.pdf.
  • World Health Organisation (WHO). 2016. Dioxins and their effects on human health. Accessed August 8, 2021. https://www.who.int/news-room/fact-sheets/detail/dioxins-and-their-effects-on-human-health.
  • Yang, X., S. Zhang, J. Wang, W. Wang, J. Li, J. Chen, Y. Zhao, C. Wang, and Z. Wang. 2020. Modulated construction of imine-based covalent organic frameworks for efficient adsorption of polycyclic aromatic hydrocarbons from honey samples. Analytica Chimica Acta 1134:50–7. doi: 10.1016/j.aca.2020.07.072.
  • Yang, F., S. Xie, C. Wei, J. Liu, H. Zhang, T. Chen, and J. Zhang. 2018. Arsenic characteristics in the terrestrial environment in the vicinity of the Shimen realgar mine, China. Science of the Total Environment 626:77–86. doi: 10.1016/j.scitotenv.2018.01.079.
  • Yaqub, G., M. Khalid, A. Ikram, and A. Sohail. 2020. Monitoring and risk assessment due to presence of metals and pesticides residues in honey samples from the major honey producing forest belts and different brands. Food Science and Technology 40 (suppl 1):331–5. doi: 10.1590/fst.01919.
  • Zenunović, A., H. Keran, and E. Srabović. 2020. Content of heavy metals in different types of honey. International Journal for Research in Applied Sciences and Biotechnology 7 (5):277–80. doi: 10.31033/ijrasb.7.5.36.
  • Zheng, Y. Z., K. Wang, Q. Liang, X. F. Xue, L. W. Zhao, D. F. Chen, L. M. Wu, R. Guo, and C. L. Xiong. 2020. Ionic liquid dispersive liquid–liquid microextraction for pesticide residue analysis in honey. Journal of Apicultural Research 59 (4):458–67. doi: 10.1080/00218839.2019.1656701.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.