972
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Fatty acid profile, minor bioactive constituents and physicochemical properties of insect-based oils: A comprehensive review

, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Abdelsalam, S., A. M. Abdel-Moneim, A. M. Alzahrani, O. M. Elmenshawy, and H. Elsawy. 2021. Biochemical and ultrastructural effects of sublethal concentrations of ivermectin on the gonads of Rhynchophorus ferrugineus (Olivier, 1790) (Coleoptera: Curculionidae). International Journal of Tropical Insect Science. doi: 10.1007/s42690-021-00553-0.
  • Alnadif, A. A. M., B. Matthäus, K. Eichner, and I. H. Hussein. 2007. Fatty acids composition, oxidative stability and transesterification of lipids recovered from melon and sorghum bugs. Journal of Science and Technology 8 (1):16–20.
  • Altomare, A. A., G. Baron, G. Aldini, M. Carini, and A. D’Amato. 2020. Silkworm pupae as source of high-value edible proteins and of bioactive peptides. Food Science & Nutrition 8 (6):2652–61. doi: 10.1002/fsn3.1546.
  • Barragan-Fonseca, K. B., M. Dicke, and J. J. A. van Loon. 2017. Nutritional value of the black soldier fly (Hermetia illucens L.) and its suitability as animal feed - A review. Journal of Insects as Food and Feed 3 (2):105–20. doi: 10.3920/JIFF2016.0055.
  • Bednářová, M., M. Borkovcová, J. Mlček, O. Rop, and L. Zeman. 2013. Edible insects - Species suitable for entomophagy under condition of Czech Republic. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 61 (3):587–93. doi: 10.11118/actaun201361030587.
  • Bjelica, M., V. Vujasinović, B. Rabrenović, and S. Dimić. 2019. Some chemical characteristics and oxidative stability of cold pressed grape seed oils obtained from different winery waste. European Journal of Lipid Science and Technology 121 (8):1800416. doi: 10.1002/ejlt.201800416.
  • Blásquez, J. R.-E., J. M. P. Moreno, and V. H. M. Camacho. 2012. Could grasshoppers be a nutritive meal? Food and Nutrition Sciences 03 (02):164–75. doi: 10.4236/fns.2012.32025.
  • Breed, M. D. 2019. Honeybees. In Encyclopedia of animal behavior, ed. J. C. Choe. 2nd ed., 100–8. Cambridge, MA: Academic Press.
  • Caligiani, A., A. Marseglia, A. Sorci, F. Bonzanini, V. Lolli, L. Maistrello, and S. Sforza. 2019. Influence of the killing method of the black soldier fly on its lipid composition. Food Research International (Ottawa, ON) 116:276–82. doi: 10.1016/j.foodres.2018.08.033.
  • Cao, J., H. Li, X. Xia, X.-G. Zou, J. Li, X.-M. Zhu, and Z.-Y. Deng. 2015. Effect of fatty acid and tocopherol on oxidative stability of vegetable oils with limited air. International Journal of Food Properties 18 (4):808–20. doi: 10.1080/10942912.2013.864674.
  • Cheikhyoussef, N., M. Kandawa-Schulz, R. Böck, and A. Cheikhyoussef. 2020. Chapter 42 - Cold pressed Moringa oleifera seed oil. In Cold pressed oils, ed. M. F. Ramadan, 467–75. Cambridge, MA: Academic Press.
  • Chen, P. P., S. Wongsiri, T. Jamyanya, T. E. Rinderer, S. Vongsamanode, M. Matsuka, H. A. Sylvester, and B. P. Oldroyd. 1998. Honey bees and other edible insects used as human food in Thailand. American Entomologist 44 (1):24–29. doi: 10.1093/ae/44.1.24.
  • Chen, X., Y. Feng, and Z. Chen. 2009. Common edible insects and their utilization in China. Entomological Research 39 (5):299–303. doi: 10.1111/j.1748-5967.2009.00237.x.
  • Cheseto, X., S. P. Kuate, D. P. Tchouassi, M. Ndung’u, P. E. A. Teal, and B. Torto. 2015. Potential of the desert locust Schistocerca gregaria (Orthoptera: Acrididae) as an unconventional source of dietary and therapeutic sterols. PLoS One 10 (5):e0127171. doi: 10.1371/journal.pone.0127171.
  • Chinarak, K., M. Chaijan, and W. Panpipat. 2020. Farm-raised sago palm weevil (Rhynchophorus ferrugineus) larvae: Potential and challenges for promising source of nutrients. Journal of Food Composition and Analysis 92:103542. doi: 10.1016/j.jfca.2020.103542.
  • Chinarak, K., W. Panpipat, P. Summpunn, A. Panya, N. Phonsatta, L.-Z. Cheong, and M. Chaijan. 2021. Insights into the effects of dietary supplements on the nutritional composition and growth performance of sago palm weevil (Rhynchophorus ferrugineus) larvae. Food Chemistry 363:130279. doi: 10.1016/j.foodchem.2021.130279.
  • Cicatiello, C., B. D. Rosa, S. Franco, and N. Lacetera. 2016. Consumer approach to insects as food: Barriers and potential for consumption in Italy. British Food Journal 118 (9):2271–86. doi: 10.1108/BFJ-01-2016-0015.
  • Ciftci, O. N., R. Przybylski, and M. Rudzińska. 2012. Lipid components of flax, perilla, and chia seeds. European Journal of Lipid Science and Technology 114 (7):794–800. doi: 10.1002/ejlt.201100207.
  • Cito, A., S. Longo, G. Mazza, E. Dreassi, and V. Francardi. 2017. Chemical evaluation of the Rhynchophorus ferrugineus larvae fed on different substrates as human food source. Food Science and Technology International 23 (6):529–39. doi: 10.1177/1082013217705718.
  • Collins, C. M., P. Vaskou, and Y. Kountouris. 2019. Insect food products in the western world: Assessing the potential of a new ‘Green’ Market. Annals of the Entomological Society of America 112 (6):518–28. doi: 10.1093/aesa/saz015.
  • da Silva, G. D. P., and T. Hesselberg. 2020. A review of the use of black soldier fly larvae, Hermetia illucens (Diptera: Stratiomyidae), to compost organic waste in tropical regions. Neotropical Entomology 49 (2):151–62. doi: 10.1007/s13744-019-00719-z.
  • Dabbou, S., I. Ferrocino, L. Gasco, A. Schiavone, A. Trocino, G. Xiccato, A. C. Barroeta, S. Maione, D. Soglia, I. Biasato, et al. 2020. Antimicrobial effects of black soldier fly and yellow mealworm fats and their impact on gut microbiota of growing rabbits. Animals 10 (8):1292. doi: 10.3390/ani10081292.
  • Dayrit, F. M. 2015. The properties of lauric acid and their significance in coconut oil. Journal of the American Oil Chemists’ Society 92 (1):1–15. doi: 10.1007/s11746-014-2562-7.
  • Devillers, J. 2003. The ecological importance of honey bees and their relevance to ecotoxicology. In Honey bees: Estimating the environmental impact of chemicals, ed. J. Devillers, M.-H. Pham-Delegue, 1–12. Boca Raton, FL: CRC Press.
  • Dreassi, E., A. Cito, A. Zanfini, L. Materozzi, M. Botta, and V. Francardi. 2017. Dietary fatty acids influence the growth and fatty acid composition of the yellow mealworm Tenebrio molitor (Coleoptera: Tenebrionidae). Lipids 52 (3):285–94. doi: 10.1007/s11745-016-4220-3.
  • Emodi, N. 2014. Fatty acid and amino acid compositions of the larva of oil palm weevil (Rhyncophorous Ferrugineus). Elixir Applied Chemistry 67:21560–64.
  • Ewald, N., A. Vidakovic, M. Langeland, A. Kiessling, S. Sampels, and C. Lalander. 2020. Fatty acid composition of black soldier fly larvae (Hermetia illucens) – Possibilities and limitations for modification through diet. Waste Management (New York, NY) 102:40–47. doi: 10.1016/j.wasman.2019.10.014.
  • FAO. 2010. Fats and fatty acids in human nutrition: Report of an expert consultation, 10–14 November, 2008. Geneva, Switzerland; Rome: Food and Agriculture Organization of the United Nations. doi: 10.1159/000228993.
  • Finke, M. D. 2005. Nutrient composition of bee brood and its potential as human food. Ecology of Food and Nutrition 44 (4):257–70. doi: 10.1080/03670240500187278.
  • Finke, M. D. 2015. Complete nutrient content of four species of commercially available feeder insects fed enhanced diets during growth. Zoo Biology 34 (6):554–64. doi: 10.1002/zoo.21246.
  • Francardi, V., A. Cito, S. Fusi, M. Botta, and E. Dreassi. 2017. Linseed to increase n-3 fatty acids in Tenebrio Molitor (Coleoptera Tenebrionidae). Redia 100:73–76. doi: 10.19263/REDIA-100.17.08.
  • Ghosh, S., C. Jung, and V. B. Meyer-Rochow. 2016. Nutritional value and chemical composition of larvae, pupae, and adults of worker honey bee, Apis mellifera ligustica as a sustainable food source. Journal of Asia-Pacific Entomology 19 (2):487–95. doi: 10.1016/j.aspen.2016.03.008.
  • Haber, M., M. Mishyna, J. J. Itzhak Martinez, and O. Benjamin. 2019. Edible larvae and pupae of honey bee (Apis mellifera): Odor and nutritional characterization as a function of diet. Food Chemistry 292:197–203. doi: 10.1016/j.foodchem.2019.04.041.
  • Han, F., A. Wallberg, and M. T. Webster. 2012. From where did the Western honeybee (Apis mellifera) originate? Ecology and Evolution 2 (8):1949–57. doi: 10.1002/ece3.312.
  • Harlystiarini, H., R. Mutia, I. Wibawan, and D. Astuti. 2019. In vitro antibacterial activity of black soldier fly (Hermetia Illucens) larva extracts against gram-negative bacteria. Bulletin of Animal Science 43 (2):125–29. doi: 10.21059/buletinpeternak.v43i2.42833.
  • Heidari-Parsa, S., S. Imani, Y. Fathipour, F. Kheiri, and M. Chamani. 2018. Determination of yellow mealworm (Tenebrio molitor) nutritional value as an animal and human food supplementation. Arthropods 7 (4):94–102.
  • Hu, B., C. Li, Z. Q. Zhang, Q. Zhao, Y. D. Zhu, Z. Su, and Y. Z. Chen. 2017. Microwave-assisted extraction of silkworm pupal oil and evaluation of its fatty acid composition, physicochemical properties and antioxidant activities. Food Chemistry 231:348–55. doi: 10.1016/j.foodchem.2017.03.152.
  • Janu, C., D. R. S. Kumar, M. V. Reshma, P. Jayamurthy, A. Sundaresan, and P. Nisha. 2014. Comparative study on the total phenolic content and radical scavenging activity of common edible vegetable oils. Journal of Food Biochemistry 38 (1):38–49. doi: 10.1111/jfbc.12023.
  • Jeon, Y. H., Y. J. Son, S. H. Kim, E. Y. Yun, H. J. Kang, and I. K. Hwang. 2016. Physicochemical properties and oxidative stabilities of mealworm (Tenebrio molitor) oils under different roasting conditions. Food Science and Biotechnology 25 (1):105–10. doi: 10.1007/s10068-016-0015-9.
  • Jing, X.-F., R. J. Grebenok, and S. T. Behmer. 2013. Sterol/steroid metabolism and absorption in a generalist and specialist caterpillar: Effects of dietary sterol/steroid structure, mixture and ratio. Insect Biochemistry and Molecular Biology 43 (7):580–87. doi: 10.1016/j.ibmb.2013.03.012.
  • Khoramnia, A., A. Ebrahimpour, R. Ghanbari, Z. Ajdari, and O. M. Lai. 2013. Improvement of medium chain fatty acid content and antimicrobial activity of coconut oil via solid-state fermentation using a Malaysian Geotrichum candidum. BioMed Research International 2013:954542. doi: 10.1155/2013/954542.
  • Kinyuru, J. N. 2021. Nutrient content and lipid characteristics of desert locust (Schistoscerca gregaria) swarm in Kenya. International Journal of Tropical Insect Science 41 (3):1993–99. doi: 10.1007/s42690-020-00308-3.
  • Kinyuru, J. N., J. B. Mogendi, C. A. Riwa, and N. W. Ndung’u. 2015. Edible insects—a novel source of essential nutrients for human diet: Learning from traditional knowledge. Animal Frontiers 5 (2):14–19. doi: 10.2527/af.2015-0014.
  • Kinyuru, J. N., and N. W. Ndung’u. 2020. Promoting edible insects in Kenya: Historical, present and future perspectives towards establishment of a sustainable value chain. Journal of Insects as Food and Feed 6 (1):51–58. doi: 10.3920/JIFF2019.0016.
  • Kiralan, M., G. Özkan, A. Bayrak, and M. F. Ramadan. 2014. Physicochemical properties and stability of black cumin (Nigella sativa) seed oil as affected by different extraction methods. Industrial Crops and Products 57:52–58. doi: 10.1016/j.indcrop.2014.03.026.
  • Kochhar, S. P. 2000. Stabilisation of frying oils with natural antioxidative components. European Journal of Lipid Science and Technology 102 (8–9):552–59. doi: 10.1002/1438-9312(200009)102:8/9<552::AID-EJLT552>3.0.CO;2-V.
  • Kotake-Nara, E., K. Yamamoto, M. Nozawa, K. Miyashita, and T. Murakami. 2002. Lipid profiles and oxidative stability of silkworm pupal oil. Journal of Oleo Science 51 (11):681–90. doi: 10.5650/jos.51.681.
  • Kulczyński, B., J. Kobus-Cisowska, M. Taczanowski, D. Kmiecik, and A. Gramza-Michałowska. 2019. The chemical composition and nutritional value of chia seeds-current state of knowledge. Nutrients 11 (6):1242. doi: 10.3390/nu11061242.
  • Liland, N. S., I. Biancarosa, P. Araujo, D. Biemans, C. G. Bruckner, R. Waagbø, B. E. Torstensen, and E. J. Lock. 2017. Modulation of nutrient composition of black soldier fly (Hermetia illucens) larvae by feeding seaweed-enriched media. PLoS One 12 (8):e0183188. doi: 10.1371/journal.pone.0183188.
  • Liu, C., J. Masri, V. Perez, C. Maya, and J. Zhao. 2020. Growth performance and nutrient composition of mealworms (Tenebrio molitor) fed on fresh plant materials-supplemented diets. Foods 9 (2):151. doi: 10.3390/foods9020151.
  • Liu, C. H., Z. Meng, X. H. Chai, X. Y. Liang, M. Piatko, S. Campbell, and Y. F. Liu. 2019. Comparative analysis of graded blends of palm kernel oil, palm kernel stearin and palm stearin. Food Chemistry 286:636–43. doi: 10.1016/j.foodchem.2019.02.067.
  • Liu, X., X. Chen, H. Wang, Q. Yang, K. Ur Rehman, W. Li, M. M. Cai, Q. Li, L. Mazza, J. B. Zhang, et al. 2017. Dynamic changes of nutrient composition throughout the entire life cycle of black soldier fly. PLoS One 12 (8):e0182601. doi: 10.1371/journal.pone.0182601.
  • Longvah, T., K. Manghtya, and S. S. Y. H. Qadri. 2012. Eri silkworm: A source of edible oil with a high content of α-linolenic acid and of significant nutritional value. Journal of the Science of Food and Agriculture 92 (9):1988–93. doi: 10.1002/jsfa.5572.
  • Mai, H. C., N. D. Dao, T. D. Lam, B. V. Nguyen, D. C. Nguyen, and L. G. Bach. 2019. Purification process, physicochemical properties, and fatty acid composition of black soldier fly (Hermetia illucens Linnaeus) larvae oil. Journal of the American Oil Chemists’ Society 96 (11):1303–11. doi: 10.1002/aocs.12263.
  • Mancini, A., E. Imperlini, E. Nigro, C. Montagnese, A. Daniele, S. Orrù, and P. Buono. 2015. Biological and nutritional properties of palm oil and palmitic acid: Effects on health. Molecules (Basel, Switzerland) 20 (9):17339–61. doi: 10.3390/molecules200917339.
  • Mariod, A. 2011. Insect oils: Nutritional and industrial applications. Inform 22:266–68.
  • Mariod, A., B. Matthaus, and K. Eichner. 2004. Fatty acid, tocopherol and sterol composition as well as oxidative stability of three unusual Sudanese oils. Journal of Food Lipids 11 (3):179–89. doi: 10.1111/j.1745-4522.2004.01131.x.
  • Mariod, A., B. Matthäus, K. Eichner, and I. H. Hussein. 2005. Improving the oxidative stability of sunflower oil by blending with Sclerocarya birrea and Aspongopus viduatus oils. Journal of Food Lipids 12 (2):150–58. doi: 10.1111/j.1745-4522.2005.00013.x.
  • Mariod, A., B. Matthäus, K. Eichner, and I. H. Hussein. 2006a. Effects of processing on the quality and stability of three unconventional Sudanese oils. European Journal of Lipid Science and Technology 108 (4):298–308. doi: 10.1002/ejlt.200500323.
  • Mariod, A., B. Matthäus, K. Eichner, and I. H. Hussein. 2006b. Frying quality and oxidative stability of two unconventional oils. Journal of the American Oil Chemists’ Society 83 (6):529–38. doi: 10.1007/s11746-006-1236-5.
  • Mariod, A., B. Matthäus, K. Eichner, and I. H. Hussein. 2008. Long-term storage of three unconventional oils. Grasas y Aceites 59 (1):16–22. doi: 10.3989/gya.2008.v59.i1.484.
  • Mariod, A., B. Matthäus, and I. H. Hussein. 2011. Effect of stripping methods on the oxidative stability of three unconventional oils. Journal of the American Oil Chemists’ Society 88 (5):603–09. doi: 10.1007/s11746-010-1703-x.
  • Mariod, A. A. 2013. Insect oil and protein: Biochemistry, food and other uses: Review. Agricultural Sciences 4:76–80. doi: 10.4236/as.2013.49B013.
  • Mariod, A. A. 2020. Watermelon bug (Aspongopus viduatus) as a source of edible oil, protein, and gelatin. In African edible insects as alternative source of food, oil, protein and bioactive components, ed. A. Adam Mariod. 159–68. Cham: Springer International Publishing.
  • Mariod, A. A., S. I. Abdel-Wahab, and N. M. Ain. 2011. Proximate amino acid, fatty acid and mineral composition of two Sudanese edible pentatomid insects. International Journal of Tropical Insect Science 31 (3):145–53. doi: 10.1017/S1742758411000282.
  • Mariod, A. A., B. Matthäus, and S. I. Abdel-Wahab. 2011. Fatty acids, tocopherols of Aspongubus viduatus (melon bug) oil during different maturity stages. International Journal of Natural Product and Pharmaceutical Sciences 2 (1):20–27.
  • Mariod, A. A., M. E. Saeed-Mirghani, and I. Hussein. 2017. Chapter 44 - Schistocerca gregaria (desert locust) and Locusta migratoria (migratory locust). In Unconventional oilseeds and oil sources, eds. A. A. Mariod, M. E. Saeed-Mirghani and I. Hussein, 293–97. Cambridge, MA: Academic Press.
  • Mariod, A., B. Matthäus, K. Eichner, and I. H. Hussein. 2015. Phenolic compounds of three unconventional Sudanese oils. Acta Scientiarum Polonorum. Technologia Alimentaria 14 (1):63–69. doi: 10.17306/J.AFS.2015.1.7.
  • Matthäus, B., M. M. Özcan, and S. Doğu. 2018. Fatty acid composition and sterol contents of some origanum seed oils. European Journal of Lipid Science and Technology 120 (7):1800094. doi: 10.1002/ejlt.201800094.
  • Matthäus, B., T. Piofczyk, H. Katz, and F. Pudel. 2019. Renewable resources from insects: Exploitation, properties, and refining of fat obtained by cold-pressing from Hermetia illucens (black soldier fly) larvae. European Journal of Lipid Science and Technology 121 (7):1800376. doi: 10.1002/ejlt.201800376.
  • Mentang, F., M. Maita, H. Ushio, and T. Ohshima. 2011. Efficacy of silkworm (Bombyx mori L.) chrysalis oil as a lipid source in adult Wistar rats. Food Chemistry 127 (3):899–904. doi: 10.1016/j.foodchem.2011.01.045.
  • Mohamed, E. 2015. Fatty acids contents of the edible migratory locust Locusta migratoria, Linnaeus, 1758 (Orthoptera: Acrididae). International Journal of Advances in Pharmacy, Biology and Chemistry 4 (4):1–5.
  • Montoya, C., B. Cochard, A. Flori, D. Cros, R. Lopes, T. Cuellar, S. Espeout, I. Syaputra, P. Villeneuve, M. Pina, et al. 2014. Genetic architecture of palm oil fatty acid composition in cultivated oil palm (Elaeis guineensis Jacq.) compared to Its wild relative E. oleifera (H.B.K) Cortés. PLoS One 9 (5):e95412. doi: 10.1371/journal.pone.0095412.
  • Morales-Ramos, J. A., M. G. Rojas, K. S. Shelby, and T. A. Coudron. 2016. Nutritional value of pupae versus larvae of Tenebrio molitor (Coleoptera: Tenebrionidae) as food for rearing Podisus maculiventris (Heteroptera: Pentatomidae). Journal of Economic Entomology 109 (2):564–71. doi: 10.1093/jee/tov338.
  • Mustafa, N. E. M., A. A. Mariod, and B. Matthäus. 2008. Antibacterial activity of Aspongopus viduatus (melon bug) oil. Journal of Food Safety 28 (4):577–86. doi: 10.1111/j.1745-4565.2008.00132.x.
  • Nakatsuji, T., M. C. Kao, J.-Y. Fang, C. C. Zouboulis, L. Zhang, R. L. Gallo, and C.-M. Huang. 2009. Antimicrobial property of lauric acid against Propionibacterium acnes: Its therapeutic potential for inflammatory acne vulgaris. The Journal of Investigative Dermatology 129 (10):2480–88. doi: 10.1038/jid.2009.93.
  • Nitrayová, S., M. Brestenský, J. Heger, P. Patráš, J. Rafay, and A. Sirotkin. 2014. Amino acids and fatty acids profile of chia (Salvia hispanica L.) and flax (Linum usitatissimum L.) seed. Potravinarstvo 8 (1):72–76. doi: 10.5219/332.
  • Nizar, N. N. A., J. M. N. Marikkar, and D. M. Hashim. 2013. Differentiation of lard, chicken fat, beef fat and mutton fat by GCMS and EA-IRMS techniques. Journal of Oleo Science 62 (7):459–64. doi: 10.5650/jos.62.459.
  • Norizzah, A. R., K. Nur Azimah, and O. Zaliha. 2018. Influence of enzymatic and chemical interesterification on crystallisation properties of refined, bleached and deodourised (RBD) palm oil and RBD palm kernel oil blends. Food Research International (Ottawa, ON) 106:982–91. doi: 10.1016/j.foodres.2018.02.001.
  • Oonincx, D. G. A. B., and A. F. B. van der Poel. 2011. Effects of diet on the chemical composition of migratory locusts (Locusta migratoria). Zoo Biology 30 (1):9–16. doi: 10.1002/zoo.20308.
  • Osimani, A., C. Garofalo, V. Milanović, M. Taccari, F. Cardinali, L. Aquilanti, M. Pasquini, M. Mozzon, N. Raffaelli, S. Ruschioni, et al. 2017. Insight into the proximate composition and microbial diversity of edible insects marketed in the European Union. European Food Research and Technology 243 (7):1157–71. doi: 10.1007/s00217-016-2828-4.
  • Otero, P., A. Gutierrez-Docio, J. Navarro del Hierro, G. Reglero, and D. Martin. 2020. Extracts from the edible insects Acheta domesticus and Tenebrio molitor with improved fatty acid profile due to ultrasound assisted or pressurized liquid extraction. Food Chemistry 314:126200. doi: 10.1016/j.foodchem.2020.126200.
  • Pan, W. J., A. M. Liao, J. G. Zhang, Z. Dong, and Z. J. Wei. 2012. Supercritical carbon dioxide extraction of the oak silkworm (Antheraea pernyi) pupal oil: Process optimization and composition determination. International Journal of Molecular Sciences 13 (2):2354–67. doi: 10.3390/ijms13022354.
  • Patel, M. D., and P. D. Thompson. 2006. Phytosterols and vascular disease. Atherosclerosis 186 (1):12–19. doi: 10.1016/j.atherosclerosis.2005.10.026.
  • Paul, A., M. Frederich, R. C. Megido, T. Alabi, P. Malik, R. Uyttenbroeck, F. Francis, C. Blecker, E. Haubruge, G. Lognay, et al. 2017. Insect fatty acids: A comparison of lipids from three Orthopterans and Tenebrio molitor L. larvae. Journal of Asia-Pacific Entomology 20 (2):337–40. doi: 10.1016/j.aspen.2017.02.001.
  • Peri, E., D. Rochat, G. Belušič, M. Ilić, V. Soroker, S. Barkan, S. Guarino, P. L. Bue, and S. Colazza. 2017. Rhynchophorus ferrugineus: Behavior, ecology, and communication. In Handbook of major palm pests, eds. V. Soroker, and S. Colazza, 105–30. New York: Wiley.
  • Purschke, B., T. Stegmann, M. Schreiner, and H. Jäger. 2017. Pilot-scale supercritical CO2 extraction of edible insect oil from Tenebrio molitor L. larvae – Influence of extraction conditions on kinetics, defatting performance and compositional properties. European Journal of Lipid Science and Technology 119 (2):1600134. doi: 10.1002/ejlt.201600134.
  • Rabadán, A., M. Álvarez-Ortí, J. E. Pardo, and A. Alvarruiz. 2018. Storage stability and composition changes of three cold-pressed nut oils under refrigeration and room temperature conditions. Food Chemistry 259:31–35. doi: 10.1016/j.foodchem.2018.03.098.
  • Ramos-Bueno, R. P., M. J. González-Fernández, M. J. Sánchez-Muros-Lozano, F. García-Barroso, and J. L. Guil-Guerrero. 2016. Fatty acid profiles and cholesterol content of seven insect species assessed by several extraction systems. European Food Research and Technology 242 (9):1471–77. doi: 10.1007/s00217-016-2647-7.
  • Ramos-Elorduy, J., J. M. P. Moreno, E. E. Prado, M. A. Perez, J. L. Otero, and O. L. de Guevara. 1997. Nutritional value of edible insects from the State of Oaxaca, Mexico. Journal of Food Composition and Analysis 10 (2):142–57. doi: 10.1006/jfca.1997.0530.
  • Research & Markets. 2021. Edible insects market by product, insect type and application - Global forecast to 2027. https://www.globenewswire.com/en/news-release/2021/01/08/2155707/28124/en/Edible-Insects-Market-by-Product-Insect-Type-and-Application-Global-Forecast-to-2027.html (accessed September 16, 2021).
  • Ribeiro, N., M. Abelho, and R. Costa. 2018. A review of the scientific literature for optimal conditions for mass rearing Tenebrio molitor (Coleoptera: Tenebrionidae). Journal of Entomological Science 53 (4):434–54. doi: 10.18474/JES17-67.1.
  • Robinson, F. A., and J. L. Nation. 1970. Long-chain fatty acids in honeybees in relation to sex, caste, and food during development. Journal of Apicultural Research 9 (3):121–27. doi: 10.1080/00218839.1970.11100258.
  • Rochat, D., O. Dembilio, J. A. Jaques, P. Suma, A. L. Pergola, R. Hamidi, D. Kontodimas, and V. Soroker. 2017. Rhynchophorus ferrugineus: Taxonomy, distribution, biology, and life cycle. In Handbook of major palm pests, eds. V. Soroker, and S. Colazza, 69–104. New York: Wiley.
  • Rugman-Jones, P. F., C. D. Hoddle, M. S. Hoddle, and R. Stouthamer. 2013. The lesser of two weevils: Molecular-genetics of pest palm weevil populations confirm Rhynchophorus vulneratus (Panzer 1798) as a valid species distinct from R. ferrugineus (Olivier 1790), and reveal the global extent of both. PLoS One 8 (10):e78379. doi: 10.1371/journal.pone.0078379.
  • Rumpold, B. A., and O. K. Schlüter. 2013. Nutritional composition and safety aspects of edible insects. Molecular Nutrition & Food Research 57 (5):802–23. doi: 10.1002/mnfr.201200735.
  • Sabit, H., S. Abdel-Ghany, Z. Al-Dhafar, O. A. Said, J. A. Al-Saeed, Y. A. Alfehaid, and M. A. Osman. 2021. Molecular characterization and phylogenetic analysis of Rhynchophorus ferrugineus (Olivier) in eastern province, Saudi Arabia. Saudi Journal of Biological Sciences 28 (10):5621–30. doi: 10.1016/j.sjbs.2021.05.078.
  • Sealey, W. M., T. G. Gaylord, F. T. Barrows, J. K. Tomberlin, M. A. McGuire, C. Ross, and S. St-Hilaire. 2011. Sensory analysis of rainbow trout, Oncorhynchus mykiss, fed enriched black soldier fly prepupae, Hermetia illucens. Journal of the World Aquaculture Society 42 (1):34–45. doi: 10.1111/j.1749-7345.2010.00441.x.
  • Selaledi, L., C. A. Mbajiorgu, and M. Mabelebele. 2020. The use of yellow mealworm (T. molitor) as alternative source of protein in poultry diets: A review. Tropical Animal Health and Production 52 (1):7–16. doi: 10.1007/s11250-019-02033-7.
  • Shanker, K. S., K. Shireesha, S. Kanjilal, S. V. L. N. Kumar, C. Srinivas, J. V. K. Rao, and R. B. N. Prasad. 2006. Isolation and characterization of neutral lipids of desilked eri silkworm pupae grown on castor and tapioca leaves. Journal of Agricultural and Food Chemistry 54 (9):3305–09. doi: 10.1021/jf060581x.
  • Sheela, D. L., P. A. Nazeem, A. Narayanankutty, J. J. Manalil, and A. C. Raghavamenon. 2016. In silico and wet lab studies reveal the cholesterol lowering efficacy of lauric acid, a medium chain fat of coconut oil. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 71 (4):410–15. doi: 10.1007/s11130-016-0577-y.
  • Simopoulos, A. P. 2002. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 56 (8):365–79. doi: 10.1016/S0753-3322(02)00253-6.
  • Simopoulos, A. P. 2004. Omega-6/Omega-3 essential fatty acid ratio and chronic diseases. Food Reviews International 20 (1):77–90. doi: 10.1081/FRI-120028831.
  • Simopoulos, A. P. 2008. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Experimental Biology and Medicine (Maywood, N.J.) 233 (6):674–88. doi: 10.3181/0711-MR-311.
  • Sipponen, M. H., O. E. Mäkinen, K. Rommi, R.-L. Heiniö, U. Holopainen-Mantila, S. Hokkanen, T. K. Hakala, and E. Nordlund. 2018. Biochemical and sensory characteristics of the cricket and mealworm fractions from supercritical carbon dioxide extraction and air classification. European Food Research and Technology 244 (1):19–29. doi: 10.1007/s00217-017-2931-1.
  • Son, Y. J., S. Y. Choi, I. K. Hwang, C. W. Nho, and S. H. Kim. 2020. Could defatted mealworm (Tenebrio molitor) and mealworm oil be used as food ingredients? Foods 9 (1):40. doi: 10.3390/foods9010040.
  • Soo, P. P., Y. Ali, O. M. Lai, C. H. Kuan, T. K. Tang, Y. Y. Lee, and E. T. Phuah. 2020. Enzymatic and mechanical extraction of virgin coconut oil. European Journal of Lipid Science and Technology 122 (5):1900220. doi: 10.1002/ejlt.201900220.
  • Spranghers, T., M. Ottoboni, C. Klootwijk, A. Ovyn, S. Deboosere, B. De Meulenaer, J. Michiels, M. Eeckhout, P. De Clercq, and S. D. Smet. 2017. Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. Journal of the Science of Food and Agriculture 97 (8):2594–600. doi: 10.1002/jsfa.8081.
  • Tang, C. F., D. Yang, H. J. Liao, H. W. Sun, C. J. Liu, L. J. Wei, and F. F. Li. 2019. Edible insects as a food source: A review. Food Production, Processing and Nutrition 1 (1):8. doi: 10.1186/s43014-019-0008-1.
  • Tarla, S., H. Yetisir, and G. Tarla. 2013. Black watermelon bug, Coridius viduatus (F.)(Heteroptera: Dinidoridae) in hatay region of Turkey. Journal of Basic and Applied Sciences 9:31–35. doi: 10.6000/1927-5129.2013.09.06.
  • Tomotake, H., M. Katagiri, and M. Yamato. 2010. Silkworm pupae (Bombyx mori) are new sources of high quality protein and lipid. Journal of Nutritional Science and Vitaminology 56 (6):446–48. doi: 10.3177/jnsv.56.446.
  • Tzompa-Sosa, D. A., and V. Fogliano. 2017. Chapter 9 – Potential of insect-derived ingredients for food applications. In Insect physiology and ecology, ed. V. D. C. Shields. London: IntechOpen.
  • Tzompa-Sosa, D., M. Verbreek, and H. van Valenberg. 2016. Fractionation of insect oils: The case of yellow mealworm oil. INFORM: International News on Fats, Oils, and Related Materials 27 (7):24–25. doi: 10.21748/inform.07.2016.24.
  • Tzompa-Sosa, D. A., L. Yi, H. J. F. van Valenberg, and C. M. M. Lakemond. 2019. Four insect oils as food ingredient: Physical and chemical characterisation of insect oils obtained by an aqueous oil extraction. Journal of Insects as Food and Feed 5 (4):279–92. doi: 10.3920/JIFF2018.0020.
  • Tzompa-Sosa, D. A., L. Yi, H. J. F. van Valenberg, M. A. J. S. van Boekel, and C. M. M. Lakemond. 2014. Insect lipid profile: Aqueous versus organic solvent-based extraction methods. Food Research International 62:1087–94. doi: 10.1016/j.foodres.2014.05.052.
  • Uğur, A. E. 2019. Extraction and physicochemical characterization of insect oils obtained from Acheta domesticus & Tenebrio molitor. MS thesis, Middle East Technical University.
  • Ugur, A. E., B. Bolat, M. H. Oztop, and H. Alpas. 2021. Effects of high hydrostatic pressure (HHP) processing and temperature on physicochemical characterization of insect oils extracted from Acheta domesticus (house cricket) and Tenebrio molitor (yellow mealworm). Waste and Biomass Valorization 12 (8):4277–86. doi: 10.1007/s12649-020-01302-z.
  • van Broekhoven, S., D. G. A. B. Oonincx, A. van Huis, and J. J. A. van Loon. 2015. Growth performance and feed conversion efficiency of three edible mealworm species (Coleoptera: Tenebrionidae) on diets composed of organic by-products. Journal of Insect Physiology 73:1–10. doi: 10.1016/j.jinsphys.2014.12.005.
  • van Huis, A. 2013. Potential of insects as food and feed in assuring food security. Annual Review of Entomology 58 (1):563–83. doi: 10.1146/annurev-ento-120811-153704.
  • Wei, Z. J., A. M. Liao, H. X. Zhang, J. Liu, and S. T. Jiang. 2009. Optimization of supercritical carbon dioxide extraction of silkworm pupal oil applying the response surface methodology. Bioresource Technology 100 (18):4214–19. doi: 10.1016/j.biortech.2009.04.010.
  • WHO. 2007. Protein and amino acid requirements in human nutrition. Report of a Joint FAO/WHO/UNU Expert Consultation. World Health Organization (WHO), Geneva.
  • Winitchai, S., A. Manosroi, and J. Manosroi. 2008. Effect of native Thai silk varieties (Bombyx mori L.) and extraction method on chemical compositions of silkworm oil for food and cosmetics applications. In Proceeding of 46th Kasetsart University Annual Conference (Poster), 435–43. Bangkok, Thailand: Thailand Research Fund.
  • Wu, X., K. He, T. C. Velickovic, and Z. Liu. 2021. Nutritional, functional, and allergenic properties of silkworm pupae. Food Science & Nutrition 9 (8):4655–65. doi: 10.1002/fsn3.2428.
  • Yahyavi, F., M. Alizadeh-Khaledabad, and S. Azadmard-Damirchi. 2020. Oil quality of pistachios (Pistacia vera L.) grown in East Azarbaijan, Iran. NFS Journal 18:12–18. doi: 10.1016/j.nfs.2019.11.001.
  • Yan, T. K., A. Asari, S. A. Salleh, and W. A. Azmi. 2021. Eugenol and thymol derivatives as antifeedant agents against red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Dryophthoridae) larvae. Insects 12 (6):551. doi: 10.3390/insects12060551.
  • Yang, H.-T., J.-W. Chen, J. Rathod, Y.-Z. Jiang, P.-J. Tsai, Y.-P. Hung, W.-C. Ko, D. Paredes-Sabja, and I.-H. Huang. 2017. Lauric acid is an inhibitor of Clostridium difficile growth in vitro and reduces inflammation in a mouse infection model. Frontiers in Microbiology 8:2635. doi: 10.3389/fmicb.2017.02635.
  • Yoshida, Y., and E. Niki. 2003. Antioxidant effects of phytosterol and its components. Journal of Nutritional Science and Vitaminology (Tokyo) 49 (4):277–80. doi: 10.3177/jnsv.49.277.
  • Yu, X. B., Y. Y. Shen, Q. M. Cui, Y. Chen, W. Sun, X. Z. Huang, and Y. Zhu. 2018. Silkworm (Bombyx mori) has the capability to accumulate C20 and C22 polyunsaturated fatty acids. European Journal of Lipid Science and Technology 120 (2):1700268. doi: 10.1002/ejlt.201700268.
  • Zhao, X., J. L. Vázquez-Gutiérrez, D. P. Johansson, R. Landberg, and M. Langton. 2016. Yellow mealworm protein for food purposes - Extraction and functional properties. PLoS One 11 (2):e0147791. doi: 10.1371/journal.pone.0147791.
  • Zheng, L. Y., J. Jin, L. Shi, J. H. Huang, M. Chang, X. G. Wang, H. Zhang, and Q. Z. Jin. 2020. Gamma tocopherol, its dimmers, and quinones: Past and future trends. Critical Reviews in Food Science and Nutrition 60 (22):3916–30. doi: 10.1080/10408398.2020.1711704.
  • Zhou, J., and D. Han. 2006. Proximate, amino acid and mineral composition of pupae of the silkworm Antheraea pernyi in China. Journal of Food Composition and Analysis 19 (8):850–53. doi: 10.1016/j.jfca.2006.04.008.
  • Zielińska, E., B. Baraniak, M. Karaś, K. Rybczyńska, and A. Jakubczyk. 2015. Selected species of edible insects as a source of nutrient composition. Food Research International 77:460–66. doi: 10.1016/j.foodres.2015.09.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.