984
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Enzymatic glucosylation of polyphenols using glucansucrases and branching sucrases of glycoside hydrolase family 70

, , , , , & show all

References

  • Abdelwahed, A., I. Bouhlel, I. Skandrani, K. Valenti, M. Kadri, P. Guiraud, R. Steiman, A. M. Mariotte, K. Ghedira, F. Laporte, et al. 2007. Study of antimutagenic and antioxidant activities of gallic acid and 1,2,3,4,6-pentagalloylglucose from Pistacia lentiscus – Confirmation by microarray expression profiling. Chemico-Biological Interactions 165 (1):1–13. doi: 10.1016/j.cbi.2006.10.003.
  • André, I., G. Potocki-Vèronése, S. Morel, P. Monsan, and M. Remaud-Siméon. 2010. Sucrose-utilizing transglucosidases for biocatalysis. Topics in Current Chemistry 294:25–48.
  • Argüello-Morales, M. A., M. Remaud-Siméon, S. Pizzut, P. Sarcabal, R.-M. Willemot, and P. Monsan. 2000. Sequence analysis of the gene encoding alternansucrase, a sucrose glucosyltransferase from Leuconostoc mesenteroides NRRL B-1355. FEMS Microbiology Letters 182 (1):81–5. doi: 10.1016/S0378-1097(99)00572-8.
  • Baciu, I. E., H. J. Jordening, J. Seibel, and K. Buchholz. 2005. Investigations of the transfructosylation reaction by fructosyltransferase from B. subtilis NCIMB 11871 for the synthesis of the sucrose analogue galactosyl-fructoside. Journal of Biotechnology 116 (4):347–57. doi: 10.1016/j.jbiotec.2004.10.019.
  • Bertrand, A., S. Morel, F. Lefoulon, Y. Rolland, P. Monsan, and M. Remaud-Simeon. 2006. Leuconostoc mesenteroides glucansucrase synthesis of flavonoid glucosides by acceptor reactions in aqueous-organic solvents. Carbohydrate Research 341 (7):855–63. doi: 10.1016/j.carres.2006.02.008.
  • Biesaga, M., and K. Pyrzyńska. 2013. Stability of bioactive polyphenols from honey during different extraction methods. Food Chemistry 136 (1):46–54. doi: 10.1016/j.foodchem.2012.07.095.
  • Bouzaiene, N. N., S. Kilani Jaziri, H. Kovacic, L. Chekir-Ghedira, K. Ghedira, and J. Luis. 2015. The effects of caffeic, coumaric and ferulic acids on proliferation, superoxide production, adhesion and migration of human tumor cells in vitro. European Journal of Pharmacology 766:99–105. doi: 10.1016/j.ejphar.2015.09.044.
  • Bozonnet, S., M. Dols-Laffargue, E. Fabre, S. Pizzut, M. Remaud-Siméon, P. Monsan, and R.-M. Willemot. 2002. Molecular characterization of DSR-E, an alpha-1,2 linkage-synthesizing dextransucrase with two catalytic domains. Journal of Bacteriology 184 (20):5753–61. doi: 10.1128/JB.184.20.5753-5761.2002.
  • Brison, Y., T. Pijning, Y. Malbert, E. Fabre, L. Mourey, S. Morel, G. Potocki-Vèronése, P. Monsan, S. Tranier, M. Remaud-Siméon, et al. 2012. Functional and structural characterization of α-(1->2) branching sucrase derived from DSR-E glucansucrase. The Journal of Biological Chemistry 287 (11):7915–24. doi: 10.1074/jbc.M111.305078.
  • Brison, Y., Y. Malbert, G. Czaplicki, L. Mourey, M. Remaud-Simeon, and S. Tranier. 2016. Structural insights into the carbohydrate binding ability of an α-(1→2) Branching Sucrase from Glycoside Hydrolase Family 70. The Journal of Biological Chemistry 291 (14):7527–40. doi: 10.1074/jbc.M115.688796.
  • Côté, G. L. 2009. Acceptor products of alternansucrase with gentiobiose. Production of novel oligosaccharides for food and feed and elimination of bitterness. Carbohydrate Research 344 (2):187–90. doi: 10.1016/j.carres.2008.10.017.
  • Côté, G. L., and C. D. Skory. 2012. Cloning, expression, and characterization of an insoluble glucan-producing glucansucrase from Leuconostoc mesenteroides NRRL B-1118. Applied Microbiology and Biotechnology 93 (6):2387–94. doi: 10.1007/s00253-011-3562-2.
  • Côté, G. L., and C. D. Skory. 2015. Water-insoluble glucans from sucrose via glucansucrases: Factors influencing structures and yields. Green Polymer Chemistry: Biobased Materials and Biocatalysis 1192:101–12.
  • Ceunen, S., and J. M. C. Geuns. 2013. Steviol glycosides: Chemical diversity, metabolism, and function. Journal of Natural Products 76 (6):1201–28. doi: 10.1021/np400203b.
  • Chen, L. P., F. Zhao, Y. Wang, L. L. Zhao, Q. P. Li, and H. W. Liu. 2011. Antitumor effect of resorcinol derivatives from the roots of Ardisia brevicaulis by inducing apoptosis. Journal of Asian Natural Products Research 13 (8):734–43. doi: 10.1080/10286020.2011.587412.
  • Cheynier, V., P. Sarni-Manchado, and S. Quideau. 2012. Recent advances in polyphenol research. Hoboken, NJ: Wiley.
  • Claverie, M., G. Cioci, M. Vuillemin, P. Bondy, M. Remaud-Simeon, and C. Moulis. 2020. Processivity of dextransucrases synthesizing very-high-molar-mass dextran is mediated by sugar-binding pockets in domain V. The Journal of Biological Chemistry 295 (17):5602–13. doi: 10.1074/jbc.RA119.011995.
  • Corcoran, M. P., D. L. McKay, and J. B. Blumberg. 2012. Flavonoid basics: Chemistry, sources, mechanisms of action, and safety. Journal of Nutrition in Gerontology and Geriatrics 31 (3):176–89. doi: 10.1080/21551197.2012.698219.
  • Cushnie, T. P., and A. J. Lamb. 2005. Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents 26 (5):343–56. doi: 10.1016/j.ijantimicag.2005.09.002.
  • Daude, D., M. Remaud-Siméon, and I. Andre. 2012. Sucrose analogs: An attractive (bio)source for glycodiversification. Natural Product Reports 29 (9):945–60.
  • De Bruyn, F., J. Maertens, J. Beauprez, W. Soetaert, and M. De Mey. 2015. Biotechnological advances in UDP-sugar based glycosylation of small molecules. Biotechnology Advances 33 (2):288–302. doi: 10.1016/j.biotechadv.2015.02.005.
  • de Segura, A. G., M. Alcalde, M. Bernabe, A. Ballesteros, and F. J. Plou. 2006. Synthesis of methyl alpha-D-glucooligosaccharides by entrapped dextransucrase from Leuconostoc mesenteroides B-1299. Journal of Biotechnology 124 (2):439–45. doi: 10.1016/j.jbiotec.2005.12.031.
  • Desmet, T., W. Soetaert, P. Bojarová, V. Křen, L. Dijkhuizen, V. Eastwick-Field, and A. Schiller. 2012. Enzymatic glycosylation of small molecules: Challenging substrates require tailored catalysts. Chemistry (Weinheim an Der Bergstrasse, Germany) 18 (35):10786–107801. doi: 10.1002/chem.201103069.
  • Devlamynck, T., E. M. Te Poele, K. Quataert, G. J. Gerwig, D. Van de Walle, K. Dewettinck, J. P. Kamerling, W. Soetaert, and L. Dijkhuizen. 2019. Trans-α-glucosylation of stevioside by the mutant glucansucrase enzyme Gtf180-ΔN-Q1140E improves its taste profile. Food Chemistry 272:653–62. doi: 10.1016/j.foodchem.2018.08.025.
  • Devlamynck, T., E. M. Te Poele, X. F. Meng, S. S. van Leeuwen, and L. Dijkhuizen. 2016. Glucansucrase Gtf180-ΔN of Lactobacillus reuteri 180: Enzyme and reaction engineering for improved glycosylation of non-carbohydrate molecules. Applied Microbiology and Biotechnology 100 (17):7529–39. doi: 10.1007/s00253-016-7476-x.
  • Dirks-Hofmeister, M. E., T. Verhaeghe, K. D. Winter, and T. Desmet. 2015. Creating space for large acceptors: Rational biocatalyst design for resveratrol glycosylation in an aqueous system. Angewandte Chemie International Edition 54 (32):9289–92. doi: 10.1002/anie.201503605.
  • Dobruchowska, J. M., X. Meng, H. Leemhuis, G. J. Gerwig, L. Dijkhuizen, and J. P. Kamerling. 2013. Gluco-oligomers initially formed by the reuteransucrase enzyme of Lactobacillus reuteri 121 incubated with sucrose and malto-oligosaccharides. Glycobiology 23 (9):1084–96. doi: 10.1093/glycob/cwt048.
  • Franceus, J., and T. Desmet. 2020. Sucrose phosphorylase and related Enzymes in glycoside hydrolase family 13: Discovery, application and engineering. International Journal of Molecular Sciences 21 (7):2526. doi: 10.3390/ijms21072526.
  • Gerwig, G. J., E. M. Te Poele, L. Dijkhuizen, and J. P. Kamerling. 2016. Stevia glycosides: Chemical and enzymatic modifications of their carbohydrate moieties to improve the sweet-tasting quality. Advances in Carbohydrate Chemistry and Biochemistry 73:1–72.
  • Gerwig, G. J., E. M. Te Poele, L. Dijkhuizen, and J. P. Kamerling. 2017. Structural analysis of rebaudioside A derivatives obtained by Lactobacillus reuteri 180 glucansucrase-catalyzed trans-α-glucosylation. Carbohydrate Research 440–441:51–62. doi: 10.1016/j.carres.2017.01.008.
  • Gonzalez-Alfonso, J. L., P. Peñalver, A. O. Ballesteros, J. C. Morales, and F. J. Plou. 2019. Effect of alpha-Glucosylation on the stability, antioxidant properties, toxicity, and neuroprotective activity of (-)-epigallocatechin gallate. Frontiers in Nutrition 6:30. doi: 10.3389/fnut.2019.00030.
  • Griffith, B. R., J. M. Langenhan, and J. S. Thorson. 2005. ‘Sweetening’ natural products via glycorandomization. Current Opinion in Biotechnology 16 (6):622–30. doi: 10.1016/j.copbio.2005.10.002.
  • Harborne, J. B., and C. A. Williams. 2000. Advances in flavonoid research since 1992. Phytochemistry 55 (6):481–504. doi: 10.1016/S0031-9422(00)00235-1.
  • Heim, K. E., A. R. Tagliaferro, and D. J. Bobilya. 2002. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. The Journal of Nutritional Biochemistry 13 (10):572–84. doi: 10.1016/S0955-2863(02)00208-5.
  • Hofer, B. 2016. Recent developments in the enzymatic O-glycosylation of flavonoids. Applied Microbiology and Biotechnology 100 (10):4269–81. doi: 10.1007/s00253-016-7465-0.
  • Hyun, E. K., H. Y. Park, H. J. Kim, J. K. Lee, D. Kim, and D. K. Oh. 2007. Production of epigallocatechin gallate 7-O-alpha-D-glucopyranoside (EGCG-G1) using the glucosyltransferase from Leuconostoc mesenteroides. Biotechnology Progress 23 (5):1082–6.
  • Imai, H., M. Kitagawa, K. Ishihara, N. Masuoka, K. Shimoda, N. Nakajima, and H. Hamada. 2012. Glycosylation of trans-resveratrol by plant-cultured cells. Bioscience, Biotechnology, and Biochemistry 76 (8):1552–4. doi: 10.1271/bbb.120126.
  • Ito, K., S. Ito, T. Shimamura, S. Weyand, Y. Kawarasaki, T. Misaka, K. Abe, T. Kobayashi, A. D. Cameron, and S. Iwata. 2011. Crystal structure of glucansucrase from the dental caries pathogen Streptococcus mutans. Journal of Molecular Biology 408 (2):177–86. doi: 10.1016/j.jmb.2011.02.028.
  • Jackman, R. L., R. Y. Yada, M. A. Tung, and R. A. Speers. 1987. Anthocyanins as food colorants – a review. Journal of Food Biochemistry 11 (3):201–47. doi: 10.1111/j.1745-4514.1987.tb00123.x.
  • Ji, Y., B. Li, M. Qiao, J. Li, H. Xu, L. Zhang, and X. Zhang. 2020. Advances on the in vivo and in vitro glycosylations of flavonoids. Applied Microbiology and Biotechnology 104 (15):6587–600. doi: 10.1007/s00253-020-10667-z.
  • Kim, B. G., S. M. Yang, S. Y. Kim, M. N. Cha, and J. H. Ahn. 2015. Biosynthesis and production of glycosylated flavonoids in Escherichia coli: Current state and perspectives. Applied Microbiology and Biotechnology 99 (7):2979–88. doi: 10.1007/s00253-015-6504-6.
  • Kim, G. E., H. K. Kang, E. S. Seo, S. H. Jung, J. S. Park, D. H. Kim, D. W. Kim, S. A. Ahn, C. Sunwoo, and D. Kim. 2012. Glucosylation of the flavonoid, astragalin by Leuconostoc mesenteroides B-512FMCM dextransucrase acceptor reactions and characterization of the products. Enzyme and Microbial Technology 50 (1):50–6. doi: 10.1016/j.enzmictec.2011.09.007.
  • Kim, J., T. T. H. Nguyen, N. M. Kim, Y. H. Moon, J. M. Ha, N. Park, D. G. Lee, K. H. Hwang, J. S. Park, and D. Kim. 2016. Functional properties of novel epigallocatechin gallate glucosides synthesized by using dextransucrase from Leuconostoc mesenteroides B-1299CB4. Journal of Agricultural and Food Chemistry 64 (48):9203–13. doi: 10.1021/acs.jafc.6b04236.
  • Kim, Y. M., B. H. Kim, J. S. Ahn, G. E. Kim, S. D. Jin, T. H. Nguyen, and D. Kim. 2009. Enzymatic synthesis of alkyl glucosides using Leuconostoc mesenteroides dextransucrase. Biotechnology Letters 31 (9):1433–8. doi: 10.1007/s10529-009-0015-4.
  • Klingel, T., B. Bindereif, M. Hadamjetz, A. Fischer, U. S. van der Schaaf, and D. Wefers. 2019. Enzymatic synthesis and characterization of mono-, oligo-, and polyglucosylated conjugates of caffeic acid and gallic Acid. Journal of Agricultural and Food Chemistry 67 (47):13108–18. doi: 10.1021/acs.jafc.9b04495.
  • Klingel, T., M. Hadamjetz, A. Fischer, and D. Wefers. 2019. Glucosylation of flavonoids and flavonoid glycosides by mutant dextransucrase from Lactobacillus reuteri TMW 1.106. Carbohydrate Research 483:107741. doi: 10.1016/j.carres.2019.107741.
  • Ko, J. A., S. H. Nam, J. Y. Park, Y. Wee, D. Kim, W. S. Lee, Y. B. Ryu, and Y. M. Kim. 2016. Synthesis and characterization of glucosyl stevioside using Leuconostoc dextransucrase. Food Chemistry 211:577–82. doi: 10.1016/j.foodchem.2016.05.046.
  • Ko, J. A., Y. B. Ryu, J. Y. Park, C. Y. Kim, J. S. Kim, S. H. Nam, W. S. Lee, and Y. M. Kim. 2016. Glucosyl rubusosides by dextransucrases improve the quality of taste and sweetness. Journal of Microbiology and Biotechnology 26 (3):493–7. doi: 10.4014/jmb.1512.12085.
  • Ko, J. A., Y. B. Ryu, T. S. Park, H. J. Jeong, J. H. Kim, S. J. Park, J. S. Kim, D. Kim, Y. M. Kim, and W. S. Lee. 2012. Enzymatic synthesis of puerarin glucosides using Leuconostoc dextransucrase. Journal of Microbiology and Biotechnology 22 (9):1224–9. doi: 10.4014/jmb.1202.02007.
  • Koshland, D. E. 1953. Stereochemistry and the mechanism of enzymatic reactions. Biological Reviews of Reviews 28 (4):416–36. doi: 10.1111/j.1469-185X.1953.tb01386.x.
  • Kralj, S., E. Stripling, P. Sanders, I. G. H. van Geel-Schutten, and L. Dijkhuizen. 2005. Highly hydrolytic reuteransucrase from probiotic Lactobacillus reuteri strain ATCC 55730. Applied and Environmental Microbiology 71 (7):3942–50. doi: 10.1128/AEM.71.7.3942-3950.2005.
  • Kralj, S., I. G. H. van Geel-Schutten, M. M. G. Dondorff, S. Kirsanovs, M. J. E. C. van der Maarel, and L. Dijkhuizen. 2004. Glucan synthesis in the genus Lactobacillus: Isolation and characterization of glucansucrase genes, enzymes and glucan products from six different strains. Microbiology (Reading, England) 150 (Pt 11):3681–90. doi: 10.1099/mic.0.27321-0.
  • Kralj, S., I. G. H. van Geel-Schutten, M. J. E. C. van der Maarel, and L. Dijkhuizen. 2004. Biochemical and molecular characterization of Lactobacillus reuteri 121 reuteransucrase. Microbiology (Reading, England) 150 (Pt 7):2099–112. doi: 10.1099/mic.0.27105-0.
  • Kren, V., and L. Martinkova. 2001. Glycosides in medicine: "The role of glycosidic residue in biological activity". Current Medicinal Chemistry 8 (11):1303–28. doi: 10.2174/0929867013372193.
  • Lee, S. H., J. A. Ko, H. S. Kim, M. H. Jo, J. S. Kim, D. Kim, J. Y. Cho, Y. J. Wee, and Y. M. Kim. 2019. Enzymatic synthesis of glucosyl rebaudioside A and its characterization as a sweetener. Journal of Food Science 84 (11):3186–93. doi: 10.1111/1750-3841.14821.
  • Lee, S. J., J. C. Kim, M. J. Kim, M. Kitaoka, C. S. Park, S. Y. Lee, M. J. Ra, T. W. Moon, J. F. Robyt, and K. H. Park. 1999. Transglycosylation of naringin by Bacillus stearothermophilusMaltogenic amylase to give glycosylated naringin. Journal of Agricultural and Food Chemistry 47 (9):3669–74. doi: 10.1021/jf990034u.
  • Leemhuis, H., T. Pijning, J. M. Dobruchowska, B. W. Dijkstra, and L. Dijkhuizen. 2012. Glycosidic bond specificity of glucansucrases: On the role of acceptor substrate binding residues. Biocatalysis and Biotransformation 30 (3):366–76. doi: 10.3109/10242422.2012.676301.
  • Leemhuis, H., T. Pijning, J. M. Dobruchowska, S. S. van Leeuwen, S. Kralj, B. W. Dijkstra, and L. Dijkhuizen. 2013. Glucansucrases: Three-dimensional structures, reactions, mechanism, α-glucan analysis and their implications in biotechnology and food applications. Journal of Biotechnology 163 (2):250–72. doi: 10.1016/j.jbiotec.2012.06.037.
  • Li, X., X. Wang, X. Meng, L. Dijkhuizen, and W. Liu. 2020. Structures, physico-chemical properties, production and (potential) applications of sucrose-derived alpha-d-glucans synthesized by glucansucrases. Carbohydrate Polymers 249:116818.
  • Li, Y., L. H. Liu, X. Q. Yu, Y. X. Zhang, J. W. Yang, X. Q. Hu, and H. B. Zhang. 2019. Transglycosylation improved caffeic acid phenethyl ester anti-Inflammatory activity and water solubility by Leuconostoc mesenteroides dextransucrase. Journal of Agricultural and Food Chemistry 67 (16):4505–12. doi: 10.1021/acs.jafc.9b01143.
  • Liang, C. N., Y. Zhang, Y. Jia, W. Z. Wang, Y. H. Li, S. K. Lu, J. M. Jin, and S. Y. Tang. 2016. Engineering a carbohydrate-processing transglycosidase into glycosyltransferase for natural product glycodiversification. Scientific Reports 6:21051. doi: 10.1038/srep21051.
  • Lu, M. F., Z. T. Xiao, and H. Y. Zhang. 2013. Where do health benefits of flavonoids come from? Insights from flavonoid targets and their evolutionary history. Biochemical and Biophysical Research Communications 434 (4):701–4. doi: 10.1016/j.bbrc.2013.04.035.
  • Ma, C., N. He, Y. Zhao, D. Xia, J. Wei, and W. Kang. 2019. Antimicrobial mechanism of hydroquinone. Applied Biochemistry and Biotechnology 189 (4):1291–303. doi: 10.1007/s12010-019-03067-1.
  • Malbert, Y., C. Moulis, Y. Brison, S. Morel, I. Andre, and M. Remaud-Simeon. 2018. Engineering a branching sucrase for flavonoid glucoside diversification. Scientific Reports 8 (1):15153. doi: 10.1038/s41598-018-33394-y.
  • Marinova, E. M., A. Toneva, and N. Yanishlieva. 2009. Comparison of the antioxidative properties of caffeic and chlorogenic acids. Food Chemistry 114 (4):1498–502. doi: 10.1016/j.foodchem.2008.11.045.
  • Masuda, T., K. Yamada, J. Akiyama, T. Someya, Y. Odaka, Y. Takeda, M. Tori, K. Nakashima, T. Maekawa, and Y. Sone. 2008. Antioxidation mechanism studies of caffeic acid: Identification of antioxidation products of methyl caffeate from lipid oxidation. Journal of Agricultural and Food Chemistry 56 (14):5947–52. doi: 10.1021/jf800781b.
  • Meng, X., J. M. Dobruchowska, T. Pijning, C. A. López, J. P. Kamerling, and L. Dijkhuizen. 2014. Residue Leu940 has a crucial role in the linkage and reaction specificity of the glucansucrase GTF180 of the probiotic bacterium Lactobacillus reuteri 180. The Journal of Biological Chemistry 289 (47):32773–82. doi: 10.1074/jbc.M114.602524.
  • Meng, X., J. Gangoiti, Y. Bai, T. Pijning, S. S. Van Leeuwen, and L. Dijkhuizen. 2016. Structure-function relationships of family GH70 glucansucrase and 4,6-α-glucanotransferase enzymes, and their evolutionary relationships with family GH13 enzymes. Cellular and Molecular Life Sciences 73 (14):2681–706. doi: 10.1007/s00018-016-2245-7.
  • Meng, X., J. Gangoiti, X. F. Wang, P. Grijpstra, S. S. van Leeuwen, T. Pijning, and L. Dijkhuizen. 2018. Biochemical characterization of a GH70 protein from Lactobacillus kunkeei DSM 12361 with two catalytic domains involving branching sucrase activity. Applied Microbiology and Biotechnology 102 (18):7935–50. doi: 10.1007/s00253-018-9236-6.
  • Meng, X., T. Pijning, J. M. Dobruchowska, G. J. Gerwig, and L. Dijkhuizen. 2015. Characterization of the functional roles of amino acid residues in Acceptor-binding Subsite +1 in the Active Site of the Glucansucrase GTF180 from Lactobacillus reuteri 180. The Journal of Biological Chemistry 290 (50):30131–41. doi: 10.1074/jbc.M115.687558.
  • Meulenbeld, G. H., and S. Hartmans. 2000. Transglycosylation by Streptococcus mutans GS-5 glucosyltransferase-D: Acceptor specificity and engineering of reaction conditions. Biotechnology and Bioengineering 70 (4):363–9. doi: 10.1002/1097-0290(20001120)70:4<363::AID-BIT1>3.0.CO;2-2.
  • Meulenbeld, G. H., H. Zuilhof, A. van Veldhuizen, R. H. van den Heuvel, and S. Hartmans. 1999. Enhanced (+)-catechin transglucosylating activity of Streptococcus mutans GS-5 glucosyltransferase-D due to fructose removal. Applied and Environmental Microbiology 65 (9):4141–7. doi: 10.1128/AEM.65.9.4141-4147.1999.
  • Miao, M., X. Jia, B. Jiang, S. F. Wu, S. W. Cui, and X. F. Li. 2016. Elucidating molecular structure and prebiotics properties of bioengineered α-D-glucan from Leuconostoc citreum SK24.002. Food Hydrocolloids 54:227–33. doi: 10.1016/j.foodhyd.2015.10.013.
  • Monchois, V., M. A. Argüello-Morales, and R. R. B. Russell. 1999. Isolation of an active catalytic core of Streptococcus downei MFe28 GTF-I glucosyltransferase. Journal of Bacteriology 181 (7):2290–2. doi: 10.1128/JB.181.7.2290-2292.1999.
  • Monchois, V., M. Remaud-Siméon, R. R. B. Russell, P. Monsan, and R.-M. Willemot. 1997. Characterization of Leuconostoc mesenteroides NRRL B-512F dextransucrase (DSRS) and identification of amino-acid residues playing a key role in enzyme activity. Applied Microbiology and Biotechnology 48 (4):465–72. doi: 10.1007/s002530051081.
  • Monchois, V., R.-M. Willemot, and P. Monsan. 1999. Glucansucrases: Mechanism of action and structure-function relationships. FEMS Microbiology Reviews 23 (2):131–51. doi: 10.1016/S0168-6445(98)00041-2.
  • Monsan, P., M. Remaud-Siméon, and I. André. 2010. Transglucosidases as efficient tools for oligosaccharide and glucoconjugate synthesis. Current Opinion in Microbiology 13 (3):293–300. doi: 10.1016/j.mib.2010.03.002.
  • Moon, Y. H., G. Kim, J. H. Lee, X. J. Jin, D. W. Kim, and D. Kim. 2006. Enzymatic synthesis and characterization of novel epigallocatechin gallate glucosides. Journal of Molecular Catalysis B: Enzymatic 40 (1–2):1–7. doi: 10.1016/j.molcatb.2006.01.030.
  • Moon, Y. H., J. H. Lee, J. S. Ahn, S. H. Nam, D. K. Oh, D. H. Park, H. J. Chung, S. Kang, D. F. Day, and D. Kim. 2006. Synthesis, structure analyses, and characterization of novel epigallocatechin gallate (EGCG) glycosides using the glucansucrase from Leuconostoc mesenteroides B-1299CB. Journal of Agricultural and Food Chemistry 54 (4):1230–7. doi: 10.1021/jf052359i.
  • Moon, Y. H., J. H. Lee, D. Y. Jhon, W. J. Jun, S. S. Kang, J. Sim, H. Choi, J. H. Moon, and D. Kim. 2007. Synthesis and characterization of novel quercetin-alpha-D-glucopyranosides using glucansucrase from Leuconostoc mesenteroides. Enzyme and Microbial Technology 40 (5):1124–9. doi: 10.1016/j.enzmictec.2006.08.019.
  • Moon, Y. H., S. H. Nam, J. Kang, Y. M. Kim, J. H. Lee, H. K. Kang, V. Breton, W. J. Jun, K. D. Park, A. Kimura, et al. 2007. Enzymatic synthesis and characterization of arbutin glucosides using glucansucrase from Leuconostoc mesenteroides B-1299CB. Applied Microbiology and Biotechnology 77 (3):559–67. doi: 10.1007/s00253-007-1202-7.
  • Moulis, C., I. Andre, and M. Remaud-Simeon. 2016. GH13 amylosucrases and GH70 branching sucrases, atypical enzymes in their respective families. Cellular and Molecular Life Sciences : CMLS 73 (14):2661–79. doi: 10.1007/s00018-016-2244-8.
  • Moulis, C., D. Guieysse, S. Morel, E. Severac, and M. Remaud-Simeon. 2021. Natural and engineered transglycosylases: Green tools for the enzyme-based synthesis of glycoproducts. Current Opinion in Chemical Biology 61:96–106. doi: 10.1016/j.cbpa.2020.11.004.
  • Musa, A., M. Miao, T. Zhang, and B. Jiang. 2014. Biotransformation of stevioside by Leuconostoc citreum SK24.002 alternansucrase acceptor reaction. Food Chemistry 146:23–9. doi: 10.1016/j.foodchem.2013.09.010.
  • Nakahara, K., M. Kontani, H. Ono, T. Kodama, T. Tanaka, T. Ooshima, and S. Hamada. 1995. Glucosyltransferase from Streptococcus sobrinus catalyzes glucosylation of catechin. Applied and Environmental Microbiology 61 (7):2768–70. doi: 10.1128/aem.61.7.2768-2770.1995.
  • Nam, S. H., J. Park, W. Jun, D. Kim, J. A. Ko, A. M. Abd El-Aty, J. Y. Choi, D. I. Kim, and K. Y. Yang. 2017. Transglycosylation of gallic acid by using Leuconostoc glucansucrase and its characterization as a functional cosmetic agent. AMB Express 7 (1):224. doi: 10.1186/s13568-017-0523-x.
  • Nam, S. H., J. A. Ko, W. Jun, Y. J. Wee, M. K. Walsh, K. Y. Yang, J. H. Choi, J. B. Eun, J. Choi, Y. M. Kim, et al. 2017. Enzymatic synthesis of chlorogenic acid glucoside using dextransucrase and its physical and functional properties. Enzyme and Microbial Technology 107:15–21. doi: 10.1016/j.enzmictec.2017.07.011.
  • Nam, S. H., Y. M. Kim, M. K. Walsh, Y. J. Wee, K. Y. Yang, J. A. Ko, S. Han, T. T. H. Nguyen, J. Y. Kim, and D. Kim. 2017. Synthesis and functional characterization of caffeic acid glucoside using Leuconostoc mesenteroides dextransucrase. Journal of Agricultural and Food Chemistry 65 (13):2743–50. doi: 10.1021/acs.jafc.7b00344.
  • Overwin, H., V. Wray, and B. Hofer. 2015. Flavonoid glucosylation by non-Leloir glycosyltransferases: Formation of multiple derivatives of 3,5,7,3’,4’-pentahydroxyflavane stereoisomers. Applied Microbiology and Biotechnology 99 (22):9565–76. doi: 10.1007/s00253-015-6760-5.
  • Overwin, H., V. Wray, M. Seeger, S. Sepulveda-Boza, and B. Hofer. 2016. Flavanone and isoflavone glucosylation by non-Leloir glycosyltransferases. Journal of Biotechnology 233:121–8. doi: 10.1016/j.jbiotec.2016.06.026.
  • Pandey, R. P., P. Parajuli, J. Y. Shin, J. Lee, S. Lee, Y. S. Hong, Y. I. Park, J. S. Kim, and J. K. Sohng. 2014. Enzymatic biosynthesis of novel resveratrol glucoside and glycoside derivatives. Applied and Environmental Microbiology 80 (23):7235–43. doi: 10.1128/AEM.02076-14.
  • Pang, H., L. Q. Du, J. X. Pei, Y. T. Wei, Q. S. Du, and R. B. Huang. 2013. Sucrose hydrolytic enzymes: Old enzymes for new uses as biocatalysts for medical applications. Current Topics in Medicinal Chemistry 13 (10):1234–41. doi: 10.2174/15680266113139990010.
  • Passerini, D., M. Vuillemin, L. Ufarte, S. Morel, V. Loux, C. Fontagné-Faucher, P. Monsan, M. Remaud-Siméon, and C. Moulis. 2015. Inventory of the GH70 enzymes encoded by Leuconostoc citreum NRRL B-1299 - identification of three novel α-transglucosylases. The FEBS Journal 282 (11):2115–30. doi: 10.1111/febs.13261.
  • Paterson, J. R., and J. R. Lawrence. 2001. Salicylic acid: A link between aspirin, diet and the prevention of colorectal cancer. QJM : Monthly Journal of the Association of Physicians 94 (8):445–8. doi: 10.1093/qjmed/94.8.445.
  • Puri, M., D. Sharma, and A. K. Tiwari. 2011. Downstream processing of stevioside and its potential applications. Biotechnology Advances 29 (6):781–91. doi: 10.1016/j.biotechadv.2011.06.006.
  • Quideau, S., D. Deffieux, C. Douat-Casassus, and L. Pouysegu. 2011. Plant polyphenols: Chemical properties, biological activities, and synthesis. Angewandte Chemie (International ed. in English) 50 (3):586–621.
  • Raab, T., D. Barron, F. A. Vera, V. Crespy, M. Oliveira, and G. Williamson. 2010. Catechin glucosides: Occurrence, synthesis, and stability. Journal of Agricultural and Food Chemistry 58 (4):2138–49. doi: 10.1021/jf9034095.
  • Reetz, M. T., and J. D. Carballeira. 2007. Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes. Nature Protocols 2 (4):891–903. doi: 10.1038/nprot.2007.72.
  • Regev-Shoshani, G., O. Shoseyov, I. Bilkis, and Z. Kerem. 2003. Glycosylation of resveratrol protects it from enzymic oxidation. The Biochemical Journal 374 (Pt 1):157–63. doi: 10.1042/BJ20030141.
  • Sato, T., H. Nakagawa, J. Kurosu, K. Yoshida, T. Tsugane, S. Shimura, K. Kirimura, K. Kino, and S. Usami. 2000. Alpha-anomer-selective glucosylation of (+)-catechin by the crude enzyme, showing glucosyl transfer activity, of Xanthomonas campestris WU-9701. Journal of Bioscience and Bioengineering 90 (6):625–30. doi: 10.1016/S1389-1723(00)90007-0.
  • Sato, Y., S. Itagaki, T. Kurokawa, J. Ogura, M. Kobayashi, T. Hirano, M. Sugawara, and K. Iseki. 2011. In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. International Journal of Pharmaceutics 403 (1–2):136–8. doi: 10.1016/j.ijpharm.2010.09.035.
  • Scalbert, A., C. Manach, C. Morand, C. Remesy, and L. Jimenez. 2005. Dietary polyphenols and the prevention of diseases. Critical Reviews in Food Science and Nutrition 45 (4):287–306. doi: 10.1080/1040869059096.
  • Seibel, J., H. Hellmuth, B. Hofer, A. M. Kicinska, and B. Schmalbruch. 2006. Identification of new acceptor specificities of glycosyltransferase R with the aid of substrate microarrays. Chembiochem : A European Journal of Chemical Biology 7 (2):310–20. doi: 10.1002/cbic.200500350.
  • Seibel, J., H. J. Jordening, and K. Buchholz. 2010. Extending synthetic routes for oligosaccharides by enzyme, substrate and reaction engineering. Advances in Biochemical Engineering-Biotechnology 120:163–93.
  • Seibel, J., R. Moraru, and S. Gotze. 2005. Biocatalytic and chemical investigations in the synthesis of sucrose analogues. Tetrahedron 61 (30):7081–6. doi: 10.1016/j.tet.2005.05.063.
  • Seibel, J., R. Moraru, S. Gotze, K. Buchholz, S. Na’amnieh, A. Pawlowski, and H. J. Hecht. 2006. Synthesis of sucrose analogues and the mechanism of action of Bacillus subtilis fructosyltransferase (levansucrase). Carbohydrate Research 341 (14):2335–49. doi: 10.1016/j.carres.2006.07.001.
  • Seo, D. H., J. H. Jung, J. E. Lee, E. J. Jeon, W. Kim, and C. S. Park. 2012. Biotechnological production of arbutins (α- and β-arbutins), skin-lightening agents, and their derivatives. Applied Microbiology and Biotechnology 95 (6):1417–25. doi: 10.1007/s00253-012-4297-4.
  • Seo, E.-S., J. Kang, J.-H. Lee, G.-E. Kim, G. J. Kim, and D. Kim. 2009. Synthesis and characterization of hydroquinone glucoside using Leuconostoc mesenteroides dextransucrase. Enzyme and Microbial Technology 45 (5):355–60. doi: 10.1016/j.enzmictec.2009.07.011.
  • Seo, E. S., J. H. Lee, J. Y. Park, D. Kim, H. J. Han, and J. F. Robyt. 2005. Enzymatic synthesis and anti-coagulant effect of salicin analogs by using the Leuconostoc mesenteroides glucansucrase acceptor reaction. Journal of Biotechnology 117 (1):31–8. doi: 10.1016/j.jbiotec.2004.10.013.
  • Septiana, I., T. T. H. Nguyen, S. Lim, S. Lee, B. Park, S. Kwak, S. Park, S. B. Kim, and D. Kim. 2020. Enzymatic synthesis and biological characterization of a novel mangiferin glucoside. Enzyme and Microbial Technology 134:109479. doi: 10.1016/j.enzmictec.2019.109479.
  • Shimoda, K., N. Kubota, D. Uesugi, H. Hamada, M. Tanigawa, and H. Hamada. 2015. Synthesis and pharmacological evaluation of glycosides of resveratrol, pterostilbene, and piceatannol. Annals of the New York Academy of Sciences 1348 (1):141–9. doi: 10.1111/nyas.12836.
  • Slamova, K., J. Kapesova, and K. Valentova. 2018. “Sweet Flavonoids”: Glycosidase-Catalyzed Modifications. International Journal of Molecular Sciences 19 (7):2126.
  • Son, G., T. T. H. Nguyen, B. Park, S. Kwak, J. Jin, Y. M. Kim, Y. H. Moon, S. Park, S. B. Kim, and D. Kim. 2020. Synthesis and characterization of stevioside having low degree polymerized glucosides using dextransucrase and dextranase. Enzyme and Microbial Technology 132:109412. doi: 10.1016/j.enzmictec.2019.109412.
  • Sugimoto, K., T. Nishimura, K. Nomura, K. Sugimoto, and T. Kuriki. 2004. Inhibitory effects of alpha-arbutin on melanin synthesis in cultured human melanoma cells and a three-dimensional human skin model. Biological & Pharmaceutical Bulletin 27 (4):510–4. doi: 10.1248/bpb.27.510.
  • Te Poele, E. M., T. Devlamynck, M. Jager, G. J. Gerwig, D. Van de Walle, K. Dewettinck, A. K. H. Hirsch, J. P. Kamerling, W. Soetaert, and L. Dijkhuizen. 2018. Glucansucrase (mutant) enzymes from Lactobacillus reuteri 180 efficiently transglucosylate Stevia component rebaudioside A, resulting in a superior taste. Scientific Reports 8 (1):1516. doi: 10.1038/s41598-018-19622-5.
  • Te Poele, E. M., P. Grijpstra, S. S. van Leeuwen, and L. Dijkhuizen. 2016. Glucosylation of catechol with the GTFA glucansucrase enzyme from Lactobacillus reuteri and sucrose as donor substrate. Bioconjugate Chemistry 27 (4):937–46. doi: 10.1021/acs.bioconjchem.6b00018.
  • Te Poele, E. M., V. Valk, T. Devlamynck, S. S. van Leeuwen, and L. Dijkhuizen. 2017. Catechol glucosides act as donor/acceptor substrates of glucansucrase enzymes of Lactobacillus reuteri. Applied Microbiology and Biotechnology 101 (11):4495–505. doi: 10.1007/s00253-017-8190-z.
  • Thibodeaux, C. J., C. E. Melancon, and H. W. Liu. 2007. Unusual sugar biosynthesis and natural product glycodiversification. Nature 446 (7139):1008–16. doi: 10.1038/nature05814.
  • Thuan, N. H., and J. K. Sohng. 2013. Recent biotechnological progress in enzymatic synthesis of glycosides. Journal of Industrial Microbiology & Biotechnology 40 (12):1329–56. doi: 10.1007/s10295-013-1332-0.
  • Tian, Y. Q., W. Xu, W. L. Zhang, T. Zhang, C. E. Guang, and W. M. Mu. 2018. Amylosucrase as a transglucosylation tool: From molecular features to bioengineering applications. Biotechnology Advances 36 (5):1540–52. doi: 10.1016/j.biotechadv.2018.06.010.
  • Timm, M., J. Gorl, M. Kraus, S. Kralj, H. Hellmuth, R. Beine, K. Buchholz, L. Dijkhuizen, and J. Seibel. 2013. An unconventional glycosyl transfer reaction: Glucansucrase GTFA functions as an allosyltransferase enzyme. Chembiochem: A European Journal of Chemical Biology 14 (18):2423–6. doi: 10.1002/cbic.201300392.
  • Tolba, M. F., H. A. Omar, S. S. Azab, A. E. Khalifa, A. B. Abdel-Naim, and S. Z. Abdel-Rahman. 2016. Caffeic acid phenethyl ester: A review of its antioxidant activity, protective effects against Ischemia-reperfusion injury and drug adverse reactions. Critical Reviews in Food Science and Nutrition 56 (13):2183–90. doi: 10.1080/10408398.2013.821967.
  • Umeno, A., M. Horie, K. Murotomi, Y. Nakajima, and Y. Yoshida. 2016. Antioxidative and antidiabetic effects of natural polyphenols and isoflavones. Molecules 21 (6):708. doi: 10.3390/molecules21060708.
  • van Leeuwen, S. S., S. Kralj, I. H. van Geel-Schutten, G. J. Gerwig, L. Dijkhuizen, and J. P. Kamerling. 2008. Structural analysis of the alpha-D-glucan (EPS180) produced by the Lactobacillus reuteri strain 180 glucansucrase GTF180 enzyme . Carbohydrate Research 343 (7):1237–50. doi: 10.1016/j.carres.2008.01.042.
  • Vocadlo, D. J., and G. J. Davies. 2008. Mechanistic insights into glycosidase chemistry. Current Opinion in Chemical Biology 12 (5):539–55. doi: 10.1016/j.cbpa.2008.05.010.
  • Vuillemin, M., M. Claverie, Y. Brison, E. Severac, P. Bondy, S. Morel, P. Monsan, C. Moulis, and M. Remaud-Simeon. 2016. Characterization of the first α-(1→3) branching sucrases of the GH70 Family. The Journal of Biological Chemistry 291 (14):7687–702. doi: 10.1074/jbc.M115.688044.
  • Vujičić-Žagar, A., T. Pijning, S. Kralj, C. A. López, W. Eeuwema, L. Dijkhuizen, and B. W. Dijkstra. 2010. Crystal structure of a 117 kDa glucansucrase fragment provides insight into evolution and product specificity of GH70 enzymes. Proceedings of the National Academy of Sciences of the United States of America 107 (50):21406–11.
  • Woo, H. J., H. K. Kang, T. H. N. Thi, G. E. Kim, Y. M. Kim, J. S. Park, D. Kim, J. Cha, Y. H. Moon, S. H. Nam, et al. 2012. Synthesis and characterization of ampelopsin glucosides using dextransucrase from Leuconostoc mesenteroides B-1299CB4: Glucosylation enhancing physicochemical properties. Enzyme and Microbial Technology 51 (6–7):311–8. doi: 10.1016/j.enzmictec.2012.07.014.
  • Xiao, J. B. 2017. Dietary flavonoid aglycones and their glycosides: Which show better biological significance? Critical Reviews in Food Science and Nutrition 57 (9):1874–905.
  • Xiao, J., T. S. Muzashvili, and M. I. Georgiev. 2014. Advances in the biotechnological glycosylation of valuable flavonoids. Biotechnology Advances 32 (6):1145–56. doi: 10.1016/j.biotechadv.2014.04.006.
  • Yang, Z., B. Uhler, T. Zheng, and K. M. Adams. 2019. Enzymatic synthesis and characterization of a novel alpha-1- 6-glucosyl rebaudioside C derivative sweetener. Biomolecules 9 (1):27. doi: 10.3390/biom9010027.
  • Yoon, S. H., D. B. Fulton, and J. F. Robyt. 2004. Enzymatic synthesis of two salicin analogues by reaction of salicyl alcohol with Bacillus macerans cyclomaltodextrin glucanyltransferase and Leuconostoc mesenteroides B-742CB dextransucrase. Carbohydrate Research 339 (8):1517–29. doi: 10.1016/j.carres.2004.03.018.
  • Yoon, S. H., D. B. Fulton, and J. F. Robyt. 2010. Enzymatic synthesis of L-DOPA alpha-glycosides by reaction with sucrose catalyzed by four different glucansucrases from four strains of Leuconostoc mesenteroides. Carbohydrate Research 345 (12):1730–5. doi: 10.1016/j.carres.2010.05.001.
  • Zheng, L. T., G. M. Ryu, B. M. Kwon, W. H. Lee, and K. Suk. 2008. Anti-inflammatory effects of catechols in lipopolysaccharide-stimulated microglia cells: Inhibition of microglial neurotoxicity. European Journal of Pharmacology 588 (1):106–13. doi: 10.1016/j.ejphar.2008.04.035.
  • Zhu, X., Y. Tian, W. Zhang, T. Zhang, C. Guang, and W. Mu. 2018. Recent progress on biological production of α-arbutin. Applied Microbiology and Biotechnology 102 (19):8145–52. doi: 10.1007/s00253-018-9241-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.