866
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Recent developments in low-moisture foods: microbial validation studies of thermal pasteurization processes

, , , &

References

  • Acuff, J. C., J. Wu, C. Marik, K. Waterman, D. Gallagher, H. Huang, R. C. Williams, and M. A. Ponder. 2020. Thermal inactivation of Salmonella, Shiga toxin-producing Escherichia coli, Listeria monocytogenes, and a surrogate (Pediococcus acidilactici) on raisins, apricot halves, and macadamia nuts using vacuum-steam pasteurization. International Journal of Food Microbiology 333:108814. doi: 10.1016/j.ijfoodmicro.2020.108814.
  • Allison, A., and A. Fouladkhah. 2018. Adoptable interventions, human health, and food safety considerations for reducing sodium content of processed food products. Foods 7 (2):16–5. doi: 10.3390/foods7020016.
  • Almond Board of California (ABC). 2007a. Guidelines for validation of blanching processes. Accessed November 1, 2021. http://www.almonds.com/sites/default/files/content/attachments/blanching-validation-guidelines.pdf
  • Almond Board of California (ABC). 2007b. Guidelines for validation of dry roasting processes, 2354(October), 1–7. Accessed November 1, 2021. http://www.almondboard.com/Handlers/Documents/Dry-Roast-Validation-Guidelines.pdf
  • Almond Board of California (ABC). 2007c. Guidelines for validation of oil roasting processes, (october), 1–7. Accessed November 1, 2021. http://www.almondboard.com/Handlers/Documents/Dry-Roast-Validation-Guidelines.pdf
  • Almond Board of California (ABC). 2014. Guidelines for using Enterococcus faecium NRRL B-2354 as a surrogate microorganism in almond process validation. Accessed November 1, 2021. http://www.almonds.com/sites/default/files/content/attachments/guidelines_for_using_enterococcus_faecium_nrrl_b-2354_as_a_ surrogate_microorganism_in_almond_process_validation.pdf
  • American Spice Trade Association (ASTA). 2017. Guidance from the American Spice Trade Association. Accessed November 1, 2021. https://www.astaspice.org/food-safety-technical-guidance/best-practices-and-guidance/clean-safe-spices-guidance-document/
  • Anderson, N. M. 2019. Recent advances in low moisture food pasteurization. Current Opinion in Food Science 29:109–15. doi: 10.1016/j.cofs.2018.11.001.
  • Anderson, N. M., S. E. Keller, N. Mishra, S. Pickens, D. Gradl, T. Hartter, G. Rokey, C. Dohl, B. Plattner, S. Chirtel, et al. 2017. Salmonella inactivation during extrusion of an oat flour model food. Journal of Food Science 82 (3):738–43. doi: 10.1111/1750-3841.13629.
  • Anderson, D., and L. A. Lucore. 2012. Validating the reduction of Salmonella and other pathogens in heat processed low-moisture foods, (September).
  • Arias-Rios, E. V., G. R. Acuff, A. Castillo, L. M. Lucia, S. E. Niebuhr, and J. S. Dickson. 2019. Identification of a surrogate to validate irradiation processing of selected spices. Lwt 102), :136–41. doi: 10.1016/j.lwt.2018.12.018.
  • Awuah, G. B., H. S. Ramaswamy, and A. Economides. 2007. Thermal processing and quality: Principles and overview. Chemical Engineering and Processing: Process Intensification 46 (6):584–602. doi: 10.1016/j.cep.2006.08.004.
  • Ban, G. H., and D. H. Kang. 2016. Effectiveness of superheated steam for inactivation of Escherichia coli O157: H7, Salmonella Typhimurium, Salmonella Enteritidis phage type 30, and Listeria monocytogenes on almonds and pistachios. International Journal of Food Microbiology 220:19–25. doi: 10.1016/j.ijfoodmicro.2015.12.011.
  • Ban, C., D. H. Lee, Y. Jo, H. Bae, H. Seong, S. O. Kim, S. Lim, and Y. J. Choi. 2018. Use of superheated steam to inactivate Salmonella enterica serovars Typhimurium and Enteritidis contamination on black peppercorns, pecans, and almonds. Journal of Food Engineering 222:284–91. doi: 10.1016/j.jfoodeng.2017.11.036.
  • Bari, L., D. Nei, I. Sotome, I. Y. Nishina, F. Hayakawa, S. Isobe, and S. Kawamoto. 2010. Effectiveness of superheated steam and gas catalytic infrared heat treatments to inactivate Salmonella on raw almonds. Foodborne Pathogens and Disease 7 (7):845–50. doi: 10.1089/fpd.2009.0500.
  • Bari, M. L., D. Nei, I. Sotome, I. Nishina, S. Isobe, and S. Kawamoto. 2009. Effectiveness of sanitizers, dry Heat, hot water, and gas catalytic infrared heat treatments to inactivate Salmonella on almonds. Foodborne Pathogens and Disease 6 (8):953–8. doi: 10.1089/fpd.2008.0219.
  • Beuchat, L. R., and D. A. Mann. 2011. Inactivation of Salmonella on pecan nutmeats by hot air treatment and oil roasting. Journal of Food Protection 74 (9):1441–50. doi: 10.4315/0362-028X.JFP-11-080.
  • Bianchini, A., J. Stratton, S. Weier, T. Hartter, B. Plattner, G. Rokey, G. Hertzel, L. Gompa, B. Martinez, and A. M. Eskridge. 2012. Validation of extrusion as a killing step for Enterococcus faecium in a balanced carbohydrate-protein meal by using a response surface design. Journal of Food Protection 75 (9):1646–53. doi: 10.4315/0362-028X.JFP-12-085.
  • Bianchini, A., J. Stratton, S. Weier, T. Hartter, B. Plattner, G. Rokey, G. Hertzel, L. Gompa, B. Martinez, and K. M. Eskridge. 2014. Use of Enterococcus faecium as a surrogate for Salmonella enterica during extrusion of a balanced carbohydrate-protein meal. Journal of Food Protection 77 (1):75–82. doi: 10.4315/0362-028X.JFP-13-220.
  • Bingol, G., J. Yang, M. T. Brandl, Z. Pan, H. Wang, and T. H. McHugh. 2011. Infrared pasteurization of raw almonds. Journal of Food Engineering 104 (3):387–93. doi: 10.1016/j.jfoodeng.2010.12.034.
  • Boreddy, S. R., H. Thippareddi, G. Froning, and J. Subbiah. 2016. Novel radiofrequency-assisted thermal processing improves the gelling properties of standard egg white powder. Journal of Food Science 81 (3):E665–E671. doi: 10.1111/1750-3841.13239.
  • Brar, P. K., and M. D. Danyluk. 2019. Validation of Enterococcus faecium as a surrogate for Salmonella under different processing conditions for peanuts and pecans. Food Microbiology 80:9–17. doi: 10.1016/j.fm.2018.12.006.
  • Busta, F. F., T. V. Suslow, M. E. Parish, L. R. Beuchat, J. N. Farber, E. H. Garrett, and L. J. Harris. 2003. The use of indicators and surrogate microorganisms for the evaluation of pathogens in fresh and fresh-cut produce. Comprehensive Reviews in Food Science and Food Safety 2 (s1):179–85. doi: 10.1111/j.1541-4337.2003.tb00035.x.
  • Camuffo, D. 2019. Measuring temperature. In Microclimate for cultural heritage, 3rd ed., 383–429. doi: 10.1016/B978-0-444-64106-9.00017-1.
  • Cenkowski, S., C. Pronyk, D. Zmidzinska, and W. E. Muir. 2007. Decontamination of food products with superheated steam. Journal of Food Engineering 83 (1):68–75. doi: 10.1016/j.jfoodeng.2006.12.002.
  • Centers for Disease Control and Prevention (CDC). 2014. Multistate outbreak of Salmonella Braenderup infections linked to nut butter manufactured by nSpired Natural Foods, Inc. (final update). Accessed November 1, 2021. https://www.cdc.gov/salmonella/braenderup-08-14/index.html
  • Centers for Disease Control and Prevention (CDC). 2016. Multistate outbreak of Salmonella Montevideo and Salmonella Senftenberg infections linked to wonderful pistachios (final update). Accessed November 1, 2021. https://www.cdc.gov/salmonella/montevideo-03-16/index.html
  • Centers for Disease Control and Prevention (CDC). 2018. Multistate outbreak of Salmonella Typhimurium infections linked to dried coconut (final update). Accessed November 1, 2021. https://www.cdc.gov/salmonella/typhimurium-03-18/index.html
  • Centers for Disease Control and Prevention (CDC). 2019. Outbreaks of E. coli infections linked to flour. Accessed November 1, 2021. https://www.cdc.gov/ecoli/2019/flour-05-19/index.html
  • Centers for Disease Control and Prevention (CDC). 2021. Salmonella Outbreak Linked to Jule’s Cashew Brie. Accessed November 1, 2021. https://www.cdc.gov/salmonella/duisburg-04-21/index.html
  • Ceylan, E., L. Blayo, P. Mcclure, A. Amezquita, N. Anderson, R. Betts, L. Blayo, F. Garces-Vega, E. Gkogka, L. J. Harris, et al. 2021. Guidance on validation of lethal control measures for foodborne pathogens in foods. Comprehensive Reviews in Food Science and Food Safety 20 (3):2825–81. doi: 10.1111/1541-4337.12746.
  • Channaiah, L. H., E. S. Holmgren, M. Michael, N. J. Sevart, D. Milke, C. L. Schwan, M. Krug, A. Wilder, R. K. Phebus, H. Thippareddi, et al. 2016. Validation of baking to control Salmonella serovars in hamburger bun manufacturing, and evaluation of Enterococcus faecium ATCC 8459 and Saccharomyces cerevisiae as nonpathogenic surrogate indicators. Journal of Food Protection 79 (4):544–52. doi: 10.4315/0362-028X.JFP-15-241.
  • Channaiah, L. H., M. Michael, J. C. Acuff, R. K. Phebus, H. Thippareddi, M. Olewnik, and G. Milliken. 2017. Validation of the baking process as a kill-step for controlling Salmonella in muffins. International Journal of Food Microbiology 250:1–6. doi: 10.1016/j.ijfoodmicro.2017.03.007.
  • Cheng, T., H. Ramaswamy, R. Xu, Q. Liu, R. Lan, and S. Wang. 2020. Fifty Ohm radio frequency heating treatment under controlled atmosphere for inactivating Escherichia coli ATCC 25922 inoculated on almond kernels. Lwt 123:109124. doi: 10.1016/j.lwt.2020.109124.
  • Cheng, T., J. Tang, R. Yang, Y. Xie, L. Chen, and S. Wang. 2021. Methods to obtain thermal inactivation data for pathogen control in low-moisture foods. Trends in Food Science & Technology 112:174–87. doi: 10.1016/j.tifs.2021.03.048.
  • Chen, D., P. Peng, N. Zhou, Y. Cheng, M. Min, Y. Ma, Q. Mao, P. Chen, C. Chen, and R. Ruan. 2019. Evaluation of Cronobacter sakazakii inactivation and physicochemical property changes of non-fat dry milk powder by cold atmospheric plasma. Food Chemistry 290:270–6. doi: 10.1016/j.foodchem.2019.03.149.
  • Chen, L., X. Wei, S. Irmak, B. D. Chaves, and J. Subbiah. 2019. Inactivation of Salmonella enterica and Enterococcus faecium NRRL B-2354 in cumin seeds by radiofrequency heating. Food Control 103:59–69. doi: 10.1016/j.foodcont.2019.04.004.
  • Codex. 2008. Guideline for the validation of food safety control measures (CAC/GL 69-2008). Accessed November 1, 2021. www.codexalimentarius.net
  • Cordier, J.-L. 2014. Methodological and sampling challenges to testing spices and low water activity food for the presence of foodborne pathogens. In The microbial safety of low water activity foods and spices, edited byJ. Gurtler, M. Doyle, and J. Kornacki, 367–86. New York: Springer.
  • Corry, J. E. L., S. J. James, G. Purnell, C. S. Barbedo-Pinto, Y. Chochois, M. Howell, and C. James. 2007. Surface pasteurisation of chicken carcasses using hot water. Journal of Food Engineering 79 (3):913–9. doi: 10.1016/j.jfoodeng.2006.03.018.
  • Cui, B., R. Fan, C. Ran, Y. Yao, K. Wang, Y. Wang, H. Fu, X. Chen, and Y. Wang. 2021. Improving radio frequency heating uniformity using a novel rotator for microorganism control and its effect on physiochemical properties of raisins. Innovative Food Science & Emerging Technologies 67:102564. doi: 10.1016/j.ifset.2020.102564.
  • Dag, D., R. K. Singh, and F. Kong. 2020. Developments in radio frequency pasteurization of food powders. Food Reviews International. 1–18. doi: 10.1080/87559129.2020.1775641.
  • Daryaei, H., Q. Sui, H. Liu, A. Rehkopf, W. Peñaloza, A. Rytz, Y. Luo, and J. Wan. 2020. Heat resistance of Shiga toxin-producing Escherichia coli and potential surrogates in wheat flour at two moisture levels. Food Control. 108:106788. doi: 10.1016/j.foodcont.2019.106788.
  • Deen, B., and F. Diez-Gonzalez. 2019. Assessment of Pediococcus acidilactici ATCC 8042 as potential Salmonella surrogate for thermal treatments of toasted oats cereal and peanut butter. Food Microbiology 83:187–92. doi: 10.1016/j.fm.2019.05.015.
  • Deng, L. Z., P. P. Sutar, A. S. Mujumdar, Y. Tao, Z. Pan, Y. H. Liu, and H. W. Xiao. 2021. Thermal decontamination technologies for microorganisms and mycotoxins in low-moisture foods. Annual Review of Food Science and Technology 12:287–305. doi: 10.1146/annurev-food-062220-112934.
  • Dhowlaghar, N., and M.-J. Zhu. 2021. Control of Salmonella in low-moisture foods: Enterococcus faecium NRRL B-2354 as a surrogate for thermal and non-thermal validation. Critical Reviews in Food Science and Nutrition :1–19. doi: 10.1080/10408398.2021.1895055.
  • Doyle, M. P. 2014. The microbiological safety of low water activity foods and spices, edited by J. B. Gurtler, M. Doyle, & J. L. Kornacki, 3–13. New York, USA: Springer. doi: 10.1007/978-1-4939-2062-4.
  • Du, W., S. J. Abd, K. L. McCarthy, and L. J. Harris. 2010. Reduction of Salmonella on inoculated almonds exposed to hot oil. Journal of Food Protection 73 (7):1238–46. doi: 10.4315/0362-028x-73.7.1238.
  • Feng, H., J. Tang, and R. P. Cavalieri. 2002. Dielectric properties of dehydrated apples as affected by moisture and temperature. Transactions of the American Society of Agricultural Engineers 45 (1):129–35.
  • Food and Agriculture Organization of the United Nations (FAO). 2014. Ranking of low moisture foods in support of microbiological risk management.
  • Food and Drug Administration (FDA). 2002. Guidance for industry: exemptions from the warning label requirement for juice. Accessed November 1, 2021. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-exemptions-warning-label-requirement-juice.
  • Food and Drug Administration (FDA). 2009. Guidance for industry: measures to address the risk for contamination by Salmonella species in food containing a peanut-derived product as an ingredient. Accessed November 1, 2021. https://www.fda.gov/RegulatoryInformation/Guidances/ucm115386.htm
  • Food and Drug Administration (FDA). 2011. Guidance for industry: measures to address the risk for contamination by Salmonella species in food containing a pistachio-derived product as an ingredient. Accessed November 1, 2021. https://www.fda.gov/RegulatoryInformation/Guidances/ucm115386.htm
  • Food and Drug Administration (FDA). 2016a. FSMA final rule for preventive controls for human food. FDA. Accessed November 1, 2021.
  • Food and Drug Administration (FDA). 2016b. Urgent food recall of Jungle Jim’s roast no salt sunflower seeds, Windy Acres fruity trail mix & Windy Acres no salt sunflower seeds due to potential presence of Listeria Monocytogenes. Accessed November 1, 2021. https://www.fda.gov/Safety/Recalls/ucm504811.htm
  • Food and Drug Administration (FDA). 2020. Outbreak investigation of Salmonella Stanley: wood ear mushrooms – dried fungus (September 2020). Accessed November 1, 2021. https://www.fda.gov/food/outbreaks-foodborne-illness/outbreak-investigation-salmonella-stanley-wood-ear-mushrooms-dried-fungus-september-2020
  • Friedemann, M. 2009. Epidemiology of invasive neonatal Cronobacter (Enterobacter sakazakii) infections. European Journal of Clinical Microbiology & Infectious Diseases 28 (11):1297–304. doi: 10.1007/s10096-009-0779-4.
  • Gaillard, S., I. Leguerinel, and P. Mafart. 1998. Model for combined effects of temperature, pH and water activity on thermal inactivation of Bacillus cereus spores. Journal of Food Science 63 (5):887–3. doi: 10.1111/j.1365-2621.1998.tb17920.x.
  • Gao, M., J. Tang, R. Villa-Rojas, Y. Wang, and S. Wang. 2011. Pasteurization process development for controlling Salmonella in in-shell almonds using radio frequency energy. Journal of Food Engineering 104 (2):299–306. doi: 10.1016/j.jfoodeng.2010.12.021.
  • Grocery Manufactures Association. 2010., Industry handbook for safe processing of nuts. Nut safety handbook GMA nut safety task force 2. Accessed November 1, 2021. https://cdn.ymaws.com/www.ptnpa.org/resource/resmgr/industry_information/GMA_Handbook_Safe_Processing.pdf.
  • Guan, D., P. Gray, D.-H. Kang, J. Tang, B. Shafer, K. Ito, F. Younce, and T. C. S. Yang. 2003. Microbiological validation of microwave-circulated water combination heating technology by inoculated pack studies. Journal of Food Science 68 (4):1428–32. doi: 10.1111/j.1365-2621.2003.tb09661.x.
  • Guo, W., S. Wang, G. Tiwari, J. A. Johnson, and J. Tang. 2010. Temperature and moisture dependent dielectric properties of legume flour associated with dielectric heating. LWT – Food Science and Technology 43 (2):193–201. doi: 10.1016/j.lwt.2009.07.008.
  • Ha, J. W., S. Y. Kim, S. R. Ryu, and D. H. Kang. 2013. Inactivation of Salmonella enterica serovar Typhimurium and Escherichia coli O157: H7 in peanut butter cracker sandwiches by radio-frequency heating. Food Microbiology 34 (1):145–50. doi: 10.1016/j.fm.2012.11.018.
  • Harris, L. J., A. R. Uesugi, S. J. Abd, and K. L. McCarthy. 2012. Survival of Salmonella Enteritidis PT 30 on inoculated almond kernels in hot water treatments. Food Research International 45 (2):1093–8. doi: 10.1016/j.foodres.2011.03.048.
  • Hasani, M., F. Wu, K. Hu, J. Farber, and K. Warriner. 2020. Inactivation of Salmonella and Listeria monocytogenes on dried fruit, pistachio nuts, cornflakes and chocolate crumb using a peracetic acid-ethanol based sanitizer or advanced oxidation process. International Journal of Food Microbiology 333:108789. doi: 10.1016/j.ijfoodmicro.2020.108789.
  • Hildebrandt, I. M., B. P. Marks, E. T. Ryser, R. Villa-Rojas, J. Tang, F. J. Garces-Vega, and S. E. Buchholz. 2016. Effects of inoculation procedures on variability and repeatability of Salmonella thermal resistance in wheat flour. Journal of Food Protection 79 (11):1833–9. doi: 10.4315/0362-028X.JFP-16-057.
  • Hildebrandt, I. I. M. 2015. Quantifying sources of error in salmonella thermal inactivation models for meats and low-moisture foods. Dissertation, Michigan State University.
  • Hou, L., X. Kou, R. Li, and S. Wang. 2018. Thermal inactivation of fungi in chestnuts by hot air assisted radio frequency treatments. Food Control. 93 (3):297–304. doi: 10.1016/j.foodcont.2018.06.016.
  • Hou, L., B. Ling, and S. Wang. 2014. Development of thermal treatment protocol for disinfesting chestnuts using radio frequency energy. Postharvest Biology and Technology 98:65–71. doi: 10.1016/j.postharvbio.2014.07.007.
  • Hu, Y., W. Nie, X. Hu, and Z. Li. 2016. Microbial decontamination of wheat grain with superheated steam. Food Control 62:264–9. doi: 10.1016/j.foodcont.2015.11.001.
  • Jeong, S., B. P. Marks, and M. K. James. 2017. Comparing thermal process validation methods for Salmonella inactivation on almond kernels. Journal of Food Protection 80 (1):169–76. doi: 10.4315/0362-028X.JFP-16-224.
  • Jeong, S., B. P. Marks, and E. Ryser. 2011. Quantifying the performance of Pediococcus sp. (NRRL B-2354: Enterococcus faecium) as a nonpathogenic surrogate for Salmonella Enteritidis PT30 during moist-air convection heating of almonds. Journal of Food Protection 74 (4):603–9. doi: 10.4315/0362-028X.JFP-10-416.
  • Jiao, S., J. A. Johnson, J. Tang, and S. Wang. 2012. Industrial-scale radio frequency treatments for insect control in lentils. Journal of Stored Products Research 48:143–8. doi: 10.1016/j.jspr.2011.12.001.
  • Jiao, Y., J. Tang, and S. Wang. 2014. A new strategy to improve heating uniformity of low moisture foods in radio frequency treatment for pathogen control. Journal of Food Engineering 141:128–38. doi: 10.1016/j.jfoodeng.2014.05.022.
  • Jiao, Y., J. Tang, Y. Wang, and T. L. Koral. 2018. Radio-frequency applications for food processing and safety. Annual Review of Food Science and Technology 9 (1):105–27. doi: 10.1146/annurev-food-041715-033038.
  • Jiao, S., H. Zhang, S. Hu, and Y. Zhao. 2019. Radio frequency inactivation kinetics of Bacillus cereus spores in red pepper powder with different initial water activity. Food Control. 105:174–9. doi: 10.1016/j.foodcont.2019.05.038.
  • Jiao, S., H. Zhang, M. Liao, Z. Hayouka, and P. Jing. 2021. Investigation of the potential direct and cross protection effects of sublethal injured Salmonella Typhimurium induced by radio frequency heating stress. Food Research International (Ottawa, Ont.) 150 (Pt A):110789. doi: 10.1016/j.foodres.2021.110789.
  • Kar, A., X. Wei, K. Majumder, K. Eskridge, A. Handa, and J. Subbiah. 2020. Effect of traditional and radiofrequency assisted thermal processing on the gel firmness of egg white powder. Lwt 133 (June):110091. doi: 10.1016/j.lwt.2020.110091.
  • Kim, S. Y., H. G. Sagong, S. H. Choi, S. Ryu, and D. H. Kang. 2012. Radio-frequency heating to inactivate Salmonella Typhimurium and Escherichia coli O157:H7 on black and red pepper spice. International Journal of Food Microbiology 153 (1-2):171–5. doi: 10.1016/j.ijfoodmicro.2011.11.004.
  • Koseki, S., N. Nakamura, and T. Shiina. 2015. Comparison of desiccation tolerance among Listeria monocytogenes, Escherichia coli O157:H7, Salmonella enterica, and Cronobacter sakazakii in powdered infant formula. Journal of Food Protection 78 (1):104–10. doi: 10.4315/0362-028X.JFP-14-249.
  • Lambertini, E., M. D. Danyluk, D. W. Schaffner, C. K. Winter, and L. J. Harris. 2012. Risk of salmonellosis from consumption of almonds in the North American market. Food Research International 45 (2):1166–74. doi: 10.1016/j.foodres.2011.05.039.
  • Lambertini, E., A. Mishra, M. Guo, H. Cao, R. L. Buchanan, and A. K. Pradhan. 2016. Modeling the long-term kinetics of Salmonella survival on dry pet food. Food Microbiology 58:1–6. doi: 10.1016/j.fm.2016.02.003.
  • Lang, E., L. Chemlal, P. Molin, S. Guyot, P. Alvarez-Martin, J.-M. Perrier-Cornet, P. Dantigny, and P. Gervais. 2017. Modeling the heat inactivation of foodborne pathogens in milk powder: High relevance of the substrate water activity. Food Research International 99 (4):577–85. doi: 10.1016/j.foodres.2017.06.028.
  • Laroche, C., F. Fine, and P. Gervais. 2005. Water activity affects heat resistance of microorganisms in food powders. International Journal of Food Microbiology 97 (3):307–15. doi: 10.1016/j.ijfoodmicro.2004.04.023.
  • Li, R., X. Kou, T. Cheng, A. Zheng, and S. Wang. 2017. Verification of radio frequency pasteurization process for in-shell almonds. Journal of Food Engineering 192:103–10. doi: 10.1016/j.jfoodeng.2016.08.002.
  • Lilie, M., S. Hein, P. Wilhelm, and U. Mueller. 2007. Decontamination of spices by combining mechanical and thermal effects – An alternative approach for quality retention. International Journal of Food Science & Technology 42 (2):190–3. doi: 10.1111/j.1365-2621.2006.01204.x.
  • Ling, B., T. Cheng, and S. Wang. 2020. Recent developments in applications of radio frequency heating for improving safety and quality of food grains and their products: A review. Critical Reviews in Food Science and Nutrition 60 (15):2622–42. doi: 10.1080/10408398.2019.1651690.
  • Liu, S., H. Wang, S. Ma, J. Dai, Q. Zhang, and W. Qin. 2021. Radiofrequency-assisted hot-air drying of Sichuan pepper (Huajiao). LWT 135:110158 doi:10.1016/j.lwt.2020.110158.
  • Liu, S., S. Ozturk, J. Xu, F. Kong, P. Gray, M.-J. Zhu, S. S. Sablani, and J. Tang. 2018a. Microbial validation of radio frequency pasteurization of wheat flour by inoculated pack studies. Journal of Food Engineering 217:68–74. doi: 10.1016/j.jfoodeng.2017.08.013.
  • Liu, S., J. Tang, R. K. Tadapaneni, R. Yang, and M.-J. Zhu. 2018b. Exponentially increased thermal resistance of Salmonella and Enterococcus faecium at reduced water activity. Applied and Environmental Microbiology 84 (8):e02742–17. doi: 10.1128/AEM.02742-17.
  • Liu, S., J. Xu, L. Xie, M. Zhu, and J. Tang. 2019. Dry inoculation methods for nonfat milk powder. Journal of Dairy Science 102 (1):77–86. doi: 10.3168/jds.2018-14478.
  • Lopez, A. 1987. A completed course in canning and related process. Book II. Pacakaging; aseptic processing; ingredients (12th ed.). Baltimore, MD: The Canning Trade Inc.
  • Luan, D., J. Tang, P. D. Pedrow, F. Liu, and Z. Tang. 2016. Analysis of electric field distribution within a microwave assisted thermal sterilization (MATS) system by computer simulation. Journal of Food Engineering 188:87–97. doi: 10.1016/j.jfoodeng.2016.05.009.
  • Ma, L., J. L. Kornacki, G. Zhang, C.-M. Lin, and M. P. Doyle. 2007. Development of thermal surrogate microorganisms in ground beef for in-plant critical control point validation studies. Journal of Food Protection 70 (4):952–7. doi: 10.4315/0362-028x-70.4.952.
  • McCallum, L., S. Paine, K. Sexton, M. Dufour, K. Dyet, M. Wilson, D. Campbell, D. Bandaranayake, and V. Hope. 2013. An outbreak of Salmonella Typhimurium phage type 42 associated with the consumption of raw flour. Foodborne Pathogens and Disease 10 (2):159–64. doi:10.1089/fpd.2012.1282. PMID:23360171
  • Mendes, L. C., H. C. De Menezes, M. Aparecida, and A. P. Da Silva. 2001. Optimization of the roasting of robusta coffee (C. canephora conillon) using acceptability tests and RSM. Food Quality and Preference 12 (2):153–62. doi: 10.1016/S0950-3293(00)00042-2.
  • Michael, M.,. R. K. Phebus, H. Thippareddi, J. Subbiah, S. L. Birla, and K. A. Schmidt. 2014. Validation of radio-frequency dielectric heating system for destruction of Cronobacter sakazakii and Salmonella species in nonfat dry milk. Journal of Dairy Science 97 (12):7316–24. doi: 10.3168/jds.2013-7862.
  • Moreira, R. G. 2001. Impingement drying of foods using hot air and superheated steam. Journal of Food Engineering 49 (4):291–5. doi: 10.1016/S0260-8774(00)00225-9.
  • National Advisory Committee on Microbiological Criteria for Foods. 2006. Requisite scientific parameters for establishing the equivalence of alternative methods of pasteurization. Journal of Food Protection 69 (5):1190–216. doi: 10.4315/0362-028x-69.5.1190.
  • Navin, K. R. 2012. Recent trends and developments in infrared heating in food processing. Critical Reviews in Food Science and Nutrition 52 (9):737–60. doi: 10.1080/10408398.2010.508138.
  • Newkirk, J. J., J. Wu, J. C. Acuff, C. B. Caver, K. Mallikarjunan, B. D. Wiersema, R. C. Williams, and M. A. Ponder. 2018. Inactivation of Salmonella enterica and surrogate Enterococcus faecium on whole black peppercorns and cumin seeds using vacuum steam pasteurization. Frontiers in Sustainable Food Systems 2 (8):1–12. doi: 10.3389/fsufs.2018.00048.
  • Norusiuen, K. L., D. R. Thompson, I. D. Wolf, and E. A. Zottola. 1978. Home canning of food: Effect of a higher process temperature(250 °F) on the safety of low-acid foods. Journal of Food Science 43 (6):1734–7. doi: 10.1111/j.1365-2621.1978.tb07402.x.
  • Odlaug, T. E., and I. J. Pflug. 1977. Thermal destruction of Clostridium botulinum spores suspended in tomato juice in aluminum thermal death time tubes. Applied and Environmental Microbiology 34 (1):23–9. doi: 10.1128/aem.34.1.23-29.1977.
  • Okelo, P. O., S. W. Joseph, D. D. Wagner, F. W. Wheaton, L. W. Douglass, and L. E. Carr. 2008. Improvements in reduction of feed contamination: An alternative monitor of bacterial killing during feed extrusion. Journal of Applied Poultry Research 17 (2):219–28. doi: 10.3382/japr.2007-00060.
  • Okelo, P. O., D. D. Wagner, L. E. Carr, F. W. Wheaton, L. W. Douglass, and S. W. Joseph. 2006. Optimization of extrusion conditions for elimination of mesophilic bacteria during thermal processing of animal feed mash. Animal Feed Science and Technology 129 (1-2):116–37. doi: 10.1016/j.anifeedsci.2005.12.011.
  • OpX Leadership Network. 2016. Validating the reduction of Salmonella and other pathogens in heat processed low-moisture foods. Accessed November 1, 2021. https://www.opxleadershipnetwork.org/download-files/1766/11086/1766/thank-you?token=UJSvuSbWALkGwzZVekEyO3wLpMBFe9ELpfO64BTY4ME
  • Ozturk, S., F. Kong, R. K. Singh, J. D. Kuzy, and C. Li. 2017. Radio frequency heating of corn flour: Heating rate and uniformity. Innovative Food Science & Emerging Technologies 44:191–201. doi: 10.1016/j.ifset.2017.05.001.
  • Ozturk, S., S. Liu, J. Xu, J. Tang, J. Chen, R. K. Singh, and F. Kong. 2019. Inactivation of Salmonella Enteritidis and Enterococcus faecium NRRL B-2354 in corn flour by radio frequency heating with subsequent freezing. Lwt 111:782–9. doi: 10.1016/j.lwt.2019.04.090.
  • Pan, Z., G. Bingol, M. T. Brandl, and T. H. McHugh. 2012. Review of current technologies for reduction of Salmonella populations on almonds. Food and Bioprocess Technology 5 (6):2046–57. doi: 10.1007/s11947-012-0789-6.
  • Peleg, M. 2006. Advanced quantitative microbiology for foods and biosystems: models for predicting growth and inactivation. Boca Raton, FL: CRC Press.
  • Pérez-Reyes, M. E., X. Jie, M. J. Zhu, J. Tang, and G. V. Barbosa-Cánovas. 2021. Influence of low water activity on the thermal resistance of Salmonella Enteritidis PT30 and Enterococcus faecium as its surrogate in egg powders. Food Science and Technology International 27 (2):184–93. doi: 10.1177/1082013220937872.
  • Perry, J. J., M. Peña-Melendez, and A. E. Yousef. 2019. Ozone-based treatments for inactivation of Salmonella enterica in tree nuts: Inoculation protocol and surrogate suitability considerations. International Journal of Food Microbiology 297 (16):21–6. doi: 10.1016/j.ijfoodmicro.2019.02.025.
  • Piyasena, P., C. Dussault, T. Koutchma, H. S. Ramaswamy, and G. B. Awuah. 2003. Radio frequency heating of foods: Principles, applications and related properties-a review. Critical Reviews in Food Science and Nutrition 43 (6):587–606. doi: 10.1080/10408690390251129.
  • Podolak, R., E. Enache, W. Stone, D. G. Black, and P. H. Elliott. 2010. Sources and risk factors for contamination, survival, persistence, and heat resistance of Salmonella in low-moisture foods. Journal of Food Protection 73 (10):1919–36. doi: 10.4315/0362-028x-73.10.1919.
  • Podolak, R., L. Lucore, and L. J. Harris. 2017. Heat resistance of Salmonella and other bacterial pathogens in low-moisture foods. In Control of Salmonella and other bacterial pathogens in low moisture foods, edited by R. Polodak and D. G. Black, 121–48. West Sussex, UK: John Wiley & Sons Ltd. doi: 10.1002/9781119071051.ch6.
  • Quinn, A. R., R. F. Liao, F. M. Steele, L. K. Jefferies, and B. J. Taylor. 2021. Isothermal inactivation of Salmonella, Listeria monocytogenes, and Enterococcus faecium NRRL B-2354 in peanut butter, powder infant formula, and wheat flour. Food Control. 121:107582. doi: 10.1016/j.foodcont.2020.107582.
  • Rachon, G., W. Peñaloza, and P. A. Gibbs. 2016. Inactivation of Salmonella, Listeria monocytogenes and Enterococcus faecium NRRL B-2354 in a selection of low moisture foods. International Journal of Food Microbiology 231:16–25. doi: 10.1016/j.ijfoodmicro.2016.04.022.
  • Rokey, G. J., and D. Baldwin. 2013. Extrusion temperature: A critical control point in pet food processing. All About Feed 21 (5). Accessed December, 1, 2021. https://www.allaboutfeed.net/animal-feed/feed-processing/extrusion-temperature-%e2%80%a8a-critical-control-point-in-pet-food-processing/.
  • Saka, I., H. Topcam, E. Son, B. Ozkaya, and F. Erdogdu. 2021. Effect of radio frequency processing on physical, chemical, rheological and bread-baking properties of white and whole wheat flour. Lwt 147:111563. doi: 10.1016/j.lwt.2021.111563.
  • Sánchez-Maldonado, A. F., A. Lee, and J. M. Farber. 2018. Methods for the control of foodborne pathogens in low-moisture foods. Annual Review of Food Science and Technology 9 (1):177–208. annurev-food-030117-012304. doi: 10.1146/annurev-food-030117-012304.
  • Scott, V. N. 2005. How does industry validate elements of HACCP plans? Food Control. 16 (6):497–503. doi: 10.1016/j.foodcont.2003.11.013.
  • Scott, V. N., Y. U. H. Chen, T. A. Freier, J. Kuehm, M. Moorman, J. Meyer, and J. Banks. 2009. Control of Salmonella in low-moisture foods I: Minimizing entry of Salmonella into a processing facility. Food Protection Trends 29 (6):342–53.
  • Shah, M. K., G. Asa, J. Sherwood, K. Graber, and T. M. Bergholz. 2017. Efficacy of vacuum steam pasteurization for inactivation of Salmonella PT 30, Escherichia coli O157:H7 and Enterococcus faecium on low moisture foods. International Journal of Food Microbiology 244:111–8. doi: 10.1016/j.ijfoodmicro.2017.01.003.
  • Shirkole, S., A. Sadashiv Mujumdar, R. Jayabalan, and P. Prakash Sutar. 2021. Dry pasteurization of paprika (Capsicum annuum L.) by short time intensive microwave-infrared radiation : Inactivation of Salmonella Typhimurium and Aspergillus flavus considering quality degradation kinetics. Food Chemistry 338:128012. doi: 10.1016/j.foodchem.2020.128012.
  • Smith, D. F., I. M. Hildebrandt, K. E. Casulli, K. D. Dolan, and B. P. Marks. 2016. Modeling the effect of temperature and water activity on the thermal resistance of Salmonella Enteritidis PT 30 in wheat flour. Journal of Food Protection 79 (12):2058–65. doi: 10.4315/0362-028X.JFP-16-155.
  • Suehr, Q. J., N. M. Anderson, and S. E. Keller. 2019. Desiccation and thermal resistance of Escherichia coli O121 in wheat flour. Journal of Food Protection 82 (8):1308–13.
  • Syamaladevi, R. M., R. K. Tadapaneni, J. Xu, R. Villa-Rojas, J. Tang, B. Carter, S. Sablani, and B. Marks. 2016a. Water activity change at elevated temperatures and thermal resistance of Salmonella in all purpose wheat flour and peanut butter. Food Research International 81:163–70. doi: 10.1016/j.foodres.2016.01.008.
  • Syamaladevi, R. M., J. Tang, R. Villa-Rojas, S. Sablani, B. Carter, and G. Campbell. 2016b. Influence of water activity on thermal resistance of microorganisms in low-moisture foods: A review. Compr Rev Food Sci Food Saf 15 (2):353–70. doi: 10.1111/1541-4337.12190.
  • Syamaladevi, R. M., J. Tang, and Q. P. Zhong. 2016c. Water diffusion from a bacterial cell in low-moisture foods. Journal of Food Science 81 (9):R2129–R2134. doi: 10.1111/1750-3841.13412.
  • Tadapaneni, R. K., and I. Foods. 2018. Influence of water activity on the thermal resistance of Salmonella in low- moisture foods. Pullman, WA, USA: Washington State University.
  • Tadapaneni, R. K., R. Yang, B. Carter, and J. Tang. 2017. A new method to determine the water activity and the net isosteric heats of sorption for low moisture foods at elevated temperatures. Food Research International (Ottawa, Ont.) 102:203–12. doi: 10.1016/j.foodres.2017.09.070.
  • Taylor, M. H., H.-C. Tsai, B. Rasco, J. Tang, and M.-J. Zhu. 2018. Stability of Listeria monocytogenes in wheat flour during extended storage and isothermal treatment. Food Control. 91:434–9. doi: 10.1016/j.foodcont.2018.04.008.
  • The Association of Food Beverage and Consumer Products Companies. 2009. Control of Salmonella in low-moisture foods. The Association of Food Beverage and Consumer Products Companies, 2333–2339. Accessed November 1, 2021. http://www.gmaonline.org/downloads/technical-guidance-and-tools/SalmonellaControlGuidance.pdf
  • Theofel, C., S. Yada, and L. J. Harris. 2019. Surrogate organisms for low moisture foods–published treatments, 1–11. Accessed November 1, 2021. https://ucfoodsafety.ucdavis.edu/low-moisture-foods/low-moisture-foods-general-information
  • Tiwari, G., S. Wang, J. Tang, and S. L. Birla. 2011. Computer simulation model development and validation for radio frequency (RF) heating of dry food materials. Journal of Food Engineering 105 (1):48–55. doi: 10.1016/j.jfoodeng.2011.01.016.
  • Tong, T., P. Wang, H. Shi, F. Li, and Y. Jiao. 2022. Radio frequency inactivation of E. coli O157: H7 and Salmonella Typhimurium ATCC 14028 in black pepper (piper nigrum) kernels: Thermal inactivation kinetic study and quality evaluation. Food Control. 132:108553. doi: 10.1016/j.foodcont.2021.108553.
  • Vadivambal, R., and D. S. Jayas. 2011. Applications of thermal imaging in agriculture and food industry-A review. Food and Bioprocess Technology 4 (2):186–99. doi: 10.1007/s11947-010-0333-5.
  • Venkitasamy, C., M. T. Brandl, B. Wang, T. H. McHugh, R. Zhang, and Z. Pan. 2017. Drying and decontamination of raw pistachios with sequential infrared drying, tempering and hot air drying. International Journal of Food Microbiology 246:85–91. doi: 10.1016/j.ijfoodmicro.2017.02.005.
  • Verma, T., B. D. Chaves, S. Irmak, and J. Subbiah. 2021b. Pasteurization of dried basil leaves using radio frequency heating: A microbial challenge study and quality analysis. Food Control. 124:107932. doi: 10.1016/j.foodcont.2021.107932.
  • Verma, T., X. Wei, S. K. Lau, A. Bianchini, K. M. Eskridge, J. Stratton, N. M. Anderson, H. Thippareddi, and J. Subbiah. 2018b. Response surface methodology for Salmonella inactivation during extrusion processing of oat flour. Journal of Food Protection 81 (5):815–26. doi: 10.4315/0362-028X.JFP-17-347.
  • Verma, T., X. Wei, S. K. Lau, A. Bianchini, K. M. Eskridge, and J. Subbiah. 2018a. Evaluation of Enterococcus faecium NRRL B-2354 as a surrogate for Salmonella during extrusion of low-moisture food. Journal of Food Science 83 (4):1063–72. doi: 10.1111/1750-3841.14110.
  • Verma, T. 2021a. Process interventions for improving the microbiological safety of low moisture food ingredients. The University of Nebraska – Lincoln, Dissertations, 28489812.
  • Vieira, G. N. A., F. B. Freire, and J. T. Freire. 2015. Control of the moisture content of milk powder produced in a spouted bed dryer using a grey-box inferential controller. Drying Technology 33 (15–16):1920–8. doi: 10.1080/07373937.2015.1075999.
  • Villa-Rojas, R., J. Tang, S. Wang, M. Gao, D.-H. Kang, J.-H. Mah, P. Gray, M. E. Sosa-Morales, and A. López-Malo. 2013. Thermal inactivation of Salmonella Enteritidis PT 30 in almond kernels as influenced by water activity. Journal of Food Protection 76 (1):26–32. doi: 10.4315/0362-028X.JFP-11-509.
  • Villa-Rojas, R., M. J. Zhu, B. P. Marks, and J. Tang. 2017. Radiofrequency inactivation of Salmonella Enteritidis PT 30 and Enterococcus faecium in wheat flour at different water activities. Biosystems Engineering 156:7–16. doi: 10.1016/j.biosystemseng.2017.01.001.
  • Villa-Rojas, R., M. J. Zhu, N. C. Paul, P. Gray, J. Xu, D. H. Shah, and J. Tang. 2017. Biofilm forming Salmonella strains exhibit enhanced thermal resistance in wheat flour. Food Control. 73:689–95. doi: 10.1016/j.foodcont.2016.09.021.
  • Wang, J., K. Luechapattanaporn, Y. Wang, and J. Tang. 2012. Radio-frequency heating of heterogeneous food – Meat lasagna. Journal of Food Engineering 108 (1):183–93. doi: 10.1016/j.jfoodeng.2011.05.031.
  • Wang, S., M. Monzon, Y. Gazit, J. Tang, E. J. Mitcham, and J. W. Armstrong. 2005. Temperature-dependent dielectric properties of selected subtropical and tropical fruits and associated insect pests. Transactions of the American Society of Agricultural Engineers 48 (5):1873–81. doi: 10.13031/2013.19985.
  • Wason, S., T. Verma, and J. Subbiah. 2021. Validation of process technologies for enhancing the safety of low-moisture foods: A review. Comprehensive Reviews in Food Science and Food Safety 20 (5):4950–92. doi: 10.1111/1541-4337.12800.
  • Wei, X., S. Agarwal, and J. Subbiah. 2020b. Evaluation of Enterococcus faecium NRRL B-2354 as a surrogate for Salmonella enterica in milk powders at different storage times and temperatures. J Dairy Sci 104 (1):198–210. doi: 10.3168/jds.2020-19190.
  • Wei, X., S. K. Lau, B. D. Chaves, M.-G C. Danao, S. Agarwal, and J. Subbiah. 2020c. Effect of water activity on the thermal inactivation kinetics of Salmonella in milk powders. Journal of Dairy Science 103 (8):6904–17. doi: 10.3168/jds.2020-18298.
  • Wei, X., S. K. Lau, B. S. Reddy, and J. Subbiah. 2020a. A microbial challenge study for validating continuous radio-frequency assisted thermal processing pasteurization of egg white powder. Food Microbiology 85:103306. doi: 10.1016/j.fm.2019.103306.
  • Wei, X., S. K. Lau, J. Stratton, S. Irmak, and J. Subbiah. 2019. Radiofrequency pasteurization process for inactivation of Salmonella spp. and Enterococcus faecium NRRL B-2354 on ground black pepper. Food Microbiology 82:388–97. doi: 10.1016/j.fm.2019.03.007.
  • Wiertzema, J. R., C. Borchardt, A. K. Beckstrom, K. Dev, P. A. U. L. Chen, C. H. I. Chen, Z. A. T. A. Vickers, J. Feirtag, L. Lee, R. Ruan, et al. 2019. Evaluation of methods for inoculating dry powder foods with Salmonella enterica, Enterococcus faecium, or Cronobacter sakazakii. Journal of Food Protection 82 (6):1082–8. doi: 10.4315/0362-028X.JFP-18-284.
  • Xie, Y., T. Cheng, L. Wei, M. J. Zhu, S. S. Sablani, and J. Tang. 2021. Thermal inactivation of Salmonella Enteritidis PT30 in ground cinnamon as influenced by water activity and temperature. Food Control. 124:107935. doi: 10.1016/j.foodcont.2021.107935.
  • Xie, Y., J. Xu, R. Yang, J. Alshammari, M. Zhu, and S. Sablani. 2020. Moisture content of bacterial cells determines thermal resistance of Salmonella Enteritidis PT 30. Applied and Environmental Microbiology 87 (3):e02194–20. doi: 10.1128/AEM.02194-20.
  • Xu, J., S. Liu, J. Tang, S. Ozturk, F. Kong, and D. H. Shah. 2018. Application of freeze-dried Enterococcus faecium NRRL B-2354 in radio-frequency pasteurization of wheat flour. Lwt - Lwt 90:124–31. doi: 10.1016/j.lwt.2017.12.014.
  • Xu, J., J. Tang, Y. Jin, J. Song, R. Yang, S. S. Sablani, and M. Zhu. 2019. High temperature water activity as a key factor influencing survival of Salmonella Enteritidis PT30 in thermal processing. Food Control. 98:520–8. doi: 10.1016/j.foodcont.2018.11.054.
  • Yang, Z., H. Peng, W. Wang, and T. Liu. 2010. Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. Journal of Applied Polymer Science 116 (5):2658–67. doi: 10.1002/app.
  • Yang, R., Y. Xie, S. P. Lombardo, and J. Tang. 2021. Oil protects bacteria from humid heat in thermal processing. Food Control 123:107690. doi: 10.1016/j.foodcont.2020.107690.
  • Zhang, S., R. Lan, L. Zhang, and S. Wang. 2021. Computational modelling of survival of Aspergillus flavus in peanut kernels during hot air-assisted radio frequency pasteurization. Food Microbiology 95:103682. doi: 10.1016/j.fm.2020.103682.
  • Zhang, Y., Y. Xie, J. Tang, S. Wang, L. Wang, G. Zhu, X. Li, and Y. Liu. 2020. Thermal inactivation of Cronobacter sakazakii ATCC 29544 in powdered infant formula milk using thermostatic radio frequency. Food Control. 114:107270. doi: 10.1016/j.foodcont.2020.107270.
  • Zhang, H., Y. Zhao, C. Gong, and S. Jiao. 2020. Effect of radio frequency heating stress on sublethal injury of Salmonella Typhimurium in red pepper powder. Lwt 117:108700. doi: 10.1016/j.lwt.2019.108700.
  • Zhou, X., H. Ramaswamy, Y. Qu, R. Xu, and S. Wang. 2019. Combined radio frequency-vacuum and hot air drying of kiwifruits: Effect on drying uniformity, energy efficiency and product quality. Innovative Food Science & Emerging Technologies 56:102182. doi: 10.1016/j.ifset.2019.102182.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.