571
Views
3
CrossRef citations to date
0
Altmetric
Reviews

A multifunctional study of naturally occurring pyrazines in biological systems; formation mechanisms, metabolism, food applications and functional properties

, &

References

  • Abdelwareth, A., A. Zayed, and M. A. Farag. 2021. Chemometrics-based aroma profiling for revealing origin, roasting indices, and brewing method in coffee seeds and its commercial blends in the Middle East. Food Chemistry 349:129162. doi: 10.1016/j.foodchem.2021.129162.
  • Adams, A., and N. De Kimpe. 2009. Formation of pyrazines from ascorbic acid and amino acids under dry-roasting conditions. Food Chemistry 115 (4):1417–23. doi: 10.1016/j.foodchem.2009.01.071.
  • Adams, T. B., J. Doull, V. J. Feron, J. I. Goodman, L. J. Marnett, I. C. Munro, P. M. Newberne, P. S. Portoghese, R. L. Smith, W. J. Waddell, et al. 2002. The FEMA GRAS assessment of pyrazine derivatives used as flavor ingredients. Food and Chemical Toxicology 40 (4):429–51. doi: 10.1016/S0278-6915(01)00123-5.
  • Ahmad, R. S., A. Imran, and M. B. Hussain. 2018. Nutritional composition of meat. Meat Science and Nutrition 6177.
  • Ahmed, J., and M. S. Rahman. 2012. Handbook of food process design, 2 Volume Set. UK: John Wiley & Sons.
  • Alasti, F. M., N. Asefi, R. Maleki, and S. S. SeiiedlouHeris. 2020. The influence of three different types and dosage of alkaline on the inherent properties in cocoa powder. Journal of Food Science and Technology, 57 (7): 2561–2571.
  • Alberts, P., M. A. Stander, S. O. Paul, and A. de Villiers. 2009. Survey of 3-Alkyl-2-methoxypyrazine content of South African Sauvignon blanc wines using a novel LC − APCI-MS/MS method. Journal of Agricultural and Food Chemistry 57 (20):9347–55. doi: 10.1021/jf9026475.
  • Altschul, A. M. 2013. Limits of technology. In New protein foods: Technology, 280. Verlag: Elsevier.
  • Ames, J. M., R. C. Guy, and G. J. Kipping. 2001. Effect of pH, temperature, and moisture on the formation of volatile compounds in glycine/glucose model systems. Journal of Agricultural and Food Chemistry 49 (9):4315–23.
  • Apfelbach, R., H. A. Soini, N. Y. Vasilieva, and M. V. Novotny. 2015. Behavioral responses of predator-naïve dwarf hamsters (Phodopus campbelli) to odor cues of the European ferret fed with different prey species. Physiology & Behavior 146:57–66. doi: 10.1016/j.physbeh.2015.04.014.
  • Ashraf-Khorassani, M., W. Coleman, III, M. Dube, and L. Taylor. 2019. Isolation and purification of pyrazines produced by reaction of cellulosic-derived sugars with NH4OH and selected amino acids. Journal of Chromatographic Science 57 (9):784–9.
  • Baker, G., J. Cornell, D. Gorbet, S. O’keefe, C. Sims, and S. Talcott. 2003. Determination of pyrazine and flavor variations in peanut genotypes during roasting. Journal of Food Science 68 (1):394–400. doi: 10.1111/j.1365-2621.2003.tb14171.x.
  • Belitz, H.-D., W. Grosch, and P. Schieberle. 2009. Coffee, tea, cocoa. Food Chemistry, 4th ed, 938–70. Berlin Heidelberg: Springer-Verlag.
  • Berger, R. G. 2007. Flavours and fragrances: chemistry, bioprocessing and sustainability. Berlin: Springer Science & Business Media.
  • Besson, I., C. Creuly, J. Gros, and C. Larroche. 1997. Pyrazine production by Bacillus subtilis in solid-state fermentation on soybeans. Applied Microbiology and Biotechnology 47 (5):489–95. doi: 10.1007/s002530050961.
  • Bi, K., L. Zhang, X. Qiao, and Z. Xu. 2017. Tea polyphenols as inhibitors of furan formed in the Maillard model system and canned coffee model. Journal of Food Science 82 (5):1271–7.
  • Bohman, B. r., L. Jeffares, G. Flematti, R. D. Phillips, K. W. Dixon, R. Peakall, and R. A. Barrow. 2012. The discovery of 2-hydroxymethyl-3-(3-methylbutyl)-5-methylpyrazine: A semiochemical in orchid pollination. Organic Letters 14 (10):2576–8.
  • Bohman, B., R. D. Phillips, M. H. M. Menz, B. W. Berntsson, G. R. Flematti, R. A. Barrow, K. W. Dixon, and R. Peakall. 2014. Discovery of pyrazines as pollinator sex pheromones and orchid semiochemicals: Implications for the evolution of sexual deception. The New Phytologist 203 (3):939–52. doi: 10.1111/nph.12800.
  • Bordiga, M., and L. M. Nollet. 2019. Food aroma evolution: During food processing, cooking, and aging. Boca Raton: CRC Press.
  • Braga, S. C., L. F. Oliveira, J. C. Hashimoto, M. R. Gama, P. Efraim, R. J. Poppi, and F. Augusto. 2018. Study of volatile profile in cocoa nibs, cocoa liquor and chocolate on production process using GC × GC-QMS. Microchemical Journal 141:353–61. doi: 10.1016/j.microc.2018.05.042.
  • Bueno, M., V. C. Resconi, M. M. Campo, J. Cacho, V. Ferreira, and A. Escudero. 2013. Effect of freezing method and frozen storage duration on odor-active compounds and sensory perception of lamb. Food Research International 54 (1):772–80. doi: 10.1016/j.foodres.2013.08.003.
  • Burdock, G. 1994. Fenaroli s handbook of flavour ingredients. 3rd ed. Vol II. Boca Raton: CRC Press.
  • Burdock, G. A. 2016. Fenaroli’s handbook of flavor ingredients, volume I, Second Edition. Vol. 1. Boca Raton: CRC press.
  • Burin, V. M., S. Marchand, G. de Revel, and M. T. Bordignon-Luiz. 2013. Development and validation of method for heterocyclic compounds in wine: Optimization of HS-SPME conditions applying a response surface methodology. Talanta 117:87–93. doi: 10.1016/j.talanta.2013.08.037.
  • Caballero, B., P. Finglas, and F. Toldrá. 2015. Encyclopedia of food and health. Oxford: Academic Press.
  • Chang, C.-Y., L. M. Seitz, and E. Chambers. IV, 1995. Volatile flavor components of breads made from hard red winter wheat and hard white winter wheat. Cereal Chemistry 72 (3):237–42.
  • Chun, H. K., and C. T. Ho. 1997. Volatile nitrogen‐containing compounds generated from maillard reactions under simulated deep‐fat frying conditions. Journal of Food Lipids 4 (4):239–44. doi: 10.1111/j.1745-4522.1997.tb00096.x.
  • Claypoole, S. L. 2010. Quantitation of 3-alkyl-2-methoxypyrazines in Grape Juice and Wine via SPME-GC/MS. Ohio: Youngstown State University.
  • Coelho, C., C. Brottier, F. Beuchet, P. Elichiry-Ortiz, B. Bach, C. Lafarge, and R. Tourdot-Maréchal. 2020. Effect of ageing on lees and distillation process on fermented sugarcane molasses for the production of rum. Food Chemistry 303:125405.
  • Cognat, C., T. Shepherd, S. R. Verrall, and D. Stewart. 2012. Comparison of two headspace sampling techniques for the analysis of off-flavour volatiles from oat based products. Food Chemistry 134 (3):1592–600.
  • Colahan-Sederstrom, P. M., and D. G. Peterson. 2005. Inhibition of key aroma compound generated during ultrahigh-temperature processing of bovine milk via epicatechin addition. Journal of Agricultural and Food Chemistry 53 (2):398–402. doi: 10.1021/jf0487248.
  • Daszkiewicz, T., D. Kubiak, and A. Panfil. 2018. The effect of long-term frozen storage on the quality of meat (Longissimus thoracis et Lumborum) from female roe deer (Capreolus capreolus L. Journal of Food Quality 2018:1–7. doi: 10.1155/2018/4691542.
  • David Morgan, E. 2009. Trail pheromones of ants. Physiological Entomology 34 (1):1–17. doi: 10.1111/j.1365-3032.2008.00658.x.
  • Deibler, K., and J. Delwiche. 2004. Handbook of flavor characterization sensory analysis. In Sensory analysis, chemistry, and physiology. New York: CRC Press.
  • Del Turco, S., and G. Basta. 2016. Can dietary polyphenols prevent the formation of toxic compounds from Maillard reaction? Current Drug Metabolism 17 (6):598–607.
  • DeMan, J. M., J. W. Finley, W. J. Hurst, and C. Y. Lee. 1999. Principles of food chemistry. Switzerland: Springer.
  • Eskin, N. M., and F. Shahidi. 2012. Biochemistry of foods. Oxford: Academic Press.
  • Fischer, M., S. Wohlfahrt, J. Varga, G. Matuschek, M. R. Saraji-Bozorgzad, A. Walte, T. Denner, and R. Zimmermann. 2017. Evolution of volatile flavor compounds during roasting of nut seeds by thermogravimetry coupled to fast-cycling optical heating gas chromatography-mass spectrometry with electron and photoionization. Food Analytical Methods 10 (1):49–62. doi: 10.1007/s12161-016-0549-8.
  • Frato, K. E. 2019. Identification of hydroxypyrazine O-methyltransferase genes in Coffea arabica: A potential source of methoxypyrazines that cause potato taste defect. Journal of Agricultural and Food Chemistry 67 (1):341–51. doi: 10.1021/acs.jafc.8b04541.
  • Frauendorfer, F., and P. Schieberle. 2008. Changes in key aroma compounds of Criollo cocoa beans during roasting. Journal of Agricultural and Food Chemistry 56 (21):10244–51.
  • Fu, M., X. Shen, H. Peng, Q. Zhou, J. Yun, Y. Sun, C.-T. Ho, H. Cai, and R. Hou. 2020. Identification of rancidity markers in roasted sunflower seeds produced from raw materials stored for different periods of time. LWT 118:108721. doi: 10.1016/j.lwt.2019.108721.
  • García-Lomillo, J., and M. L. González-SanJosé. 2019. Pyrazines in thermally treated foods. In Encyclopedia of food chemistry, ed. P. V. L. M. F. Shahidi, Vol. 1, 352–62. Amsterdam: Elsevier.
  • Guillaumie, S., A. Ilg, S. Réty, M. Brette, C. Trossat-Magnin, S. Decroocq, C. Léon, C. Keime, T. Ye, R. Baltenweck-Guyot, et al. 2013. Genetic analysis of the biosynthesis of 2-methoxy-3-isobutylpyrazine, a major grape-derived aroma compound impacting wine quality. Plant Physiology 162 (2):604–15. doi: 10.1104/pp.113.218313.
  • Guo, S., L. Bao, C. Li, J. Sun, R. Zhao, and X. Cui. 2020. Antiviral activity of iridoid glycosides extracted from Fructus Gardeniae against influenza A virus by PACT-dependent suppression of viral RNA replication. Scientific Reports 10 (1):1–12. doi: 10.1038/s41598-020-58443-3.
  • Hashim, L., and H. Chaveron. 1995. Use of methylpyrazine ratios to monitor the coffee roasting. Food Research International 28 (6):619–23. doi: 10.1016/0963-9969(95)00037-2.
  • Hayasaka, Y. 2019. Quantitative analysis of mousy off-flavour compound 2-acetyl tetrahydropyridine in wine using liquid chromatography tandem mass spectrometry interfaced with atmospheric chemical ionisation. Journal of Chromatography. A 1588:108–14. doi: 10.1016/j.chroma.2018.12.047.
  • Hemmler, D., C. Roullier-Gall, J. W. Marshall, M. Rychlik, A. J. Taylor, and P. Schmitt-Kopplin. 2018. Insights into the chemistry of non-enzymatic browning reactions in different ribose-amino acid model systems. Scientific Reports 8 (1):1–10. doi: 10.1038/s41598-018-34335-5.
  • Hofstetter, C. K., A. Dunkel, and T. Hofmann. 2019. Unified flavor quantitation: Toward high-throughput analysis of key food odorants and tastants by means of ultra-high-performance liquid chromatography tandem mass spectrometry. Journal of Agricultural and Food Chemistry 67 (31):8599–608.
  • Ho, C.-T., J.-K. Lin, and F. Shahidi. 2008. Tea and tea products: chemistry and health-promoting properties. Boca Raton: CRC press.
  • Ho, C.-T., X. Zheng, and S. Li. 2015. Tea aroma formation. Food Science and Human Wellness 4 (1):9–27. doi: 10.1016/j.fshw.2015.04.001.
  • Hu, M., and C. Jacobsen. 2016. Oxidative stability and shelf life of foods containing oils and fats. UK: Elsevier.
  • Huang, Y., and S. A. Barringer. 2010. Alkylpyrazines and other volatiles in cocoa liquors at pH 5 to 8, by selected ion flow Tube-Mass Spectrometry (SIFT-MS). Journal of Food Science 75 (1):C121–C127. doi: 10.1111/j.1750-3841.2009.01455.x.
  • Huang, T. C., L. J. Bruechert, and C. T. Ho. 1989. Kinetics of pyrazine formation in amino acid‐glucose systems. Journal of Food Science 54 (6):1611–4. doi: 10.1111/j.1365-2621.1989.tb05172.x.
  • Ji, J.,. Y. Liu, L. Shi, N. Wang, and X. Wang. 2019. Effect of roasting treatment on the chemical composition of sesame oil. LWT 101:191–200. doi: 10.1016/j.lwt.2018.11.008.
  • Jiao, S., D. Zhu, Y. Deng, and Y. Zhao. 2016. Effects of hot air-assisted radio frequency heating on quality and shelf-life of roasted peanuts. Food and Bioprocess Technology 9 (2):308–19. doi: 10.1007/s11947-015-1624-7.
  • Jinap, S., B. Jamilah, and S. Nazamid. 2004. Effect of polyphenol concentration on pyrazine formation during cocoa liquor roasting. Food Chemistry 85 (1):73–80.
  • Jousse, F., T. Jongen, W. Agterof, S. Russell, and P. Braat. 2002. Simplified kinetic scheme of flavor formation by the Maillard reaction. Journal of Food Science 67 (7):2534–42. doi: 10.1111/j.1365-2621.2002.tb08772.x.
  • Juan, I. 2001. Effects of different roasting temperature on flavor and quality of Oolong tea (Tong-Tin Type). International Journal of Tea Science, 1 (2&3): 1–11.
  • Jung, M. Y., J. Y. Bock, S. O. Baik, J. H. Lee, and T. K. Lee. 1999. Effects of roasting on pyrazine contents and oxidative stability of red pepper seed oil prior to its extraction. Journal of Agricultural and Food Chemistry 47 (4):1700–4.
  • Jusino, M., C. T. Ho, and C. Tong. 1997. Quantitative analysis of pyrazines in a hydrophilic solid model system 1. Journal of Food Processing and Preservation 21 (5):409–24. doi: 10.1111/j.1745-4549.1997.tb00793.x.
  • Kiefl, J., and P. Schieberle. 2013. Evaluation of process parameters governing the aroma generation in three hazelnut cultivars (Corylus avellana L.) by correlating quantitative key odorant profiling with sensory evaluation. Journal of Agricultural and Food Chemistry 61 (22):5236–44.
  • Klensporf, D., and H. H. Jeleń. 2008. Influence of the addition of raspberry seed extract on changes in the volatile pattern of stored model breakfast cereal. Journal of Agricultural and Food Chemistry 56 (9):3268–72.
  • Koehler, P., M. Mason, and G. Odell. 1971. Odor threshold levels of pyrazine compounds and assessment of their role in the flavor of roasted foods. Journal of Food Science 36 (5):816–8. doi: 10.1111/j.1365-2621.1971.tb03314.x.
  • Koehler, P. E., and G. V. Odell. 1970. Factors affecting the formation of pyrazine compounds in sugar-amine reactions. Journal of Agricultural and Food Chemistry 18 (5):895–8. doi: 10.1021/jf60171a041.
  • Kremer, J. I., S. Pickard, L. F. Stadlmair, A. Glaß‐Theis, L. Buckel, T. Bakuradze, G. Eisenbrand, and E. Richling. 2019. Alkylpyrazines from coffee are extensively metabolized to pyrazine carboxylic acids in the human body. Molecular Nutrition & Food Research 63 (14):1801341. doi: 10.1002/mnfr.201801341.
  • Kusstatscher, P., T. Cernava, S. Liebminger, and G. Berg. 2017. Replacing conventional decontamination of hatching eggs with a natural defense strategy based on antimicrobial, volatile pyrazines. Scientific Reports 7 (1):1–8. doi: 10.1038/s41598-017-13579-7.
  • Law, B. A. 1997. Microbiology and biochemistry of cheese and fermented milk. Springer Science & Business Media. London: Published by Blackie Academic & Professional, an imprint of Chapman & Hall.
  • Leahy, M., and G. Reineccius. 1989. Kinetics of formation of alkylpyrazines: effect of type of amino acid and type of sugar. Washington, D.C: ACS Publications.
  • Li, Y.-Y., Y.-Y. Lu, M. Lu, H.-Y. Wei, and L. Chen. 2018. HPLC separation of 2-ethyl-5 (6)-methylpyrazine and its electroantennogram and alarm activities on fire ants (Solenopsis invicta Buren). Molecules 23 (7):1661. doi: 10.3390/molecules23071661.
  • Liu, J-b, L. Kang, M-y Liu, C-c He, and H-l Song. 2015. The contribution of chicken peptides towards the generation of meat flavor compounds via maillard reaction. Modern Food Science and Technology 31 (4):301–310.
  • Liu, J., M. Liu, C. He, H. Song, and F. Chen. 2015. Effect of thermal treatment on the flavor generation from Maillard reaction of xylose and chicken peptide. Lwt - Food Science and Technology 64 (1):316–25. doi: 10.1016/j.lwt.2015.05.061.
  • Lund, M. N., and C. A. Ray. 2017. Control of Maillard reactions in foods: Strategies and chemical mechanisms. Journal of Agricultural and Food Chemistry 65 (23):4537–52.
  • Ma, W., Z. Miao, and M. V. Novotny. 1998. Role of the adrenal gland and adrenal-mediated chemosignals in suppression of estrus in the house mouse: The lee-boot effect revisited. Biology of Reproduction 59 (6):1317–20.
  • Maga, J. A., and I. Katz. 1982. Pyrazines in foods: An update. Critical Reviews in Food Science and Nutrition 16 (1):1–48. doi: 10.1080/10408398209527338.
  • Maga, J. A., and C. Sizer. 2019. Pyrazines in the foods. In Fenaroli’s handbook of flavor ingredients, 47–131. Boca Raton: CRC Press
  • Maga, J. A., C. E. Sizer, and D. Myhre. 1973. Pyrazines in foods. Critical Reviews in Food Science & Nutrition 4 (1):39–115.
  • Mandava, N. B. 2019. Handbook of natural pesticides: Pheromono, Part B (Vol. 4). Boca Raton: CRC Press.
  • Martin, F. L., and J. M. Ames. 2001. Formation of Strecker aldehydes and pyrazines in a fried potato model system. Journal of Agricultural and Food Chemistry 49 (8):3885–92. doi: 10.1021/jf010310g.
  • Mattia, A., A. Renwick, and I. Sipes. 2005. Pyrazine derivatives. V: Safety evaluation of certain food additives. WHO Food Additives Series 48–91.
  • Mehta, B. M. 2015. Nutritional and toxicological aspects of the chemical changes of food components and nutrients during heating and cooking. In Handbook of food chemistry, 897–936. GenBerlin/Heidelberg: Springer
  • Mihara, S., and H. Masuda. 1988. Structure-odor relationships for disubstituted pyrazines. Journal of Agricultural and Food Chemistry 36 (6):1242–7. doi: 10.1021/jf00084a029.
  • Miller, G. H. 2019. Malting. In Whisky science, 83–119. Switzerland: Springer.
  • Morales, F. J., V. Somoza, and V. Fogliano. 2012. Physiological relevance of dietary melanoidins. Amino Acids 42 (4):1097–109.
  • Morgan, E. D., and N. B. Mandava. 1988. Handbook of natural pesticides: Pheromono, Vol. 4. Boca Raton: CRC Press.
  • Mortzfeld, F. B., C. Hashem, K. Vranková, M. Winkler, and F. Rudroff. 2020. Pyrazines: Synthesis and industrial application of these valuable flavor and fragrance compounds. Biotechnology Journal 15 (11):2000064. doi: 10.1002/biot.202000064.
  • Müller, R., and S. Rappert. 2010. Pyrazines: Occurrence, formation and biodegradation. Applied Microbiology and Biotechnology 85 (5):1315–20.
  • Mutarutwa, D., L. Navarini, V. Lonzarich, D. Compagnone, and P. Pittia. 2018. GC‐MS aroma characterization of vegetable matrices: Focus on 3‐alkyl‐2‐methoxypyrazines. Journal of Mass Spectrometry: JMS 53 (9):871–81.
  • Niu, Y., D. Yu, Z. Xiao, J. Zhu, S. Song, and G. Zhu. 2015. Use of stir bar sorptive extraction and thermal desorption for gas chromatography-mass spectrometry characterization of selected volatile compounds in Chinese liquors. Food Analytical Methods 8 (7):1771–84. doi: 10.1007/s12161-014-0060-z.
  • Olejar, K. J., J. Breitmeyer, P. M. Wimalasiri, B. Tian, and S. K. Field. 2021. Detection of sub-aroma threshold concentrations of wine methoxypyrazines by multidimensional GCMS. Analytica 2 (1):1–13. doi: 10.3390/analytica2010001.
  • Osada, K., K. Kurihara, H. Izumi, and M. Kashiwayanagi. 2013. Pyrazine analogues are active components of wolf urine that induce avoidance and freezing behaviours in mice. PLoS One 8 (4):e61753. doi: 10.1371/journal.pone.0061753.
  • Park, D., and J. A. Maga. 2006. Identification of key volatiles responsible for odour quality differences in popped popcorn of selected hybrids. Food Chemistry 99 (3):538–45. doi: 10.1016/j.foodchem.2005.08.019.
  • Payne, M. J., W. J. Hurst, K. B. Miller, C. Rank, and D. A. Stuart. 2010. Impact of fermentation, drying, roasting, and Dutch processing on epicatechin and catechin content of cacao beans and cocoa ingredients. Journal of Agricultural and Food Chemistry 58 (19):10518–27.
  • Pereira, V., J. M. Leça, J. M. Gaspar, A. C. Pereira, and J. C. Marques. 2018. Rapid determination of sotolon in fortified wines using a miniaturized liquid-liquid extraction followed by LC-MS/MS analysis. Journal of Analytical Methods in Chemistry 2018:4393040. doi: 10.1155/2018/4393040.
  • Piggott, J. 2017. Whisky. In Current developments in biotechnology and bioengineering, 435–50. Amsterdam: Elsevier.
  • Pischetsrieder, M., and T. Henle. 2012. Glycation products in infant formulas: Chemical, analytical and physiological aspects. Amino Acids 42 (4):1111–8.
  • Porretta, S. 2019. Tomato chemistry, industrial processing and product development, Vol. 9. Croydon, UK: Royal Society of Chemistry.
  • Porter, W. L., K. R. Conca, W. G. Yeomans, S. Diotte, A. Lynch, and J. Tate. 2006. Modification of maillard browning in a microwaved glucose/glycine model system by water-soluble natural antioxidants and foods containing them. Journal of the American Oil Chemists’ Society 83 (8):697–705. doi: 10.1007/s11746-006-5026-x.
  • Preedy, V. R. 2014. Processing and impact on active components in food. London: Academic press.
  • Qian, M., and H. Burbank. 2007. Hard Italian cheeses: Parmigiano-reggiano and grana-padano. In Improving the flavour of cheese, 421–43. Boca Raton: CRC Press.
  • Rajini, K., P. Aparna, C. Sasikala, and C. V. Ramana. 2011. Microbial metabolism of pyrazines. Critical Reviews in Microbiology 37 (2):99–112.
  • Reineccius, G. 2005. Flavor chemistry and technology. Boca Raton: CRC press.
  • Reineccius, G. 2013. Source book of flavors. Dordrecht: Springer Science & Business Media.
  • Reineccius, G. A., P. G. Keeney, and W. Weissberger. 1972. Factors affecting the concentration of pyrazines in cocoa beans. Journal of Agricultural and Food Chemistry 20 (2):202–6. doi: 10.1021/jf60180a032.
  • Rizzi, G. P. 1988. The biogenesis of food‐related Pyrazines. Food Reviews International 4 (3):375–400. doi: 10.1080/87559128809540839.
  • Rybakova, D., T. Cernava, M. Köberl, S. Liebminger, M. Etemadi, and G. Berg. 2016. Endophytes-assisted biocontrol: Novel insights in ecology and the mode of action of Paenibacillus. Plant and Soil 405 (1–2):125–40. doi: 10.1007/s11104-015-2526-1.
  • Rychen, G., G. Aquilina, G. Azimonti, V. Bampidis, M. de Lourdes Bastos, G. Bories, P. S. Cocconcelli, G. Flachowsky, J. Gropp, B. Kolar, EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP), et al. 2017. Safety and efficacy of pyrazine derivatives including saturated ones belonging to chemical group 24 when used as flavourings for all animal species. EFSA Journal. European Food Safety Authority 15 (2):e04671.
  • Ryder, W. S. 1966. Progress and limitations in the identification of flavor components. Washington, D.C: ACS Publications.
  • Sala, C., O. Busto, J. Guasch, and F. Zamora. 2004. Factors affecting the presence of 3-alkyl-2-methoxypyrazines in grapes and wines. A review. Journal of Agricultural & Food Chemistry 55 (2):153–9.
  • Sarkar, P. K., and M. R. Nout. 2014. Handbook of indigenous foods involving alkaline fermentation. Boca Raton: CRC Press.
  • Scalone, G. L. L., T. Cucu, N. De Kimpe, and B. De Meulenaer. 2015. Influence of free amino acids, oligopeptides, and polypeptides on the formation of pyrazines in Maillard model systems. Journal of Agricultural and Food Chemistry 63 (22):5364–72.
  • Schenker, S., C. Heinemann, M. Huber, R. Pompizzi, R. Perren, and R. Escher. 2002. Impact of roasting conditions on the formation of aroma compounds in coffee beans. Journal of Food Science 67 (1):60–6. doi: 10.1111/j.1365-2621.2002.tb11359.x.
  • Schöck, M., S. Liebminger, G. Berg, and T. Cernava. 2018. First evaluation of alkylpyrazine application as a novel method to decrease microbial contaminations in processed meat products. AMB Express 8 (1):1–7. doi: 10.1186/s13568-018-0583-6.
  • Sha, S.,. S. Chen, M. Qian, C. Wang, and Y. Xu. 2017. Characterization of the typical potent odorants in Chinese roasted sesame-like flavor type liquor by headspace solid phase Microextraction-Aroma Extract Dilution Analysis, with Special Emphasis on Sulfur-Containing Odorants. Journal of Agricultural and Food Chemistry 65 (1):123–31. doi: 10.1021/acs.jafc.6b04242.
  • Silva-Junior, E. A., A. C. Ruzzini, C. R. Paludo, F. S. Nascimento, C. R. Currie, J. Clardy, and M. T. Pupo. 2018. Pyrazines from bacteria and ants: Convergent chemistry within an ecological niche. Scientific Reports 8 (1):1–7. doi: 10.1038/s41598-018-20953-6.
  • Smith, R. L., S. M. Cohen, S. Fukushima, N. J. Gooderham, S. S. Hecht, F. P. Guengerich, I. M. C. M. Rietjens, M. Bastaki, C. L. Harman, M. M. McGowen, et al. 2018. The safety evaluation of food flavouring substances: The role of metabolic studies. Toxicology Research 7 (4):618–46. doi: 10.1039/c7tx00254h.
  • Soso, S. B., and J. A. Koziel. 2017. Characterizing the scent and chemical composition of Panthera leo marking fluid using solid-phase microextraction and multidimensional gas chromatography–mass spectrometry-olfactometry. Scientific Reports 7 (1):1–15. doi: 10.1038/s41598-017-04973-2.
  • Spingarn, N. E., and C. T. Garvie. 1979. Formation of mutagens in sugar-ammonia model systems. Journal of Agricultural and Food Chemistry 27 (6):1319–21.
  • Starowicz, M., G. Koutsidis, and H. Zieliński. 2019. Determination of antioxidant capacity, phenolics and volatile maillard reaction products in rye-buckwheat biscuits supplemented with 3β-d-Rutinoside. Molecules 24 (5):982. doi: 10.3390/molecules24050982.
  • Teng, J., X. Hu, N. Tao, and M. Wang. 2018. Impact and inhibitory mechanism of phenolic compounds on the formation of toxic Maillard reaction products in food. Frontiers of Agricultural Science and Engineering 5 (3):321–9. doi: 10.15302/J-FASE-2017182.
  • Totlani, V. M., and D. G. Peterson. 2005. Reactivity of epicatechin in aqueous glycine and glucose Maillard reaction models: Quenching of C2, C3, and C4 sugar fragments. Journal of Agricultural and Food Chemistry 53 (10):4130–5.
  • Totlani, V. M., and D. G. Peterson. 2006. Epicatechin carbonyl-trapping reactions in aqueous Maillard systems: Identification and structural elucidation. Journal of Agricultural and Food Chemistry 54 (19):7311–8.
  • Totlani, V. M., and D. G. Peterson. 2007. Influence of epicatechin reactions on the mechanisms of Maillard product formation in low moisture model systems. Journal of Agricultural and Food Chemistry 55 (2):414–20.
  • Vaclavik, V. A., and E. W. Christian. 2014. Fat and oil products. In Essentials of food science, 233–61. New York: Springer.
  • Van Lancker, F., A. Adams, and N. De Kimpe. 2010. Formation of pyrazines in Maillard model systems of lysine-containing dipeptides. Journal of Agricultural and Food Chemistry 58 (4):2470–8.
  • van Loon, W. A., J. P. Linssen, A. Legger, M. A. Posthumus, and A. G. Voragen. 2005. Identification and olfactometry of French fries flavour extracted at mouth conditions. Food Chemistry 90 (3):417–25. doi: 10.1016/j.foodchem.2004.05.005.
  • Vander Meer, R. K., M. D. Breed, M. Winston, and K. E. Espelie. 2019. Pheromone communication in social insects: ants, wasps, bees, and termites. Boca Raton: CRC Press.
  • Varelis, P., L. Melton, and F. Shahidi. 2018. Encyclopedia of Food Chemistry. Amsterdam: Elsevier.
  • Wagner, R., M. Czerny, J. Bielohradsky, and W. Grosch. 1999. Structure-odour-activity relationships of alkylpyrazines. Zeitschrift for Lebensmitteluntersuchung Und -Forschung A 208 (5–6):308–16. doi: 10.1007/s002170050422.
  • Wang, S., K. Adhikari, and Y.-C. Hung. 2017. Effects of short storage on consumer acceptability and volatile compound profile of roasted peanuts. Food Packaging and Shelf Life 13:27–34. doi: 10.1016/j.fpsl.2017.06.002.
  • Wang, X., W. Fan, and Y. Xu. 2014. Comparison on aroma compounds in Chinese soy sauce and strong aroma type liquors by gas chromatography–olfactometry, chemical quantitative and odor activity values analysis. European Food Research and Technology 239 (5):813–25. doi: 10.1007/s00217-014-2275-z.
  • Wu, J.-F., and Y. Xu. 2013. Comparison of pyrazine compounds in seven Chinese liquors using headspace solid-phase micro-extraction and GC-nitrogen phosphourus detection. Food Science and Biotechnology 22 (5):1–6. doi: 10.1007/s10068-013-0209-3.
  • Xu, S., R. Errabeli, D. H. Feener, K. Noble, and A. B. Attygalle. 2018. Alkyl-dimethylpyrazines in mandibular gland secretions of four Odontomachus ant species (Formicidae: Ponerinae). Journal of Chemical Ecology 44 (5):444–51.
  • Yamanishi, T., R. Teranichi, F. Flath, and H. Sugusawa. 1981. Flavor research–recent advances. In Tea, cocoa and other beverages, 278–87. New York: Dekker, Inc.
  • Yan, Y., S. Chen, Y. He, Y. Nie, and Y. Xu. 2020. Quantitation of pyrazines in Baijiu and during production process by a rapid and sensitive direct injection UPLC-MS/MS approach. LWT 128:109371. doi: 10.1016/j.lwt.2020.109371.
  • Yang, Z., R. Lu, H. Song, Y. Zhang, J. Tang, and N. Zhou. 2017. Effect of different cooking methods on the formation of aroma components and heterocyclic amines in pork loin. Journal of Food Processing and Preservation 41 (3):e12981. doi: 10.1111/jfpp.12981.
  • Yu, A.-N., and Q.-H. Deng. 2009. Volatiles from the Maillard reaction of l-ascorbic acid and l-alanine at different pHs. Food Science and Biotechnology 18 (6):1495–9.
  • Yu, H., Y.-X. Seow, P. K. Ong, and W. Zhou. 2019. Effects of ultrasonic processing and oil type on maillard reaction of D-Glucose and L-Alanine in oil-in-water systems. Food and Bioprocess Technology 12 (2):325–37. doi: 10.1007/s11947-018-2213-3.
  • Yu, A. N., Z. W. Tan, and B. A. Shi. 2012. Influence of the pH on the formation of pyrazine compounds by the Maillard reaction of L‐ascorbic acid with acidic, basic and neutral amino acids. Asia-Pacific Journal of Chemical Engineering 7 (3):455–62. doi: 10.1002/apj.594.
  • Yu, A.-N., Z.-W. Tan, and F.-S. Wang. 2013. Mechanistic studies on the formation of pyrazines by Maillard reaction between L-ascorbic acid and L-glutamic acid. Lwt - Food Science and Technology 50 (1):64–71. doi: 10.1016/j.lwt.2012.07.001.
  • Yu, A.-N., and A.-D. Zhang. 2010a. Aroma compounds generated from thermal reaction of L-ascorbic acid with L-cysteine. Food Chemistry 121 (4):1060–5. doi: 10.1016/j.foodchem.2010.01.049.
  • Yu, A.-N., and A.-D. Zhang. 2010b. The effect of pH on the formation of aroma compounds produced by heating a model system containing L-ascorbic acid with L-threonine/L-serine. Food Chemistry 119 (1):214–9. doi: 10.1016/j.foodchem.2009.06.026.
  • Zhao, C., H. Cao, and J. Xiao. 2020. Pyrazines in food. In Handbook of dietary phytochemicals, 1–25. Singapore: Springer Nature.
  • Zviely, M. 2010. Pyrazines for fragrances. Perfumer & Flavorist 35 (8):32–4.
  • Zzaman, W., R. Bhat, T. A. Yang, and A. M. Easa. 2017. Influences of superheated steam roasting on changes in sugar, amino acid and flavour active components of cocoa bean (Theobroma cacao). Journal of the Science of Food and Agriculture 97 (13):4429–37.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.