869
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Industrial application of antimicrobial peptides based on their biological activity and structure-activity relationship

, , , , , & show all

References

  • Ahmed, T. A., and R. Hammami. 2019. Recent insights into structure-function relationships of antimicrobial peptides. Journal of Food Biochemistry 43 (1):e12546. doi:10.1111/jfbc.12546.
  • AlMatar, M., E. A. Makky, G. Yakici, I. Var, B. Kayar, and F. Köksal. 2018. Antimicrobial peptides as an alternative to anti-tuberculosis drugs. Pharmacological Research 128:288–305. doi:10.1016/j.phrs.2017.10.011.
  • Amadou, I., G. W. Sun, O. S. Gbadamosi, and G. W. Le. 2016. Antimicrobial and cell surface hydrophobicity effects of chemically synthesized fermented foxtail millet meal fraction peptide (ffmp10) mutants on Escherichia coli ATCC 8099 strain. International Food Research Journal 23 (2):708–14.
  • Arias, M., K. B. Piga, M. E. Hyndman, and H. J. Vogel. 2018. Improving the activity of Trp-rich antimicrobial peptides by Arg/Lys substitutions and changing the length of cationic residues. Biomolecules 8 (2):19. doi:10.3390/biom8020019.
  • Badrhadad, A., F. Nazarian-Firouzabadi, and A. Ismaili. 2018. Fusion of a chitin-binding domain to an antibacterial peptide to enhance resistance to Fusarium solani in tobacco (Nicotiana tabacum). 3 Biotech 8 (9):391. doi:10.1007/s13205-018-1416-7.
  • Balmeh, N., S. Mahmoudi, and N. A. Fard. 2021. Manipulated bio antimicrobial peptides from probiotic bacteria as proposed drugs for COVID-19 disease. Informatics in Medicine Unlocked 23:100515. doi:10.1016/j.imu.2021.100515.
  • Bartels, E. J. H., D. Dekker, and M. Amiche. 2019. Dermaseptins, multifunctional antimicrobial peptides: A review of their pharmacology, effectivity, mechanism of action, and possible future directions. Frontiers in Pharmacology 10:1421. doi:10.3389/fphar.2019.01421.
  • Batt, S. M., D. E. Minnikin, and G. S. Besra. 2020. The thick waxy coat of mycobacteria, a protective layer against antibiotics and the host’s immune system. The Biochemical Journal 477 (10):1983–2006. doi:10.1042/BCJ20200194.
  • Bi, J. R., C. Tian, J. H. Jiang, G. L. Zhang, H. S. Hao, and H. M. Hou. 2020. Antibacterial activity and potential application in food packaging of peptides derived from turbot viscera hydrolysate. Journal of Agricultural and Food Chemistry 68 (37):9968–77. doi:10.1021/acs.jafc.0c03146.
  • Buda De Cesare, G., S. A. Cristy, D. A. Garsin, and M. C. Lorenz. 2020. Antimicrobial peptides: A new frontier in antifungal therapy. Mbio 11 (6):e02123–20. doi:10.1128/mBio.02123-20.
  • Cao, P., C. W. Du, X. Y. He, C. Zhang, and C. Q. Yuan. 2020. Modification of a derived antimicrobial peptide on steel surface for marine bacterial resistance. Applied Surface Science 510:145512. doi:10.1016/j.apsusc.2020.145512.
  • Cao, F., G. Ma, M. Song, G. Zhu, L. Mei, and Q. Qin. 2021. Evaluating the effects of hydrophobic and cationic residues on antimicrobial peptide self-assembly. Soft Matter 17 (16):4445–51. doi:10.1039/d1sm00096a.
  • Chai, T. T., Y. N. Tan, K. Y. Ee, J. B. Xiao, and F. C. Wong. 2019. Seeds, fermented foods, and agricultural by-products as sources of plant-derived antibacterial peptides. Critical Reviews in Food Science and Nutrition 59 (sup1):S162–S77. doi:10.1080/10408398.2018.1561418.
  • Cheng, K. T., C. L. Wu, B. S. Yip, Y. H. Chih, K. L. Peng, S. Y. Hsu, H. Y. Yu, and J. W. Cheng. 2020. The interactions between the antimicrobial peptide P-113 and living Candida albicans cells shed light on mechanisms of antifungal activity and resistance. International Journal of Molecular Sciences 21 (7):2654. doi:10.3390/ijms21072654.
  • Chessa, C., C. Bodet, C. Jousselin, M. Wehbe, N. Lévêque, and M. Garcia. 2020. Antiviral and immunomodulatory properties of antimicrobial peptides produced by human keratinocytes. Frontiers in Microbiology 11:1155. doi:10.3389/fmicb.2020.01155. eCollection 2020.
  • Choi, J., E. Park, S.-W. Lee, J.-W. Hyun, and K.-H. Baek. 2017. Selection of Small Synthetic Antimicrobial Peptides Inhibiting Xanthomonas citri subsp. citri Causing Citrus Canker. The Plant Pathology Journal 33 (1):87–94. doi:10.5423/PPJ.NT.09.2015.0188.
  • Chu, H. L., B. S. Yip, K. H. Chen, H. Y. Yu, Y. H. Chih, H. T. Cheng, Y. T. Chou, and J. W. Cheng. 2015. Novel antimicrobial peptides with high anticancer activity and selectivity. PLoS One 10 (5):e0126390. doi:10.1371/journal.pone.0126390.
  • Cui, H. Y., J. Wu, C. Z. Li, and L. Lin. 2017. Improving anti-listeria activity of cheese packaging via nanofiber containing nisin-loaded nanoparticles. LWT-Food Science and Technology 81:233–42. doi:10.1016/j.lwt.2017.04.003.
  • Dai, J. H., J. Zheng, W. H. Ou, W. Q. Xu, Q. H. Ai, W. B. Zhang, J. Niu, Y. J. Zhang, and K. S. Mai. 2020. The effect of dietary cecropin AD on intestinal health, immune response and disease resistance of juvenile turbot (Scophthalmus maximus L.). Fish & Shellfish Immunology 100:117–25. doi:10.1016/j.fsi.2020.02.052.
  • de la Fuente-Núñez, C., O. N. Silva, T. K. Lu, and O. L. Franco. 2017. Antimicrobial peptides: Role in human disease and potential as immunotherapies. Pharmacology & Therapeutics 178:132–40. doi:10.1016/j.pharmthera.2017.04.002.
  • Della Pelle, G., G. Perà, M. C. Belardinelli, M. Gerdol, M. Felli, S. Crognale, G. Scapigliati, F. Ceccacci, F. Buonocore, and F. Porcelli. 2020. Trematocine, a novel antimicrobial peptide from the antarctic fish Trematomus bernacchii: Identification and biological activity. Antibiotics 9 (2):66. doi:10.3390/antibiotics9020066.
  • Di, Y. P., Q. Lin, C. Chen, R. C. Montelaro, Y. Doi, and B. Deslouches. 2020. Enhanced therapeutic index of an antimicrobial peptide in mice by increasing safety and activity against multidrug-resistant bacteria. Science Advances 6 (18):eaay6817. doi:10.1126/sciadv.aay6817.
  • Dinika, I., D. K. Verma, R. Balia, G. L. Utama, and A. R. Patel. 2020. Potential of cheese whey bioactive proteins and peptides in the development of antimicrobial edible film composite: A review of recent trends. Trends in Food Science and Technology 103:57. doi:10.1016/j.tifs.2020.06.017.
  • do Nascimento Dias, J., C. de Souza Silva, A. R. de Araújo, J. M. T. Souza, P. H. de Holanda Veloso Júnior, W. F. Cabral, M. da Glória da Silva, P. Eaton, J. R. de Souza de Almeida Leite, A. M. Nicola, et al. 2020. Mechanisms of action of antimicrobial peptides ToAP2 and NDBP-5.7 against Candida albicans planktonic and biofilm cells. Scientific Reports 10 (1):10327. doi:10.1038/s41598-020-67041-2.
  • Edwards, I. A., A. G. Elliott, A. M. Kavanagh, J. Zuegg, M. A. Blaskovich, and M. A. Cooper. 2016. Contribution of amphipathicity and hydrophobicity to the antimicrobial activity and ­cytotoxicity of β-hairpin peptides. ACS Infectious Diseases 2 (6):442–50. doi:10.1021/acsinfecdis.6b00045.
  • Elnagdy, S., and M. AlKhazindar. 2020. The potential of antimicrobial peptides as an antiviral therapy against COVID-19. ACS Pharmacology & Translational Science 3 (4):780–2. doi:10.1021/acsptsci.0c00059.
  • Fernández de Ullivarri, M., S. Arbulu, E. Garcia-Gutierrez, and P. D. Cotter. 2020. Antifungal peptides as therapeutic agents. Frontiers in Cellular and Infection Microbiology 10:105. doi:10.3389/fcimb.2020.00105.
  • Gaspar, D., J. M. Freire, T. R. Pacheco, J. T. Barata, and M. A. Castanho. 2015. Apoptotic human neutrophil peptide-1 anti-tumor activity revealed by cellular biomechanics. Biochimica et Biophysica Acta 1853 (2):308–16. doi:10.1016/j.bbamcr.2014.11.006.
  • Gong, G. L., Y. Wei, and Z. Z. Wang. 2018. Functional expression, purification, and antimicrobial activity of a novel antimicrobial peptide MLH in Escherichia coli. Preparative Biochemistry & Biotechnology 48 (1):57–63. doi:10.1080/10826068.2017.1387562.
  • Gupta, S., S. Shrivastava, R. J. Singh, P. Gogoi, and B. Kumar. 2021. Evaluation of antibacterial activity of magainin and mastoparan and its novel hybrid against MDR E. coli isolates of neonatal calves. International Journal of Peptide Research and Therapeutics 27 (2):1111–9. doi:10.1007/s10989-020-10154-z.
  • Han, X., Z. R. Kou, F. Q. Jiang, X. M. Sun, and D. J. Shang. 2021. Interactions of designed trp-containing antimicrobial peptides with DNA of multidrug-resistant Pseudomonas aeruginosa. DNA and Cell Biology 40 (2):414–24. doi:10.1089/dna.2019.4874.
  • Hemmati, F., A. Bahrami, A. F. Esfanjani, H. Hosseini, D. J. McClements, and L. Williams. 2021. Electrospun antimicrobial materials: Advanced packaging materials for food applications. Trends in Food Science and Technology 111:520–33. doi:10.1016/j.tifs.2021.03.014.
  • Huang, Y. B., L. Y. He, G. R. Li, N. C. Zhai, H. Y. Jiang, and Y. X. Chen. 2014. Role of helicity of α-helical antimicrobial peptides to improve specificity. Protein Cell 5 (8):631–42. doi:10.1007/s13238-014-0061-0.
  • Huang, H. N., C. Y. Pan, and J. Y. Chen. 2018. Grouper (Epinephelus coioides) antimicrobial peptide epinecidin-1 exhibits antiviral activity against foot-and-mouth disease virus in vitro. Peptides 106:91–5. doi:10.1016/j.peptides.2018.07.003.
  • Huan, Y. C., Q. Kong, H. J. Mou, and H. X. Yi. 2020. Antimicrobial peptides: Classification, design, application and research progress in multiple Fields. Front Microbiol 11:582779 doi:10.3389/fmicb.2020.582779.
  • Hu, F., X. Gao, R. She, J. Chen, J. Mao, P. Xiao, and R. Shi. 2017. Effects of antimicrobial peptides on growth performance and small intestinal function in broilers under chronic heat stress. Poultry Science 96 (4):798–806. doi:10.3382/ps/pew379.
  • Hu, F. J., Q. X. Wu, S. Shuang, R. P. She, Z. Yue, Y. F. Yang, M. K. Zhang, F. Du, M. H. Soomro, and R. H. Shi. 2016. Antimicrobial activity and safety evaluation of peptides isolated from the hemoglobin of chickens. BMC Microbiology 16 (1):287. doi:10.1186/s12866-016-0904-3.
  • Hu, W. Y., Y. Y. Yang, Z. Li, Z. Lu, F. Wang, and Y. Z. Wang. 2020. Antibacterial, cytotoxicity and mechanism of the antimicrobial peptide KR-32 in weaning piglets. International Journal of Peptide Research and Therapeutics 26 (2):943–53. doi:10.1007/s10989-019-09898-0.
  • Irazazabal, L. N., W. F. Porto, I. C. Fensterseifer, E. S. Alves, C. O. Matos, A. C. Menezes, M. R. Felício, S. Gonçalves, N. C. Santos, S. M. Ribeiro, et al. 2019. Fast and potent bactericidal membrane lytic activity of PaDBS1R1, a novel cationic antimicrobial peptide. Biochimica et Biophysica Acta. Biomembranes 1861 (1):178–90. doi:10.1016/j.bbamem.2018.08.001.
  • Isaia, H. A., C. M. B. Pinilla, and A. Brandelli. 2021. Evidence that protein corona reduces the release of antimicrobial peptides from polymeric nanocapsules in milk. Food Research International (Ottawa, Ont.) 140:110074. doi:10.1016/j.foodres.2020.110074.
  • Jørgensen, P. S., C. Folke, P. J. Henriksson, K. Malmros, M. Troell, and A. Zorzet, Living with Resistance project. 2020. Coevolutionary governance of antibiotic and pesticide resistance. Trends in ecology & evolution 35 (6):484–94. doi:10.1016/j.tree.2020.01.011.
  • Karimzadeh, S., M. Rezaei, and A. T. Yansari. 2017. Effects of different levels of canola meal peptides on growth performance and blood metabolites in broiler chickens. Livestock Science 203:37–40. doi:10.1016/j.livsci.2017.06.013.
  • Khademi, M., M. Varasteh-Shams, F. Nazarian-Firouzabadi, and A. Ismaili. 2020. New recombinant antimicrobial peptides confer resistance to fungal pathogens in tobacco plants. Frontiers in Plant Science 11:1236. doi:10.3389/fpls.2020.01236.
  • Khan, R. U., and S. Naz. 2013. The applications of probiotics in poultry production. World’s Poultry Science Journal 69 (3):621–31. doi:10.1017/S0043933913000627.
  • Khani, S., S. S. Seyedjavadi, H. Zare-Zardini, H. M. Hosseini, M. Goudarzi, S. Khatami, J. Amani, A. A. I. Fooladi, and M. Razzaghi-Abyaneh. 2019. Isolation and functional characterization of an antifungal hydrophilic peptide, Skh-AMP1, derived from Satureja khuzistanica leaves. Phytochemistry 164:136–43. doi:10.1016/j.phytochem.2019.05.011.
  • Kim, M. K., N. H. Kang, S. J. Ko, J. Park, E. Park, D. W. Shin, S. H. Kim, S. A. Lee, J. I. Lee, S. H. Lee, et al. 2018. Antibacterial and antibiofilm activity and mode of action of magainin 2 against drug-resistant Acinetobacter baumannii. International Journal of Molecular Sciences 19 (10):3041. doi:10.3390/ijms19103041.
  • Kopfnagel, V., S. Wagenknecht, J. Harder, K. Hofmann, M. Kleine, A. Buch, B. Sodeik, and T. Werfel. 2018. RNase 7 Strongly Promotes TLR9-mediated DNA sensing by human plasmacytoid dendritic cells. Journal of Investigative Dermatology 138 (4):872–81. doi:10.1016/j.jid.2017.09.052.
  • Krishnan, M., J. Choi, A. Jang, and Y. Kim. 2020. A novel peptide antibiotic, Pro10-1D, designed from insect defensin shows antibacterial and anti-inflammatory activities in sepsis models. International Journal of Molecular Sciences 21 (17):6216. doi:10.3390/ijms21176216.
  • Lazzaro, B. P., M. Zasloff, and J. Rolff. 2020. Antimicrobial peptides: Application informed by evolution. Science 368 (6490):eaau5480. doi:10.1126/science.aau5480.
  • Le, P., E. Kunold, R. Macsics, K. Rox, M. C. Jennings, I. Ugur, M. Reinecke, D. Chaves-Moreno, M. W. Hackl, C. Fetzer, et al. 2020. Repurposing human kinase inhibitors to create an antibiotic active against drug-resistant Staphylococcus aureus, persisters and biofilms. Nature Chemistry 12 (2):145–58. doi:10.1038/s41557-019-0378-7.
  • Leite, M. L., N. B. da Cunha, and F. F. Costa. 2018. Antimicrobial peptides, nanotechnology, and natural metabolites as novel approaches for cancer treatment. Pharmacology & Therapeutics 183:160–76. doi:10.1016/j.pharmthera.2017.10.010.
  • Li, W., P. Song, Y. Xin, Z. Kuang, Q. Liu, F. Ge, L. B. Zhu, X. G. Zhang, Y. G. Tao, and W. W. Zhang. 2021. The effects of luminescent CdSe quantum dot-functionalized antimicrobial peptides nanoparticles on antibacterial activity and molecular mechanism. International Journal of Nanomedicine 16:1849–67. doi:10.2147/IJN.S295928.
  • Liu, X. L., R. Cao, S. Wang, J. L. Jia, and H. Fei. 2016. Amphipathicity determines different cytotoxic mechanisms of lysine-or arginine-rich cationic hydrophobic peptides in cancer cells. Journal of Medicinal Chemistry 59 (11):5238–47. doi:10.1021/acs.jmedchem.5b02016.
  • Liu, Q., S. H. Yao, Y. Chen, S. Gao, Y. Y. Yang, J. L. Deng, Z. H. Ren, L. H. Shen, H. M. Cui, Y. C. Hu, et al. 2017. Use of antimicrobial peptides as a feed additive for juvenile goats. Scientific Reports 7 (1):12254. doi:10.1038/s41598-017-12394-4.
  • Li, S. Q., Y. J. Wang, Z. H. Xue, Y. N. Jia, R. L. Li, C. W. He, and H. X. Chen. 2021. The structure-mechanism relationship and mode of actions of antimicrobial peptides: A review. Trends in Food Science and Technology 109:103–15. doi:10.1016/j.tifs.2021.01.005.
  • Luong, H. X., T. T. Thanh, and T. H. Tran. 2020. Antimicrobial peptides-Advances in development of therapeutic applications. Life Sciences 260:118407. doi:10.1016/j.lfs.2020.118407.
  • Meikle, T. G., D. Dharmadana, S. V. Hoffmann, N. C. Jones, C. J. Drummond, and C. E. Conn. 2021. Analysis of the structure, loading and activity of six antimicrobial peptides encapsulated in cubic phase lipid nanoparticles. Journal of Colloid and Interface Science 587:90–100. doi:10.1016/j.jcis.2020.11.124.
  • Mookherjee, N., M. A. Anderson, H. P. Haagsman, and D. J. Davidson. 2020. Antimicrobial host defence peptides: Functions and clinical potential. Nature Reviews. Drug Discovery 19 (5):311–32. doi:10.1038/s41573-019-0058-8.
  • Moreno-Angarita, A., C. C. Aragón, and G. J. Tobón. 2020. Cathelicidin LL-37: A new important molecule in the pathophysiology of systemic lupus erythematosus. Journal of Translational Autoimmunity 3:100029. doi:10.1016/j.jtauto.2019.100029.
  • Moretta, A., C. Scieuzo, A. M. Petrone, R. Salvia, M. D. Manniello, A. Franco, D. Lucchetti, A. Vassallo, H. Vogel, A. Sgambato, et al. 2021. Antimicrobial peptides: A new hope in biomedical and pharmaceutical fields. Frontiers in Cellular and Infection Microbiology 11:668632. doi:10.3389/fcimb.2021.668632.
  • Mushtaq, H., J. Bakht, I. Khan, and B. Ahmad. 2021. Antimicrobial efficacy and prevalence of colicinogenic E. coli in faecal matter of human, cow and sheep. International Journal of Antimicrobial Agents 57 (1):106221. doi:10.1016/j.ijantimicag.2020.106221.
  • Nam, H. Y., J. Choi, S. D. Kumar, J. E. Nielsen, M. Kyeong, S. Wang, D. Kang, Y. Lee, J. Lee, M. H. Yoon, et al. 2020. Helicity modulation improves the selectivity of antimicrobial peptoids. ACS Infectious Diseases 6 (10):2732–44. doi:10.1021/acsinfecdis.0c00356.
  • Nam, J., H. Yun, G. Rajasekaran, S. D. Kumar, J. I. Kim, H. J. Min, S. Y. Shin, and C. W. Lee. 2018. Structural and functional assessment of mBjAMP1, an antimicrobial peptide from Branchiostoma japonicum, revealed a novel α-hairpinin-like scaffold with membrane permeable and DNA binding activity. Journal of Medicinal Chemistry 61 (24):11101–13. doi:10.1021/acs.jmedchem.8b01135.
  • Oliveira-Bravo, M., B. B. Sangiorgi, J. L. dos Santos Schiavinato, J. L. Carvalho, D. T. Covas, R. A. Panepucci, F. de Assis Rocha Neves, O. L. Franco, R. W. Pereira, F. Saldanha-Araujo, et al. 2016. LL-37 boosts immunosuppressive function of placenta-derived mesenchymal stromal cells. Stem Cell Research & Therapy 7 (1):189. doi:10.1186/s13287-016-0448-3.
  • Omardien, S., J. W. Drijfhout, F. M. Vaz, M. Wenzel, L. W. Hamoen, S. A. Zaat, and S. Brul. 2018. Bactericidal activity of amphipathic cationic antimicrobial peptides involves altering the membrane fluidity when interacting with the phospholipid bilayer. Biochimica et Biophysica Acta. Biomembranes 1860 (11):2404–15. doi:10.1016/j.bbamem.2018.06.004.
  • Pandit, G., N. Chowdhury, S. A. Mohid, A. P. Bidkar, A. Bhunia, and S. Chatterjee. 2021. Effect of secondary structure and side chain length of hydrophobic amino acid residues on the antimicrobial activity and toxicity of 14-residue-long de novo AMPs. ChemMedChem 16 (2):355–367. doi:10.1002/cmdc.202000550.
  • Peng, A. H., J. Y. Zhang, X. P. Zou, Y. R. He, L. Z. Xu, T. G. Lei, L. X. Yao, Q. Li, and S. C. Chen. 2021. Pyramiding the antimicrobial PR1aCB and AATCB genes in “Tarocco” blood orange (Citrus sinensis Osbeck) to enhance citrus canker resistance. Transgenic Research 30 (5):635–47. doi:10.1007/s11248-021-00245-y.
  • Pitale, D. M., G. Kaur, M. Baghel, K. J. Kaur, and C. Shaha. 2020. Halictine-2 antimicrobial peptide shows promising anti-parasitic activity against Leishmania spp. Experimental Parasitology 218:107987. doi:10.1016/j.exppara.2020.107987.
  • Rajchakit, U., and V. Sarojini. 2017. Recent developments in antimicrobial-peptide-conjugated gold nanoparticles. Bioconjugate Chemistry 28 (11):2673–86. doi:10.1021/acs.bioconjchem.7b00368.
  • Rashid, M. M. O., M. M. R. Moghal, M. M. Billah, M. Hasan, and M. Yamazaki. 2020. Effect of membrane potential on pore formation by the antimicrobial peptide magainin 2 in lipid bilayers. Biochimica et Biophysica Acta. Biomembranes 1862 (10):183381. doi:10.1016/j.bbamem.2020.183381.
  • Rezaei, N., H. G. Hamidabadi, S. Khosravimelal, M. Zahiri, Z. A. Ahovan, M. N. Bojnordi, B. S. Eftekhari, A. Hashemi, F. Ganji, S. Darabi, et al. 2020. Antimicrobial peptides-loaded smart chitosan hydrogel: Release behavior and antibacterial potential against antibiotic resistant clinical isolates. International journal of biological macromolecules 164:855–62. doi:10.1016/j.ijbiomac.2020.07.011.
  • Rodrigues, G., M. R. Maximiano, and O. L. Franco. 2021. Antimicrobial peptides used as growth promoters in livestock production. Applied Microbiology and Biotechnology 105 (19):7115–21. doi:10.1007/s00253-021-11540-3.
  • Rončević, T., D. Vukičević, N. Ilić, L. Krce, G. Gajski, M. Tonkić, I. Goić-Barišić, L. Zoranić, Y. Sonavane, M. Benincasa, et al. 2018. Antibacterial activity affected by the conformatioonal flexibility in glycine-lysine based α-helical antimicrobial peptides. Journal of Medicinal Chemistry 61 (7):2924–36. doi:10.1021/acs.jmedchem.7b01831.
  • Roscetto, E., P. Contursi, A. Vollaro, S. Fusco, E. Notomista, and M. R. Catania. 2018. Antifungal and anti-biofilm activity of the first cryptic antimicrobial peptide from an archaeal protein against Candida spp. clinical isolates. Scientific Reports 8 (1):17570. doi:10.1038/s41598-018-35530-0.
  • Sabokkhiz, M. A., A. Tanhaeian, and M. Mamarabadi. 2019. Study on antiviral activity of two recombinant antimicrobial peptides against tobacco mosaic virus. Probiotics and Antimicrobial Proteins 11 (4):1370–8. doi:10.1007/s12602-019-09539-4.
  • Sah, B. N. P., T. Vasiljevic, S. McKechnie, and O. N. Donkor. 2018. Antioxidative and antibacterial peptides derived from bovine milk proteins. Critical Reviews in Food Science and Nutrition 58 (5):726–40. doi:10.1080/10408398.2016.1217825.
  • Saidumohamed, B. E., A. P. Baburaj, T. K. Johny, U. B. Sheela, M. Sreeranganathan, and S. G. Bhat. 2021. A magainin-2 like bacteriocin BpSl14 with anticancer action from fish gut Bacillus safensis SDG14. Analytical Biochemistry 627:114261. doi:10.1016/j.ab.2021.114261.
  • Santos, J. C., R. C. Sousa, C. G. Otoni, A. R. Moraes, V. G. Souza, E. A. Medeiros, P. J. Espitia, A. C. Pires, J. S. Coimbra, and N. F. Soares. 2018. Nisin and other antimicrobial peptides: Production, mechanisms of action, and application in active food packaging. Innovative Food Science and Emerging Technologies 48:179–94. doi:10.1016/j.ifset.2018.06.008.
  • Seyfi, R., F. A. Kahaki, T. Ebrahimi, S. Montazersaheb, S. Eyvazi, V. Babaeipour, and V. Tarhriz. 2020. Antimicrobial peptides (AMPs): Roles, functions and mechanism of action. International Journal of Peptide Research and Therapeutics 26 (3):1451–63. doi:10.1007/s10989-019-09946-9.
  • Shwaiki, L. N., E. K. Arendt, and K. M. Lynch. 2020. Study on the characterisation and application of synthetic peptide Snakin-1 derived from potato tubers-Action against food spoilage yeast. Food Control 118:107362. doi:10.1016/j.foodcont.2020.107362.
  • Sierra, J. M., E. Fusté, F. Rabanal, T. Vinuesa, and M. Viñas. 2017. An overview of antimicrobial peptides and the latest advances in their development. Expert Opinion on Biological Therapy 17 (6):663–76. doi:10.1080/14712598.2017.1315402.
  • Silva, O. N., C. De La Fuente-Núñez, E. F. Haney, I. C. M. Fensterseifer, S. M. Ribeiro, W. F. Porto, P. Brown, C. Faria-Junior, T. M. B. Rezende, S. E. Mpreno, et al. 2016. An anti-infective synthetic peptide with dual antimicrobial and immunomodulatory activities. Scientific Reports 6 (1):35465. doi:10.1038/srep35465.
  • Silveira, R. F., C. A. Roque-Borda, and E. F. Vicente. 2021. Antimicrobial peptides as a feed additive alternative to animal production, food safety and public health implications: An overview. Animal Nutrition (Zhongguo xu mu shou yi xue hui) 7 (3):896–904. doi:10.1016/j.aninu.2021.01.004.
  • Sultan, S., N. Huma, M. S. Butt, M. Aleem, and M. Abbas. 2018. Therapeutic potential of dairy bioactive peptides: A contemporary perspective. Critical Reviews in Food Science and Nutrition 58 (1):105–15. doi:10.1080/10408398.2015.1136590.
  • Sun, L. F., F. Z. Ke, Z. P. Nie, P. Wang, and J. G. Xu. 2019. Citrus genetic engineering for disease resistance: Past, present and future. International Journal of Molecular Sciences 20 (21):5256. doi:10.3390/ijms20215256.
  • Tan, P., H. Y. Fu, and X. Ma. 2021. Design, optimization, and nanotechnology of antimicrobial peptides: From exploration to applications. Nano Today 39:101229. doi:10.1016/j.nantod.2021.101229.
  • Teixeira, M. C., C. Carbone, M. C. Sousa, M. Espina, M. L. Garcia, E. Sanchez-Lopez, and E. B. Souto. 2020. Nanomedicines for the delivery of antimicrobial peptides (Amps). Nanomaterials 10 (3):560. doi:10.3390/nano10030560.
  • Theron, G., J. Limberis, R. Venter, L. Smith, E. Pietersen, A. Esmail, G. Calligaro, J. T. Riele, M. de Kock, P. van Helden, et al. 2020. Bacterial and host determinants of cough aerosol culture positivity in patients with drug-resistant versus drug-susceptible tuberculosis. Nature Medicine 26 (9):1435–43. doi:10.1038/s41591-020-0940-2.
  • Tzitzilis, A., A. Boura-Theodorou, V. Michail, S. Papadopoulos, D. Krikorian, M. E. Lekka, A.-I. Koukkou, M. Sakarellos-Daitsiotis, and E. Panou-Pomonis. 2020. Cationic amphipathic peptide analogs of cathelicidin LL-37 as a probe in the development of antimicrobial/anticancer agents. Journal of Peptide Science: An Official Publication of the European Peptide Society 26 (7):e3254. doi:10.1002/psc.3254.
  • van Eijk, M., S. Boerefijn, L. Cen, M. Rosa, M. J. Morren, C. K. van der Ent, B. Kraak, J. Dijksterhuis, I. D. Valdes, H. P. Haagsman, et al. 2020. Cathelicidin-inspired antimicrobial peptides as novel antifungal compounds. Medical Mycology 58 (8):1073–84. doi:10.1093/mmy/myaa014.
  • Vila, T., A. S. Sultan, D. Montelongo-Jauregui, and M. A. Jabra-Rizk. 2020. Oral candidiasis: A disease of opportunity. Journal of Fungi 6 (1):15. doi:10.3390/jof6010015.
  • Vilas Boas, L. C. P., L. M. P. de Lima, L. Migliolo, G. D. S. Mendes, M. G. de Jesus, O. L. Franco, and P. A. Silva. 2017. Linear antimicrobial peptides with activity against herpes simplex virus 1 and Aichi virus. Peptide Science 108 (2):e22871. doi:10.1002/bip.22871.
  • Vulikh, K., L. L. Bassel, L. Sergejewich, E. I. Kaufman, J. Hewson, J. I. MacInnes, S. Tabatabaei, and J. L. Caswell. 2019. Effect of tracheal antimicrobial peptide on the development of Mannheimia haemolytica pneumonia in cattle. PLOS One 14 (11):e0225533. doi:10.1371/journal.pone.0225533.
  • Wang, Y. S., P. F. Cui, Y. B. Zhang, Q. Y. Yang, and S. C. Zhang. 2018. Augmentation of the antibacterial activities of Pt5-derived antimicrobial peptides (AMPs) by amino acid substitutions: Design of novel AMPs against MDR bacteria. Fish & Shellfish Immunology 77:100–11. doi:10.1016/j.fsi.2018.03.031.
  • Wang, G., Q. L. Song, S. Huang, Y. M. Wang, S. Cai, H. T. Yu, X. L. Ding, X. F. Zeng, and J. Zhang. 2020. Effect of antimicrobial peptide microcin J25 on growth performance, immune regulation, and intestinal microbiota in broiler chickens challenged with Escherichia coli and Salmonella. Animals 10 (2):345. doi:10.3390/ani10020345.
  • Wang, S., C. Yan, X. M. Zhang, D. Z. Shi, L. X. Chi, G. X. Luo, and J. Deng. 2018. Antimicrobial peptide modification enhances the gene delivery and bactericidal efficiency of gold nanoparticles for accelerating diabetic wound healing. Biomaterials Science 6 (10):2757–72. doi:10.1039/c8bm00807h.
  • Wang, S., X. F. Zeng, Q. Yang, and S. Y. Qiao. 2016. Antimicrobial peptides as potential alternatives to antibiotics in food animal industry. International Journal of Molecular Sciences 17 (5):603. doi:10.3390/ijms17050603.
  • Wei, S. K., P. C. Xu, Z. X. Yao, X. Cui, X. X. Lei, L. L. Li, Y. Q. Dong, W. D. Zhu, R. Guo, and B. Cheng. 2021. A composite hydrogel with co-delivery of antimicrobial peptides and platelet-rich plasma to enhance healing of infected wounds in diabetes. Acta Biomaterialia 124:205–18. doi:10.1016/j.actbio.2021.01.046.
  • Wu, Y., R. Huang, J. M. Jin, L. J. Zhang, H. Zhang, H. Z. Chen, L. L. Chen, and X. Luan. 2020. Advances in the study of structural modification and biological activities of anoplin. Frontiers in Chemistry 8:519. doi:10.3389/fchem.2020.00519.
  • Xiao, H., F. Y. Shao, M. M. Wu, W. K. Ren, X. Xiong, B. Tan, and Y. L. Yin. 2015. The application of antimicrobial peptides as growth and health promoters for swine. Journal of Animal Science and Biotechnology 6 (1):19. doi:10.1186/s40104-015-0018-z.
  • Yan, Y. H., Y. Z. Li, Z. W. Zhang, X. H. Wang, Y. Z. Niu, S. H. Zhang, W. L. Xu, and C. G. Ren. 2021. Advances of peptides for antibacterial applications. Colloids and Surfaces. B, Biointerfaces 202:111682. doi:10.1016/j.colsurfb.2021.111682.
  • Yang, Y. Q., H. D. Zhang, Y. K. Wanyan, K. H. Liu, T. T. Lv, M. Li, and Y. Q. Chen. 2020. Effect of hydrophobicity on the anticancer activity of fatty-acyl-conjugated CM4 in breast cancer cells. ACS Omega 5 (34):21513–21523. doi:10.1021/acsomega.0c02093.
  • Yi, L. H., J. Dang, L. H. Zhang, Y. B. Wu, B. F. Liu, and X. Lü. 2016. Purification, characterization and bactericidal mechanism of a broad spectrum bacteriocin with antimicrobial activity against multidrug-resistant strains produced by Lactobacillus coryniformis XN8. Food Control 67:53–62. doi:10.1016/j.foodcont.2016.02.008.
  • Yu, H. T., X. L. Ding, N. Li, X. Y. Zhang, X. F. Zeng, S. Wang, H. B. Liu, Y. M. Wang, H. M. Jia, and S. Y. Qiao. 2017. Dietary supplemented antimicrobial peptide microcin J25 improves the growth performance, apparent total tract digestibility, fecal microbiota, and intestinal barrier function of weaned pigs. Journal of Animal Science 95 (11):5064–76. doi:10.2527/jas2017.1494.
  • Zahran, E., E. Risha, S. Elbahnaswy, H. A. Mahgoub, and A. Abd El-Moaty. 2019. Tilapia piscidin 4 (TP4) enhances immune response, antioxidant activity, intestinal health and protection against Streptococcus iniae infection in Nile tilapia. Aquaculture 513:734451. doi:10.1016/j.aquaculture.2019.734451.
  • Zhang, B., H. T. Gu, W. Shi, H. L. Li, G. L. Ma, X. L. Chen, H. Qian, H. Y. Lin, W. L. Huang, and L. Ge. 2017. Synthesis and biological evaluation of novel aliphatic acid-conjugated antimicrobial peptides as potential agents with anti-tumor, multidrug resistance-reversing activity and enhanced stability. Amino Acids 49 (11):1831–41. doi:10.1007/s00726-017-2482-6.
  • Zhang, C. Y., M. Yang, and A. C. Ericsson. 2019. Antimicrobial peptides: Potential application in liver cancer. Frontiers in Microbiology 10:1257. doi:10.3389/fmicb.2019.01257.
  • Zhang, F., M. H. Zhang, Y. Chen, J. H. Ouyang, Y. Wang, H. X. Yang, X. J. Luo, D. D. Zhang, Y. Lu, H. N. Yu, et al. 2021. Antimicrobial, anti-biofilm properties of three naturally occurring antimicrobial peptides against spoilage bacteria, and their synergistic effect with chemical preservatives in food storage. Food Control 123:107729. doi:10.1016/j.foodcont.2020.107729.
  • Zhang, X. H., Q. Q. Zhao, L. J. Wen, C. Wu, Z. Q. Yao, Z. Q. Yan, R. Y. Li, L. Y. Chen, F. Y. Chen, Z. Xie, et al. 2021. The effect of the antimicrobial peptide plectasin on the growth performance, intestinal health, and immune function of yellow-feathered chickens. Frontiers in Veterinary Science 8:688611. doi:10.3389/fvets.2021.688611.
  • Zhong, C. Y., L. Zhang, L. Yu, J. D. Huang, S. Y. Huang, and Y. D. Yao. 2021. A review for antimicrobial peptides with anticancer properties: Re-purposing of potential anticancer agents. BIO Integration 1 (4):156–67. doi:10.15212/bioi-2020-0013.
  • Zhou, J. F., L. L. Chen, Y. Q. Liu, T. F. Shen, C. Zhang, Z. X. Liu, X. L. Feng, and C. Wang. 2019. Antimicrobial peptide PMAP-37 analogs: Increasing the positive charge to enhance the antibacterial activity of PMAP-37. Journal of Peptide Science: An Official Publication of the European Peptide Society 25 (12):e3220. doi:10.1002/psc.3220.
  • Zhou, L., Zheng, H. Z. X. Liu, S. Q. Wang, Z. Liu, F. Chen, H. P. Zhang, J. Kong, F. T. Zhou, Q., and Y. Zhang. 2021. Conductive antibacterial hemostatic multifunctional scaffolds based on Ti3C2T x mXene nanosheets for promoting multidrug-resistant bacteria-infected wound healing. ACS Nano 15 (2):2468–2480. doi:10.1021/acsnano.0c06287.
  • Zou, X. P., X. Y. Jiang, L. Z. Xu, T. G. Lei, A. H. Peng, Y. R. He, L. X. Yao, and S. C. Chen. 2017. Transgenic citrus expressing synthesized cecropin B genes in the phloem exhibits decreased susceptibility to Huanglongbing. Plant Molecular Biology 93 (4–5):341–353. doi:10.1007/s11103-016-0565-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.