938
Views
6
CrossRef citations to date
0
Altmetric
Review Articles

Antidiabetic potential of seaweed and their bioactive compounds: a review of developments in last decade

ORCID Icon, ORCID Icon &

References

  • Abdel-Karim, O. H., A. M. Abo-Shady, G. A. Ismail, and S. F. Gheda. 2021. Potential effect of Turbinaria decurrens acetone extract on the biochemical and histological parameters of alloxan-induced diabetic rats. International Journal of Environmental Health Research 1–22. doi: 10.1080/09603123.2021.1888895.
  • Agarwal, S., and K. Chauhan. 2019. Fucoidan: A promising target for dyslipidemia: A concise review. The Pharma Innovation Journal 8 (11):62–7.
  • Al-Araby, S. Q., M. A. Rahman, M. A. Chowdhury, R. R. Das, T. A. Chowdhury, C. M. M. Hasan, M. Afroze, M. A. Hashem, D. Hajjar, W. Alelwani, et al. 2020. Padina tenuis (marine alga) attenuates oxidative stress and streptozotocin-induced type 2 diabetic indices in Wistar albino rats. South African Journal of Botany 128:87–100. doi: 10.1016/j.sajb.2019.09.007.
  • Al‐Habori, M., and A. Raman. 1998. Antidiabetic and hypocholesterolaemic effects of fenugreek. Phytotherapy Research 12 (4):233–42. doi: 10.1002/(SICI)1099-1573(199806)12:4<233::AID-PTR294>3.0.CO;2-V.
  • Almela, C., M. J. Clemente, D. Vélez, and R. Montoro. 2006. Total arsenic, inorganic arsenic, lead and cadmium contents in edible seaweed sold in Spain. Food and Chemical Toxicology 44 (11):1901–8. doi: 10.1016/j.fct.2006.06.011.
  • American Diabetes Association. 2014. Diagnosis and classification of diabetes mellitus. Diabetes Care 37 (Suppl. 1):S81–S90.
  • Apostolidis, E., P. D. Karayannakidis, Y. I. Kwon, C. M. Lee, and N. P. Seeram. 2011. Seasonal variation of phenolic antioxidant-mediated α-glucosidase inhibition of Ascophyllum nodosum. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 66 (4):313–9.
  • Apostolidis, E., and C. M. Lee. 2010. In vitro potential of Ascophyllum nodosum phenolic antioxidant‐mediated α‐glucosidase and α‐amylase inhibition. Journal of Food Science 75 (3):H97–H102.
  • Arnold, T. M., and N. M. Targett. 2002. Marine tannins: The importance of a mechanistic framework for predicting ecological roles. Journal of Chemical Ecology 28 (10):1919–34.
  • Asai, A., T. Sugawara, H. Ono, and A. Nagao. 2004. Biotransformation of fucoxanthinol into amarouciaxanthin A in mice and HepG2 cells: Formation and cytotoxicity of fucoxanthin metabolites. Drug Metabolism and Disposition: The Biological Fate of Chemicals 32 (2):205–11.
  • Balasubramaniam, V., J. C. Lee, M. F. M. Noh, S. Ahmad, I. A. Brownlee, and A. Ismail. 2016. Alpha-amylase, antioxidant, and anti-inflammatory activities of Eucheuma denticulatum (NL Burman) FS Collins and Hervey. Journal of Applied Phycology 28 (3):1965–74. doi: 10.1007/s10811-015-0690-6.
  • Ben Gara, A., R. Ben Abdallah Kolsi, N. Jardak, R. Chaaben, A. El-Feki, L. Fki, H. Belghith, and K. Belghith. 2017. Inhibitory activities of Cystoseiracrinitasulfated polysaccharide on key enzymes related to diabetes and hypertension: In vitro and animal study. Archives of Physiology and Biochemistry 123 (1):31–42.
  • Beppu, F., M. Hosokawa, Y. Niwano, and K. Miyashita. 2012. Effects of dietary fucoxanthin on cholesterol metabolism in diabetic/obese KK-Ay mice. Lipids in Health and Disease 11 (1):112. doi: 10.1186/1476-511X-11-112.
  • Beppu, F., Y. Niwano, T. Tsukui, M. Hosokawa, and K. Miyashita. 2009. Single and repeated oral dose toxicity study of fucoxanthin (FX), a marine carotenoid, in mice. The Journal of Toxicological Sciences 34 (5):501–10.
  • Bishoff, H., W. Puls, H. P. Krause, H. Schutt, and G. Thomas. 1985. Pharmacological properties of the novel glucosidase inhibitors BAY m 1099 (miglitol) and BAY o 1248. Diabetes Research andClinical Practice 1:S53–S62.
  • Brown, C. T., A. G. Davis-Richardson, A. Giongo, K. A. Gano, D. B. Crabb, N. Mukherjee, G. Casella, J. C. Drew, J. Ilonen, M. Knip, et al. 2011. Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PloS One 6 (10):e25792.
  • Büyükbalci, A., and S. N. El. 2008. Determination of in vitro antidiabetic effects, antioxidant activities and phenol contents of some herbal teas. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 63 (1):27–33.
  • Catarino, M. D., A. Silva, N. Mateus, and S. M. Cardoso. 2019. Optimization of phlorotannins extraction from Fucus vesiculosus and evaluation of their potential to prevent metabolic disorders. Marine Drugs 17 (3):162. doi: 10.3390/md17030162.
  • Chaudhury, A., C. Duvoor, R. Dendi, V. Sena, S. Kraleti, A. Chada, R. Ravilla, A. Marco, N. S. Shekhawat, M. T. Montales, et al. 2017. Clinical review of antidiabetic drugs: Implications for type 2 diabetes mellitus management. Frontiers in Endocrinology 8:6.
  • Chen, Q., X. D. Pan, B. F. Huang, and J. L. Han. 2018. Distribution of metals and metalloids in dried seaweeds and health risk to population in southeastern China. Scientific Reports 8 (1):1–7.
  • Cheng, Y., L. Sibusiso, L. Hou, H. Jiang, P. Chen, X. Zhang, M. Wu, and H. Tong. 2019. Sargassum fusiforme fucoidan modifies the gut microbiota during alleviation of streptozotocin-induced hyperglycemia in mice. International Journal of Biological Macromolecules 131:1162–70.
  • Chin, Y. X., X. Chen, W. X. Cao, Y. Sharifuddin, B. D. Green, P. E. Lim, C. H. Xue, and Q. J. Tang. 2020. Characterization of seaweed hypoglycemic property with integration of virtual screening for identification of bioactive compounds. Journal of Functional Foods 64:103656. doi: 10.1016/j.jff.2019.103656.
  • Cho, M., J. H. Han, and S. You. 2011. Inhibitory effects of fucansulfates on enzymatic hydrolysis of starch. LWT – Food Science and Technology 44 (4):1164–71. doi: 10.1016/j.lwt.2010.09.019.
  • Cornish-Bowden, A. 1979. In Fundamentals of enzyme kinetics. Butterworths: London.
  • Cosentino, F., K. Hishikawa, Z. S. Katusic, and T. F. Lüscher. 1997. High glucose increases nitric oxide synthase expression and superoxide anion generation in human aortic endothelial cells. Circulation 96 (1):25–8.
  • Costa, L. S., G. P. Fidelis, S. L. Cordeiro, R. M. Oliveira, D. A. Sabry, R. B. G. Câmara, L. T. D. B. Nobre, M. S. S. P. Costa, J. Almeida-Lima, E. H. C. Farias, et al. 2010. Biological activities of sulfated polysaccharides from tropical seaweeds. Biomedicine & Pharmacotherapy 64 (1):21–8. doi: 10.1016/j.biopha.2009.03.005.
  • Coughlan, K. A., R. J. Valentine, N. B. Ruderman, and A. K. Saha. 2014. AMPK activation: A therapeutic target for type 2 diabetes? Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 7:241–53.
  • Creutzfeldt, W. 2005. The [pre-] history of the incretin concept. Regulatory Peptides 128 (2):87–91. doi: 10.1016/j.regpep.2004.08.004.
  • Crofford, L. J. 1997. COX-1 and COX-2 tissue expression: Implications and predictions. The Journal of Rheumatology. Supplement 49:15–9.
  • Cyriac, B., and K. Eswaran. 2016. Anti-hyperglycemic effect of aqueous extract of Kappaphycusalvarezii (Doty) Doty ex. P. Silva in alloxan-induced diabetic rats. Journal of Applied Phycology 28 (4):2507–13. doi: 10.1007/s10811-015-0762-7.
  • Damdindorj, B., K. Dezaki, T. Kurashina, H. Sone, R. Rita, M. Kakei, and T. Yada. 2012. Exogenous and endogenous ghrelin counteracts GLP-1 action to stimulate cAMP signaling and insulin secretion in islet β-cells. FEBS Letters 586 (16):2555–62.
  • Das, S. K., R. Ren, T. Hashimoto, and K. Kanazawa. 2010. Fucoxanthin induces apoptosis in osteoclast-like cells differentiated from RAW264.7 cells. Journal of Agricultural and Food Chemistry 58 (10):6090–5.
  • Daub, C. D., B. Mabate, S. Malgas, and B. I. Pletschke. 2020. Fucoidan from Ecklonia maxima is a powerful inhibitor of the diabetes-related enzyme, α-glucosidase. International Journal of Biological Macromolecules 151:412–20.
  • de Melo, E. B., A. da Silveira Gomes, and I. Carvalho. 2006. α-and β-Glucosidase inhibitors: Chemical structure and biological activity. Tetrahedron 62 (44):10277–302. doi: 10.1016/j.tet.2006.08.055.
  • Deepak, P., R. Sowmiya, C. Kamaraj, M. P. D. Josebin, D. Aiswarya, G. Balasubramani, V. Amutha, and P. Perumal. 2018. GC-MS profiling, chemical characterization, antioxidant, α-amylase and α-glucosidase inhibition of selected seaweeds from southeast coast of India: An in vitro approach. Journal of Drug Delivery and Therapeutics 8 (2):60–72. doi: 10.22270/jddt.v8i2.1665.
  • Desideri, D., C. Cantaluppi, F. Ceccotto, M. A. Meli, C. Roselli, and L. Feduzi. 2016. Essential and toxic elements in seaweeds for human consumption. Journal of Toxicology and Environmental Health, Part A 79 (3):112–22. doi: 10.1080/15287394.2015.1113598.
  • Dhargalkar, V. K., and N. Pereira. 2005. Seaweed: Promising plant of the millennium. Science and Culture 71 (3–4):60–6.
  • Dhas, T. S., V. G. Kumar, V. Karthick, K. Vasanth, G. Singaravelu, and K. Govindaraju. 2016. Effect of biosynthesized gold nanoparticles by Sargassum swartzii in alloxan induced diabetic rats. Enzyme and Microbial Technology 95:100–6.
  • Dugani, C. B., V. K. Randhawa, A. W. Cheng, N. Patel, and A. Klip. 2008. Selective regulation of the perinuclear distribution of glucose transporter 4 (GLUT4) by insulin signals in muscle cells. European Journal of Cell Biology 87 (6):337–51.
  • Eom, S. H., S. H. Lee, N. Y. Yoon, W. K. Jung, Y. J. Jeon, S. K. Kim, M. S. Lee, and Y. M. Kim. 2012. α‐Glucosidase‐and α‐amylase‐inhibitory activities of phlorotannins from Eisenia bicyclis. Journal of the Science of Food and Agriculture 92 (10):2084–90.
  • Erpel, F., M. S. Mariotti-Celis, J. Parada, F. Pedreschi, and J. R. Pérez-Correa. 2021. Pressurized hot liquid extraction with 15% v/v glycerol-water as an effective environment-friendly process to obtain durvillaeaincurvata and lessonia spicata phlorotannin extracts with antioxidant and antihyperglycemic potential. Antioxidants 10 (7):1105. doi: 10.3390/antiox10071105.
  • Fajriah, S., I. F. Rizki, and E. Sinurat. 2021. Characterization and analysis of the antidiabetic activities of sulphated polysaccharide extract from Caulerpa lentillifera. Pharmacia 68 (4):869–75. doi: 10.3897/pharmacia.68.e73158.
  • Fazeela Mahaboob Begum, S. M., and S. Hemalatha. 2017. Characterization, in silico and in vitro determination of antidiabetic and anti-inflammatory potential of ethanolic extract of Sargassum wightii. Asian Journal of Pharmaceutical and Clinical Research 10 (4):297–301.
  • Fernández-Real, J. M., and W. Ricart. 2003. Insulin resistance and chronic cardiovascular inflammatory syndrome. Endocrine Reviews 24 (3):278–301.
  • Ferrara, A. 2007. Increasing prevalence of gestational diabetes mellitus: A public health perspective. Diabetes Care 30 (Suppl_2):S141–S146. doi: 10.2337/dc07-s206.
  • Filippini, M., A. Baldisserotto, S. Menotta, G. Fedrizzi, S. Rubini, D. Gigliotti, G. Valpiani, R. Buzzi, S. Manfredini, and S. Vertuani. 2021. Heavy metals and potential risks in edible seaweed on the market in Italy. Chemosphere 263:127983.
  • Firdaus, M., and A. A. Prihanto. 2014. α-amylase and α-glucosidase inhibition by brown seaweed (Sargassum sp) extracts. Research Journal of Life Science 1 (1):6–11. doi: 10.21776/ub.rjls.2014.001.01.2.
  • Flier, J. S. 2004. Obesity wars: Molecular progress confronts an expanding epidemic. Cell 116 (2):337–50.
  • Food and Agriculture Organization of the United Nations (FAO). 2003. A guide to the seaweed industry. Rome: FAO.
  • Food and Agriculture Organization of the United Nations (FAO). 2018. The state of world fisheries and aquaculture. Meeting the sustainable development goals. Rome: FAO.
  • Ganesan, A. R., K. Subramani, B. Balasubramanian, W. C. Liu, M. V. Arasu, N. A. Al-Dhabi, and V. Duraipandiyan. 2020. Evaluation of in vivo sub-chronic and heavy metal toxicity of under-exploited seaweeds for food application. Journal of King Saud University – Science 32 (1):1088–95. doi: 10.1016/j.jksus.2019.10.005.
  • García, V., E. Uribe, A. Vega Gálvez, C. Delporte Vergara, G. Valenzuela Barra, J. López, and A. Pastén. 2020. Health-promoting activities of edible seaweed extracts from Chilean coasts: Assessment of antioxidant, anti-diabetic, anti-inflammatory and antimicrobial potential. Reviews in Clinical Nutrition 47 (5):792–800.
  • Garcimartín, A., J. Benedí, S. Bastida, and F. J. Sánchez-Muniz. 2015. Aqueous extracts and suspensions of restructured pork formulated with Undaria pinnatifida, Himanthaliaelongata and Porphyraumbilicalis distinctly affect the in vitro α-glucosidase activity and glucose diffusion. Lwt - Food Science and Technology 64 (2):720–6. doi: 10.1016/j.lwt.2015.06.050.
  • Germoush, M. O., H. A. Elgebaly, S. Hassan, E. M. Kamel, M. Bin-Jumah, and A. M. Mahmoud. 2019. Consumption of terpenoids-rich padina pavonia extract attenuates hyperglycemia, insulin resistance and oxidative stress, and upregulates PPARγ in a rat model of Type 2 diabetes. Antioxidants 9 (1):22. doi: 10.3390/antiox9010022.
  • Gheda, S., M. A. Naby, T. Mohamed, L. Pereira, and A. Khamis. 2021. Antidiabetic and antioxidant activity of phlorotannins extracted from the brown seaweed Cystoseiracompressa in streptozotocin-induced diabetic rats. Environmental Science and Pollution Research International 28 (18):22886–901.
  • Goldstein, B. J., F. Ahmad, W. Ding, P. M. Li, and W. R. Zhang. 1998. Regulation of the insulin signalling pathway by cellular protein-tyrosine phosphatases. Molecular and Cellular Biochemistry 182 (1-2):91–9.
  • Gondi, M., S. A. Basha, J. J. Bhaskar, P. V. Salimath, and U. J. Prasada Rao. 2015. Anti‐diabetic effect of dietary mango (Mangifera indica L.) peel in streptozotocin‐induced diabetic rats. Journal of the Science of Food and Agriculture 95 (5):991–9.
  • Gotama, T. L., and U. Amir Husni. 2018. Antidiabetic activity of Sargassum hystrix extracts in streptozotocin-induced diabetic rats. Preventive Nutrition and Food Science 23 (3):189.
  • Gray, G. M. 1975. Carbohydrate digestion and absorption: Role of the small intestine. New England Journal of Medicine 292 (23):1225–30. doi: 10.1056/NEJM197506052922308.
  • Han, Y. R., M. Y. Ali, M. H. Woo, H. A. Jung, and J. S. Choi. 2015. Anti‐diabetic and anti‐inflammatory potential of the edible brown alga Hizikia fusiformis. Journal of Food Biochemistry 39 (4):417–28. doi: 10.1111/jfbc.12138.
  • Hanefeld, M. 2007. Cardiovascular benefits and safety profile of acarbose therapy in prediabetes and established type 2 diabetes. Cardiovascular Diabetology 6 (1):20.
  • Hardoko, S. T., Y. M. Eveline, and S. Olivia. 2014. An in vitro study of antidiabetic activity of Sargassum duplicatum and Turbinaria decurens seaweed. International Journal of Pharmaceutical Science Invention 3:13–8.
  • He, W., Y. Barak, A. Hevener, P. Olson, D. Liao, J. Le, M. Nelson, E. Ong, J. M. Olefsky, and R. M. Evans. 2003. Adipose-specific peroxisome proliferator-activated receptor gamma knockout causes insulin resistance in fat and liver but not in muscle. Proceedings of the National Academy of Sciences of the United States of America 100 (26):15712–7. doi: 10.1073/pnas.2536828100.
  • Heeba, G. H., and M. A. Morsy. 2015. Fucoidan ameliorates steatohepatitis and insulin resistance by suppressing oxidative stress and inflammatory cytokines in experimental non-alcoholic fatty liver disease. Environmental Toxicology and Pharmacology 40 (3):907–14.
  • Heo, S. J., J. Y. Hwang, J. I. Choi, J. S. Han, H. J. Kim, and Y. J. Jeon. 2009. Diphlorethohydroxycarmalol isolated from Ishigeokamurae, a brown algae, a potent α-glucosidase and α-amylase inhibitor, alleviates postprandial hyperglycemia in diabetic mice. European Journal of Pharmacology 615 (1-3):252–6. doi: 10.1016/j.ejphar.2009.05.017.
  • Heo, S.-J., J.-Y. Hwang, J.-I. Choi, S.-H. Lee, P.-J. Park, D.-H. Kang, C. Oh, D.-W. Kim, J.-S. Han, Y.-J. Jeon, et al. 2010. Protective effect of diphlorethohydroxycarmalol isolated from Ishige okamurae against high glucose-induced-oxidative stress in human umbilical vein endothelial cells. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association 48 (6):1448–54.
  • Hernández-Corona, D. M., E. Martínez-Abundis, and M. González-Ortiz. 2014. Effect of fucoidan administration on insulin secretion and insulin resistance in overweight or obese adults. Journal of Medicinal Food 17 (7):830–2. doi: 10.1089/jmf.2013.0053.
  • He, C., Y. Shan, and W. Song. 2015. Targeting gut microbiota as a possible therapy for diabetes. Nutrition Research (New York, N.Y.) 35 (5):361–7.
  • Holmes, D. 2016. Gut microbiota: Antidiabetic drug treatment confounds gut dysbiosis associated with type 2 diabetes mellitus. Nature Reviews. Endocrinology 12 (2):61.
  • Hosokawa, M., T. Miyashita, S. Nishikawa, S. Emi, T. Tsukui, F. Beppu, T. Okada, and K. Miyashita. 2010. Fucoxanthin regulates adipocytokine mRNA expression in white adipose tissue of diabetic/obese KK-Ay mice. Archives of Biochemistry and Biophysics 504 (1):17–25.
  • Husni, A., R. Wijayanti. and Ustadi. 2014. Inhibitory activity of [alpha]-amylase and [alpha]-glucosidase by Padina pavonica extracts. Journal of Biological Sciences 14 (8):515–20. doi: 10.3923/jbs.2014.515.520.
  • Hu, S., G. Xia, J. Wang, Y. Wang, Z. Li, and C. Xue. 2014. Fucoidan from sea cucumber protects against high-fat high-sucrose diet-induced hyperglycaemia and insulin resistance in mice. Journal of Functional Foods 10:128–38. doi: 10.1016/j.jff.2014.05.012.
  • International Diabetes Federation. 2021. Diabetes facts & figures. Retrieved from https://idf.org/aboutdiabetes/what-is-diabetes/facts-figures.html.
  • Ischiropoulos, H. 1998. Biological tyrosine nitration: A pathophysiological function of nitric oxide and reactive oxygen species. Archives of Biochemistry and Biophysics 356 (1):1–11. doi: 10.1006/abbi.1998.0755.
  • Iwasaki, S., M. A. K. Widjaja-Adhi, A. Koide, T. Kaga, S. Nakano, F. Beppu, M. Hosokawa, and K. Miyashita. 2012. In vivo antioxidant activity of fucoxanthin on obese/diabetes KK-Ay mice. Food and Nutrition Sciences 03 (11):1491–9. doi: 10.4236/fns.2012.311194.
  • Jeong, Y.-T., Y. D. Kim, Y.-M. Jung, D.-C. Park, D.-S. Lee, S.-K. Ku, X. Li, Y. Lu, G. H. Chao, K.-J. Kim, et al. 2013. Low molecular weight fucoidan improves endoplasmic reticulum stress-reduced insulin sensitivity through AMP-activated protein kinase activation in L6 myotubes and restores lipid homeostasis in a mouse model of type 2 diabetes. Molecular Pharmacology 84 (1):147–57. doi: 10.1124/mol.113.085100.
  • Jia, R. B., Z. R. Li, J. Wu, Z. R. Ou, Q. Zhu, B. Sun, L. Lin, and M. Zhao. 2020. Physicochemical properties of polysaccharide fractions from Sargassum fusiforme and their hypoglycemic and hypolipidemic activities in type 2 diabetic rats. International Journal of Biological Macromolecules 147:428–38.
  • Jiang, X., J. Yu, Z. Ma, H. Zhang, and F. Xie. 2015. Effects of fucoidan on insulin stimulation and pancreatic protection via the cAMP signaling pathway in vivo and in vitro. Molecular Medicine Reports 12 (3):4501–7.
  • Jia, R. B., J. Wu, Z. R. Li, Z. R. Ou, Q. Zhu, B. Sun, L. Lin, and M. Zhao. 2020. Comparison of physicochemical properties and antidiabetic effects of polysaccharides extracted from three seaweed species. International Journal of Biological Macromolecules 149:81–92. doi: 10.1016/j.ijbiomac.2020.01.111.
  • Joseph, M. M., and A. A. Jayaprakash. 2003. Status of exploited marine fishery resources of India. Central Marine Fisheries Research Institute, Kochi, India.
  • Joseph, B., and D. Jini. 2013. Antidiabetic effects of Momordica charantia (bitter melon) and its medicinal potency. Asian Pacific Journal of Tropical Disease 3 (2):93–102. doi: 10.1016/S2222-1808(13)60052-3.
  • Jung, H. A., S. E. Jin, B. R. Ahn, C. M. Lee, and J. S. Choi. 2013. Anti-inflammatory activity of edible brown alga Eisenia bicyclis and its constituents fucosterol and phlorotannins in LPS-stimulated RAW264.7 macrophages. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association 59:199–206. doi: 10.1016/j.fct.2013.05.061.
  • Kaladharan, P. 2017. Large scale mariculture of seaweeds-need of the hour. In Seaweeds: A Source of Nutraceutical Healthcare Products and New Materials - Future perspectives, eds. (S. Mathew, K.K. Asha, C.S. Tejpal, L.R.G. Kumar and A.R.S. Menon. ICAR-CIFT, Cochin: ICAR-CIFT
  • Kang, C., Y. B. Jin, H. Lee, M. Cha, E. T. Sohn, J. Moon, C. Park, S. Chun, E. S. Jung, and J. S. Hong. 2010. Brown alga Ecklonia cava attenuates type 1 diabetes by activating AMPK and Akt signaling pathways. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association 48 (2):509–16.
  • Kang, M. C., S. H. Lee, W. W. Lee, N. Kang, E. A. Kim, S. Y. Kim, D. H. Lee, D. Kim, and Y. J. Jeon. 2014. Protective effect of fucoxanthin isolated from Ishigeokamurae against high-glucose induced oxidative stress in human umbilical vein endothelial cells and zebrafish model. Journal of Functional Foods 11:304–12. doi: 10.1016/j.jff.2014.09.007.
  • Kang, S. I., H. S. Shin, H. M. Kim, S. A. Yoon, S. W. Kang, J. H. Kim, H. C. Ko, and S. J. Kim. 2012. Petaloniabinghamiae extract and its constituent fucoxanthin ameliorate high-fat diet-induced obesity by activating AMP-activated protein kinase. Journal of Agricultural and Food Chemistry 60 (13):3389–95.
  • Kang, M. C., W. A. J. P. Wijesinghe, S. H. Lee, S. M. Kang, S. C. Ko, X. Yang, N. Kang, B. T. Jeon, J. Kim, D. H. Lee, et al. 2013. Dieckol isolated from brown seaweed Ecklonia cava attenuates type ІІ diabetes in db/db mouse model. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 53:294–8.
  • Kawamura-Konishi, Y., N. Watanabe, M. Saito, N. Nakajima, T. Sakaki, T. Katayama, and T. Enomoto. 2012. Isolation of a new phlorotannin, a potent inhibitor of carbohydrate-hydrolyzing enzymes, from the brown alga Sargassum patens. Journal of Agricultural and Food Chemistry 60 (22):5565–70.
  • Kim, E., J. Cui, I. Kang, G. Zhang, and Y. Lee. 2021. Potential antidiabetic effects of seaweed extracts by upregulating glucose utilization and alleviating inflammation in C2C12 myotubes. International Journal of Environmental Research and Public Health 18 (3):1367. doi: 10.3390/ijerph18031367.
  • Kim, K. J., and B. Y. Lee. 2012. Fucoidan from the sporophyll of Undaria pinnatifida suppresses adipocyte differentiation by inhibition of inflammation-related cytokines in 3T3-L1 cells. Nutrition Research (New York, N.Y.) 32 (6):439–47. doi: 10.1016/j.nutres.2012.04.003.
  • Kim, E.-A., S.-H. Lee, J.-H. Lee, N. Kang, J.-Y. Oh, S-h Seun-Heui, G. Ahn, S. C. Ko, S. P. Fernando, S.-Y. Kim, et al. 2016. A marine algal polyphenol, dieckol, attenuates blood glucose levels by Akt pathway in alloxan induced hyperglycemia zebrafish model. RSC Advances 6 (82):78570–5. doi: 10.1039/C6RA12724J.
  • Kim, K. J., O. H. Lee, H. C. Lee, Y. C. Kim, and B. Y. Lee. 2007. Effect of fucoidan on expression of diabetes mellitus related genes in mouse adipocytes. Food Science and Biotechnology 16 (2):212–7.
  • Kim, K. Y., K. A. Nam, H. Kurihara, and S. M. Kim. 2008. Potent alpha-glucosidase inhibitors purified from the red alga Grateloupia elliptica . Phytochemistry 69 (16):2820–5.
  • Kim, K. T., L. E. Rioux, and S. L. Turgeon. 2014. Alpha-amylase and alpha-glucosidase inhibition is differentially modulated by fucoidan obtained from Fucus vesiculosus and Ascophyllum nodosum. Phytochemistry 98:27–33.
  • Kim, K. J., K. Y. Yoon, and B. Y. Lee. 2012. Fucoidan regulate blood glucose homeostasis in C57BL/KSJ m+/+db and C57BL/KSJ db/db mice . Fitoterapia 83 (6):1105–9.
  • Kolsi, R. B. A., J. Fakhfakh, S. Sassi, M. Elleuch, and L. Gargouri. 2018. Physico-chemical characterization and beneficial effects of seaweed sulfated polysaccharide against oxydatif and cellular damages caused by alloxan in diabetic rats. International Journal of Biological Macromolecules 117:407–17.
  • Krentz, A. J., and C. J. Bailey. 2005. Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs 65 (3):385–411. doi: 10.2165/00003495-200565030-00005.
  • Kumar, T. V., S. Lakshmanasenthil, D. Geetharamani, T. Marudhupandi, G. Suja, and P. Suganya. 2015. Fucoidan–A α-d-glucosidase inhibitor from Sargassum wightii with relevance to type 2 diabetes mellitus therapy. International Journal of Biological Macromolecules 72:1044–7.
  • Kumar, V., S. Murugesan, and N. Shettu. 2017. Antidiabetic potential of marine red alga Champiaparvula (C. agardh) by inhibiting key metabolic enzymes. World Journal of Pharmaceutical Research 6 (10):1466–74.
  • Kumar, M. S., and S. A. Sharma. 2021. Toxicological effects of marine seaweeds: A cautious insight for human consumption. Critical Reviews in Food Science and Nutrition 61 (3):500–21.
  • Kwon, D. Y., J. W. Daily, III, H. J. Kim, and S. Park. 2010. Antidiabetic effects of fermented soybean products on type 2 diabetes. Nutrition Research (New York, N.Y.) 30 (1):1–13.
  • Lakshmanasenthil, S., T. Vinothkumar, D. Geetharamani, T. Marudhupandi, G. Suja, and N. S. Sindhu. 2014. Fucoidan—a novel α-amylase inhibitor from Turbinaria ornata with relevance to NIDDM therapy. Biocatalysis and Agricultural Biotechnology 3 (3):66–70. doi: 10.1016/j.bcab.2014.02.003.
  • Lebovitz, H. E. 1997. Alpha-glucosidase inhibitors. Endocrinology and Metabolism Clinics of North America 26 (3):539–51.
  • Lee, C. W., and J. S. Han. 2012. Hypoglycemic effect of Sargassum ringgoldianum extract in STZ-induced diabetic mice. Preventive Nutrition and Food Science 17 (1):8–13.
  • Lee, S. H., J. S. Han, S. J. Heo, J. Y. Hwang, and Y. J. Jeon. 2010. Protective effects of dieckol isolated from Ecklonia cava against high glucose-induced oxidative stress in human umbilical vein endothelial cells. Toxicology in Vitro : An International Journal Published in Association with BIBRA 24 (2):375–81. doi: 10.1016/j.tiv.2009.11.002.
  • Lee, S. H., and Y. J. Jeon. 2015. Efficacy and safety of a dieckol-rich extract (AG-dieckol) of brown algae, Ecklonia cava, in pre-diabetic individuals: A double-blind, randomized, placebo-controlled clinical trial. Food & Function 6 (3):853–8. doi: 10.1039/c4fo00940a.
  • Lee, S. H., S. M. Kang, S. C. Ko, M. C. Kang, and Y. J. Jeon. 2013. Octaphlorethol A, a novel phenolic compound isolated from Ishigefoliacea, protects against streptozotocin-induced pancreatic β cell damage by reducing oxidative stress and apoptosis. Food and Chemical Toxicology 59:643–9.
  • Lee, S. H., S. M. Kang, S. C. Ko, D. H. Lee, and Y. J. Jeon. 2012. Octaphlorethol A, a novel phenolic compound isolated from a brown alga, Ishigefoliacea, increases glucose transporter 4-mediated glucose uptake in skeletal muscle cells. Biochemical and Biophysical Research Communications 420 (3):576–81.
  • Lee, S. H., S. M. Kang, S. C. Ko, S. H. Moon, B. T. Jeon, D. H. Lee, and Y. J. Jeon. 2014. Octaphlorethol A: A potent α-glucosidase inhibitor isolated from Ishigefoliacea shows an anti-hyperglycemic effect in mice with streptozotocin-induced diabetes. Food & Function 5 (10):2602–8.
  • Lee, S. H., S. C. Ko, M. C. Kang, D. H. Lee, and Y. J. Jeon. 2016. Octaphlorethol A, a marine algae product, exhibits antidiabetic effects in type 2 diabetic mice by activating AMP-activated protein kinase and upregulating the expression of glucose transporter 4. Food and Chemical Toxicology 91:58–64. doi: 10.1016/j.fct.2016.02.022.
  • Lee, H. A., J. H. Lee, and J. S. Han. 2017. A phlorotannin constituent of Ecklonia cava alleviates postprandial hyperglycemia in diabetic mice. Pharmaceutical Biology 55 (1):1149–54.
  • Lee, S. H., Y. Li, F. Karadeniz, M. M. Kim, and S. K. Kim. 2009. α‐Glucosidase and α‐amylase inhibitory activities of phloroglucinal derivatives from edible marine brown alga, Ecklonia cava. Journal of the Science of Food and Agriculture 89 (9):1552–8.
  • Lee, Y. K., D. J. Lim, Y. H. Lee, and Y. I. Park. 2006. Variation in fucoidan contents and monosaccharide compositions of Korean Undaria pinnatifida (Harvey) Suringar (Phaeophyta). Algae 21 (1):157–60. doi: 10.4490/ALGAE.2006.21.1.157.
  • Lee, S. H., K. H. Min, J. S. Han, D. H. Lee, D. B. Park, W. K. Jung, P. J. Park, B. T. Jeon, S. K. Kim, and Y. J. Jeon. 2012. Effects of brown alga, Ecklonia cava on glucose and lipid metabolism in C57BL/KsJ-db/db mice, a model of type 2 diabetes mellitus. Food and Chemical Toxicology 50 (3-4):575–82. doi: 10.1016/j.fct.2011.12.032.
  • Lee, S. H., M. H. Park, S. J. Heo, S. M. Kang, S. C. Ko, J. S. Han, and Y. J. Jeon. 2010. Dieckol isolated from Ecklonia cava inhibits α-glucosidase and α-amylase in vitro and alleviates postprandial hyperglycemia in streptozotocin-induced diabetic mice. Food and Chemical Toxicology 48 (10):2633–7.
  • Li, K. B., and K. Y. Chan. 1983. Production and properties of alpha-glucosidase from Lactobacillus acidophilus. Applied and Environmental Microbiology 46 (6):1380–7.
  • Liu, H., and L. Gu. 2012. Phlorotannins from brown algae (Fucus vesiculosus) inhibited the formation of advanced glycation endproducts by scavenging reactive carbonyls. Journal of Agricultural and Food Chemistry 60 (5):1326–34.
  • Liu, B., K. T. Kongstad, S. Wiese, A. K. Jäger, and D. Staerk. 2016. Edible seaweed as future functional food: Identification of α-glucosidase inhibitors by combined use of high-resolution α-glucosidase inhibition profiling and HPLC-HRMS-SPE-NMR. Food Chemistry 203:16–22. doi: 10.1016/j.foodchem.2016.02.001.
  • Li, Y. X., I. Wijesekara, Y. Li, and S. K. Kim. 2011. Phlorotannins as bioactive agents from brown algae. Process Biochemistry 46 (12):2219–24. doi: 10.1016/j.procbio.2011.09.015.
  • Lizcano, J. M., and D. R. Alessi. 2002. The insulin signalling pathway. Current Biology 12 (7):R236–R238. doi: 10.1016/s0960-9822(02)00777-7.
  • Lopes, G., P. Andrade, and P. Valentão. 2016. Phlorotannins: Towards new pharmacological interventions for diabetes mellitus type 2. Molecules 22 (1):56. doi: 10.3390/molecules22010056.
  • Lopes, G., M. Barbosa, P. B. Andrade, and P. Valentão. 2019. Phlorotannins from Fucales: Potential to control hyperglycemia and diabetes-related vascular complications. Journal of Applied Phycology 1–10.
  • Lordan, S., T. J. Smyth, A. Soler-Vila, C. Stanton, and R. P. Ross. 2013. The α-amylase and α-glucosidase inhibitory effects of Irish seaweed extracts. Food Chemistry 141 (3):2170–6.
  • Lu, Y., and A. Bennick. 1998. Interaction of tannin with human salivary proline-rich proteins. Archives of Oral Biology 43 (9):717–28.
  • Lu, Y. A., H. G. Lee, X. Li, J. M. Hyun, H. S. Kim, T. H. Kim, H. M. Kim, J. J. Lee, M. C. Kang, and Y. J. Jeon. 2020. Anti-obesity effects of red seaweed, Plocamiumtelfairiae, in C57BL/6 mice fed a high-fat diet. Food & Function 11 (3):2299–308.
  • Ma, Z., L. Lin, M. Wu, H. Yu, T. Shang, T. Zhang, and M. Zhao. 2018. Total and inorganic arsenic contents in seaweeds: Absorption, accumulation, transformation and toxicity. Aquaculture 497:49–55. doi: 10.1016/j.aquaculture.2018.07.040.
  • Mackenzie, R. W., and B. T. Elliott. 2014. Akt/PKB activation and insulin signaling: A novel insulin signaling pathway in the treatment of type 2 diabetes. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 7:55–64.
  • Maeda, H., M. Hosokawa, T. Sashima, and K. Miyashita. 2007. Dietary combination of fucoxanthin and fish oil attenuates the weight gain of white adipose tissue and decreases blood glucose in obese/diabetic KK-Ay mice. Journal of Agricultural and Food Chemistry 55 (19):7701–6.
  • Maeda, H., M. Hosokawa, T. Sashima, K. Murakami-Funayama, and K. Miyashita. 2009. Anti-obesity and anti-diabetic effects of fucoxanthin on diet-induced obesity conditions in a murine model. Molecular Medicine Reports 2 (6):897–902.
  • Maeda, H., S. Kanno, M. Kodate, M. Hosokawa, and K. Miyashita. 2015. Fucoxanthinol, metabolite of fucoxanthin, improves obesity-induced inflammation in adipocyte cells. Marine Drugs 13 (8):4799–813.
  • Mahmoud, A. M., M. O. Germoush, H. A. Elgebaly, K. N. M. Elsayed, S. Hassan, N. M. Mousa, and O. E. Hussein. 2014. Antidiabetic and insulin sensitizing effects of Padina pavonia and Turbenariaornata in streptozotocin/nicotinamide diabetic rats. Asian Journal of Pharmaceutical and Clinical Research 7 (4):74–8.
  • Makkar, F., and K. Chakraborty. 2017. Antidiabetic and anti-inflammatory potential of sulphated polygalactans from red seaweeds Kappaphycusalvarezii and Gracilaria opuntia. International Journal of Food Properties 20 (6):1326–37. doi: 10.1080/10942912.2016.1209216.
  • Maneesh, A., K. Chakraborty, and F. Makkar. 2017. Pharmacological activities of brown seaweed Sargassum wightii (Family Sargassaceae) using different in vitro models. International Journal of Food Properties 20 (4):931–45. doi: 10.1080/10942912.2016.1189434.
  • Manggau, M., M. Hamzah, S. Mamada, W. B. Nurdin, and E. N. Zaenuddin. 2019. Anti coagulant activities of brown seaweed Sargassum cristaefolium extract. Journal of Physics: Conference Series 1341 (7):072006. IOP Publishing. doi: 10.1088/1742-6596/1341/7/072006.
  • Marinho, G. S., A. D. M. Sørensen, H. Safafar, A. H. Pedersen, and S. L. Holdt. 2019. Antioxidant content and activity of the seaweed Saccharina latissima: A seasonal perspective. Journal of Applied Phycology 31 (2):1343–54. doi: 10.1007/s10811-018-1650-8.
  • McSheehy, S., J. Szpunar, R. Morabito, and P. Quevauviller. 2003. The speciation of arsenic in biological tissues and the certification of reference materials for quality control. TrAC Trends in Analytical Chemistry 22 (4):191–209. doi: 10.1016/S0165-9936(03)00404-7.
  • Meli, M. A., D. Desideri, C. Roselli, C. Benedetti, and L. Feduzi. 2015. Essential and toxic elements in honeys from a region of central Italy. Journal of Toxicology and Environmental Health, Part A 78 (10):617–27. doi: 10.1080/15287394.2014.1004006.
  • Michael, L. F., Z. Wu, R. B. Cheatham, P. Puigserver, G. Adelmant, J. J. Lehman, D. P. Kelly, and B. M. Spiegelman. 2001. Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. Proceedings of the National Academy of Sciences 98 (7):3820–5. doi: 10.1073/pnas.061035098.
  • Miguens‐Rodriguez, M., R. Pickford, J. E. Thomas‐Oates, and S. A. Pergantis. 2002. Arsenosugar identification in seaweed extracts using high‐performance liquid chromatography/electrospray ion trap mass spectrometry. Rapid Communications in Mass Spectrometry : RCM 16 (5):323–31.
  • Min, K. H., H. J. Kim, Y. J. Jeon, and J. S. Han. 2011. Ishigeokamurae ameliorates hyperglycemia and insulin resistance in C57BL/KsJ-db/db mice. Diabetes Research and Clinical Practice 93 (1):70–6.
  • Minamia, T., H. Yamazakia, N. Ohamab, and H. O. City. 2009. Accumulation of heavy metals in the organs of wild rodents. Annual Reports by Research Institute for Science and Technology 1 (21):11–7.
  • Miyashita, K., S. Nishikawa, F. Beppu, T. Tsukui, M. Abe, and M. Hosokawa. 2011. The allenic carotenoid fucoxanthin, a novel marine nutraceutical from brown seaweeds. Journal of the Science of Food and Agriculture 91 (7):1166–74.
  • Mohamed, G. 2015. Current trends and Prospects of Seaweed Farming in India.
  • Mohan, V., S. J. Nagalotimath, C. S. Yajnik, and B. B. Tripathy. 1998. Fibrocalculous pancreatic diabetes. Diabetes / Metabolism Reviews 14 (2):153–70. doi: 10.1002/(SICI)1099-0895(199806)14:2<153::AID-DMR212>3.0.CO;2-Q.
  • Mohanapriya, N., S. Murugesan, and V. Sivamurugan. 2016. In vitro α-amylase and α-glucosidase inhibitory activity of methanol extract of Tolypiocladiaglomerulata (C. Agardh) F. Schmitz. Saudi Journal of Biomedical Research 1 (3):59–63.
  • Mohapatra, L., S. K. Bhattamishra, R. Panigrahy, S. Parida, and P. Pati. 2016. Antidiabetic effect of Sargassum wightii and Ulva fasciata in high fat diet and multi low dose streptozotocin induced type 2 diabetic mice. UK Journal of Pharmaceutical and Biosciences 4 (2):13–23.
  • Mohapatra, L. U. C. Y., S. Bhattamisra, R. A. M. A. Panigrahy, and S. Parida. 2016. Evaluation of the antioxidant, hypoglycaemic and anti-diabetic activities of some seaweed collected from the East Coast of India. Biomedical and Pharmacology Journal 9 (1):365–75. doi: 10.13005/bpj/948.
  • Moon, H. E., M. N. Islam, B. R. Ahn, S. S. Chowdhury, H. S. Sohn, H. A. Jung, and J. S. Choi. 2011. Protein tyrosine phosphatase 1B and α-glucosidase inhibitory phlorotannins from edible brown algae, Ecklonia stolonifera and Eisenia bicyclis. Bioscience, Biotechnology, and Biochemistry 75 (8):1472–80.
  • Murugesan, S., S. Bhuvaneswari, and V. Sivamurugan. 2016. Evaluation of in vitro antidiabetic activity of red seaweed Portieriahornemannii (Lyngbye)(Silva) and Spyridia fusiformis (Wulfen). World Journal of Pharmaceutical Sciences 4 (6):415–9.
  • Nagappan, H., P. P. Pee, S. H. Y. Kee, J. T. Ow, S. W. Yan, L. Y. Chew, and K. W. Kong. 2017. Malaysian brown seaweeds Sargassum siliquosum and Sargassum polycystum: Low density lipoprotein (LDL) oxidation, angiotensin converting enzyme (ACE), α-amylase, and α-glucosidase inhibition activities. Food Research International (Ottawa, Ont.) 99 (Pt 2):950–8. doi: 10.1016/j.foodres.2017.01.023.
  • Nathan, C., and Q. W. Xie. 1994. Nitric oxide synthases: Roles, tolls, and controls. Cell 78 (6):915–8.
  • National Academy of Agriclutural Sciences. 2003. Seaweed cultivation and utilization. Policy Paper 22.
  • Naveen, J., R. Baskaran, and V. Baskaran. 2021. Profiling of bioactives and in vitro evaluation of antioxidant and antidiabetic property of polyphenols of marine algae Padina tetrastromatica. Algal Research 55:102250. doi: 10.1016/j.algal.2021.102250.
  • Ngo, D. H., and S. K. Kim. 2013. Sulfated polysaccharides as bioactive agents from marine algae. International Journal of Biological Macromolecules 62:70–5.
  • Nguyen, T. Han, T. Nguyen, V. Nguyen, T. P. Nguyen, T. A. Tran, ADuy Do, and SMoo Kim. 2019. Antidiabetic and antioxidant activities of red seaweed Laurencia dendroidea. Asian Pacific Journal of Tropical Biomedicine 9 (12):501. doi: 10.4103/2221-1691.271723.
  • Nishikawa, S., M. Hosokawa, and K. Miyashita. 2012. Fucoxanthin promotes translocation and induction of glucose transporter 4 in skeletal muscles of diabetic/obese KK-Ay mice. Phytomedicine 19 (5):389–94. doi: 10.1016/j.phymed.2011.11.001.
  • Nomura, T., M. Kikuchi, A. Kubodera, and Y. Kawakami. 1997. Proton‐donative antioxidant activity of fucoxanthin with 1, 1‐diphenyl‐2‐picrylhydrazyl (DPPH). IUBMB Life 42 (2):361–70. doi: 10.1080/15216549700202761.
  • Norman, J. A., C. J. Pickford, T. W. Sanders, and M. Waller. 1988. Human intake of arsenic and iodine from seaweed‐based food supplements and health foods available in the UK. Food Additives and Contaminants 5 (1):103–9.
  • Nwosu, F., J. Morris, V. A. Lund, D. Stewart, H. A. Ross, and G. J. McDougall. 2011. Anti-proliferative and potential anti-diabetic effects of phenolic-rich extracts from edible marine algae. Food Chemistry 126 (3):1006–12. doi: 10.1016/j.foodchem.2010.11.111.
  • Nyenwe, E. A., T. W. Jerkins, G. E. Umpierrez, and A. E. Kitabchi. 2011. Management of type 2 diabetes: Evolving strategies for the treatment of patients with type 2 diabetes. Metabolism: clinical and Experimental 60 (1):1–23. doi: 10.1016/j.metabol.2010.09.010.
  • Oh, J. H., J. Kim, and Y. Lee. 2016. Anti-inflammatory and anti-diabetic effects of brown seaweeds in high-fat diet-induced obese mice. Nutrition Research and Practice 10 (1):42–8.
  • Olasehinde, T. A., L. V. Mabinya, A. O. Olaniran, and A. I. Okoh. 2019b. Chemical characterization, antioxidant properties, cholinesterase inhibitory and anti-amyloidogenic activities of sulfated polysaccharides from some seaweeds. Bioactive Carbohydrates and Dietary Fibre 18:100182. doi: 10.1016/j.bcdf.2019.100182.
  • Olasehinde, T. A., A. O. Olaniran, and A. I. Okoh. 2019. Aqueous–ethanol extracts of some South African seaweeds inhibit beta‐amyloid aggregation, cholinesterases, and beta‐secretase activities in vitro. Journal of Food Biochemistry 43 (7):e12870.
  • Olasehinde, T. A., A. O. Olaniran, and A. I. Okoh. 2019a. Phenolic composition, antioxidant activity, anticholinesterase potential and modulatory effects of aqueous extracts of some seaweeds on β-amyloid aggregation and disaggregation. Pharmaceutical Biology 57 (1):460–9. doi: 10.1080/13880209.2019.1634741.
  • Olasehinde, T. A., A. O. Olaniran, and A. I. Okoh. 2020. Sulfated polysaccharides of some seaweeds exhibit neuroprotection via mitigation of oxidative stress, cholinergic dysfunction and inhibition of Zn–induced neuronal damage in HT-22 cells. BMC Complementary Medicine and Therapies 20 (1):1–10. doi: 10.1186/s12906-020-03047-7.
  • Oliyaei, N., M. Moosavi‐Nasab, A. M. Tamaddon, and N. Tanideh. 2021. Antidiabetic effect of fucoxanthin extracted from Sargassum angustifolium on streptozotocin‐nicotinamide‐induced type 2 diabetic mice. Food Science & Nutrition 9 (7):3521–9. doi: 10.1002/fsn3.2301.
  • Olsson, J., G. B. Toth, and E. Albers. 2020. Biochemical composition of red, green and brown seaweeds on the Swedish west coast. Journal of Applied Phycology 32 (5):3305–17. doi: 10.1007/s10811-020-02145-w.
  • Pacheco, L. V., J. Parada, J. R. Pérez-Correa, M. S. Mariotti-Celis, F. Erpel, A. Zambrano, and M. Palacios. 2020. Bioactive polyphenols from southern chile seaweed as inhibitors of enzymes for starch digestion. Marine Drugs 18 (7):353. doi: 10.3390/md18070353.
  • Palaniveloo, K., L. Yee-Yinn, L. Jia-Qi, A. Chelliah, S. Sze-Looi, T. Nagappan, S. A. Razak, K. Dua, J. Chellian, D. K. Chellappan, et al. 2021. Nutritional profile, antioxidative and antihyperglycemic properties of Padina tetrastromatica from Tioman Island, Malaysia. Foods 10 (8):1932. doi: 10.3390/foods10081932.
  • Pandithurai, M., S. Murugesan, S. Bhuvaneswari, and S. Thennarasan. 2015. In vitro α-amylase and α -glucosidase inhibition activity of methanolic extract of marine brown alga Spatoglossum asperum. International Journal of Advances in Pharamaceutics 4 (5):83–7.
  • Pangestuti, R., T. S. Vo, D. H. Ngo, and S. K. Kim. 2013. Fucoxanthin ameliorates inflammation and oxidative responses in microglia. Journal of Agricultural and Food Chemistry 61 (16):3876–83. doi: 10.1021/jf400015k.
  • Pantidos, N., A. Boath, V. Lund, S. Conner, and G. J. McDougall. 2014. Phenolic-rich extracts from the edible seaweed, Ascophyllum nodosum, inhibit α-amylase and α-glucosidase: Potential anti-hyperglycemic effects. Journal of Functional Foods 10:201–9. doi: 10.1016/j.jff.2014.06.018.
  • Park, M. H., S. J. Heo, K. N. Kim, G. Ahn, P. J. Park, S. H. Moon, B. T. Jeon, and S. H. Lee. 2015. 6,6’-Bieckol protects insulinoma cells against high glucose-induced glucotoxicity by reducing oxidative stress and apoptosis. Fitoterapia 106:135–40.
  • Park, M. H., S. J. Heo, P. J. Park, S. H. Moon, S. H. Sung, B. T. Jeon, and S. H. Lee. 2014. 6,6’-bieckol isolated from Ecklonia cava protects oxidative stress through inhibiting expression of ROS and proinflammatory enzymes in high-glucose-induced human umbilical vein endothelial cells. Applied Biochemistry and Biotechnology 174 (2):632–43. doi: 10.1007/s12010-014-1099-4.
  • Paul, J. P. J. 2014. Screening of anti-diabetic properties of fucoidan extracted from Padina distromatica Hauck (brown seaweed) from Hare island, Thoothukudi, Tamil Nadu, India. International Journal of Innovative Drug Discovery 4 (3):164–9.
  • Pavia, H., and G. B. Toth. 2000. Influence of light and nitrogen on the phlorotannin content of the brown seaweeds Ascophyllum nodosum and Fucus vesiculosus. Hydrobiologia 440 (1/3):299–305. doi: 10.1023/A:1004152001370.
  • Peng, J., J. P. Yuan, C. F. Wu, and J. H. Wang. 2011. Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: Metabolism and bioactivities relevant to human health. Marine Drugs 9 (10):1806–28.
  • Pennington, J. A. 1990. A review of iodine toxicity reports. Journal of the American Dietetic Association 90 (11):1571–81. doi: 10.1016/S0002-8223(21)01843-5.
  • Phaneuf, D., I. Côté, P. Dumas, L. A. Ferron, and A. LeBlanc. 1999. Evaluation of the contamination of marine algae (seaweed) from the St. Lawrence River and likely to be consumed by humans. Environmental Research 80 (2):S175–S182. doi: 10.1006/enrs.1998.3915.
  • Pozharitskaya, O. N., E. D. Obluchinskaya, and A. N. Shikov. 2020. Mechanisms of bioactivities of fucoidan from the brown seaweed Fucus vesiculosus L. of the Barents Sea. Marine Drugs 18 (5):275. doi: 10.3390/md18050275.
  • Rose, M., J. Lewis, N. Langford, M. Baxter, S. Origgi, M. Barber, H. MacBain, and K. Thomas. 2007. Arsenic in seaweed—forms, concentration and dietary exposure. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association 45 (7):1263–7.
  • Roselli, C., D. Desideri, C. Cantaluppi, M. Mattioli, A. Fasson, and M. A. Meli. 2015. Essential and toxic elements in clays for pharmaceutical and cosmetic use. Journal of Toxicology and Environmental Health, Part A 78 (5):316–24. doi: 10.1080/15287394.2014.964430.
  • Ruderman, N. B., D. Carling, M. Prentki, and J. M. Cacicedo. 2013. AMPK, insulin resistance, and the metabolic syndrome. The Journal of Clinical Investigation 123 (7):2764–72.
  • Sachindra, N. M., E. Sato, H. Maeda, M. Hosokawa, Y. Niwano, M. Kohno, and K. Miyashita. 2007. Radical scavenging and singlet oxygen quenching activity of marine carotenoid fucoxanthin and its metabolites. Journal of Agricultural and Food Chemistry 55 (21):8516–22.
  • Sakai, C., S. Abe, M. Kouzuki, H. Shimohiro, Y. Ota, H. Sakinada, T. Takeuchi, T. Okura, T. Kasagi, and K. Hanaki. 2019. A randomized placebo-controlled trial of an oral preparation of high molecular weight fucoidan in patients with type 2 diabetes with evaluation of taste sensitivity. Yonago Acta Medica 62 (1):014–23. doi: 10.33160/yam.2019.03.003.
  • Sakthivel, R., and K. P. Devi. 2019. Antioxidant, anti-inflammatory and anticancer potential of natural bioactive compounds from seaweeds. In Studies in Natural Products Chemistry 63:113–60.
  • Sartipy, P., and D. J. Loskutoff. 2003. Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proceedings of the National Academy of Sciences 100 (12):7265–70. doi: 10.1073/pnas.1133870100.
  • Senthil, S. L., R. Chandrasekaran, H. A. Arjun, and P. Anantharaman. 2019. In vitro and in silico inhibition properties of fucoidan against α-amylase and α-D-glucosidase with relevance to type 2 diabetes mellitus. Carbohydrate Polymers 209:350–5.
  • Senthil, S. L., T. V. Kumar, D. Geetharamani, G. Suja, R. Yesudas, and A. Chacko. 2015. Fucoidan–An α-amylase inhibitor from Sargassum wightii with relevance to NIDDM. International Journal of Biological Macromolecules 81:644–7.
  • Senthilkumar, P., S. Sudha, and S. Prakash. 2014. Antidiabetic activity of aqueous extract of Padina boergesenii in streptozotocin-induced diabetic rats. International Journal of Pharmacy and Pharmaceutical Sciences 6 (5):418–22.
  • Shafay, S. E., M. El-Sheekh, E. Bases, and R. El-Shenody. 2021. Antioxidant, antidiabetic, anti-inflammatory and anticancer potential of some seaweed extracts. Food Science and Technology doi: 10.1590/fst.20521.
  • Shakambari, G., B. Ashokkumar, and P. Varalakshmi. 2015. Phlorotannins from Brown Algae: Inhibition of advanced glycation end products formation in high glucose induced Caenorhabditis elegans. Indian Journal of Experimental Biology 53 (6):371–9.
  • Shan, X., X. Liu, J. Hao, C. Cai, F. Fan, Y. Dun, X. Zhao, X. Liu, C. Li, and G. Yu. 2016. In vitro and in vivo hypoglycemic effects of brown algal fucoidans. International Journal of Biological Macromolecules 82:249–55.
  • Shang, Q., G. Song, M. Zhang, J. Shi, C. Xu, J. Hao, G. Li, and G. Yu. 2017. Dietary fucoidan improves metabolic syndrome in association with increased Akkermansia population in the gut microbiota of high-fat diet-fed mice. Journal of Functional Foods 28:138–46. doi: 10.1016/j.jff.2016.11.002.
  • Sheetz, M. J., and G. L. King. 2002. Molecular understanding of hyperglycemia’s adverse effects for diabetic complications. Jama 288 (20):2579–88. doi: 10.1001/jama.288.20.2579.
  • Shihabudeen, H. M. S., D. H. Priscilla, and K. Thirumurugan. 2011. Cinnamon extract inhibits α-glucosidase activity and dampens postprandial glucose excursion in diabetic rats. Nutrition & Metabolism 8 (1):46. doi: 10.1186/1743-7075-8-46.
  • Srinivasan, K. 2005. Plant foods in the management of diabetes mellitus: Spices as beneficial antidiabetic food adjuncts. International Journal of Food Sciences and Nutrition 56 (6):399–414.
  • Stern, J. L., A. E. Hagerman, P. D. Steinberg, and P. K. Mason. 1996. Phlorotannin-protein interactions. Journal of Chemical Ecology 22 (10):1877–99.
  • Tanemura, Y., H. Yamanaka-Okumura, M. Sakuma, Y. Nii, Y. Taketani, and E. Takeda. 2014. Effects of the intake of Undaria pinnatifida (Wakame) and its sporophylls (Mekabu) on postprandial glucose and insulin metabolism. The Journal of Medical Investigation 61 (3.4):291–7. doi: 10.2152/jmi.61.291.
  • Taniguchi, C. M., B. Emanuelli, and C. R. Kahn. 2006. Critical nodes in signalling pathways: Insights into insulin action. Nature Reviews. Molecular Cell Biology 7 (2):85–96.
  • Tontonoz, P., and B. M. Spiegelman. 2008. Fat and beyond: The diverse biology of PPARγ. Annual Review of Biochemistry 77:289–312.
  • Unnikrishnan, P. S., and M. A. Jayasri. 2017. Antidiabetic studies of Chaetomorphaantennina extract using experimental models. Journal of Applied Phycology 29 (2):1047–56. doi: 10.1007/s10811-016-0991-4.
  • Unnikrishnan, P. S., K. Suthindhiran, and M. A. Jayasri. 2015. Antidiabetic potential of marine algae by inhibiting key metabolic enzymes. Frontiers in Life Science 8 (2):148–59. doi: 10.1080/21553769.2015.1005244.
  • Wang, X., H. Jiang, N. Zhang, C. Cai, G. Li, J. Hao, and G. Yu. 2020. Anti-diabetic activities of agaropectin-derived oligosaccharides from Gloiopeltisfurcata via regulation of mitochondrial function. Carbohydrate Polymers 229:115482.
  • Wang, J., W. Jin, W. Zhang, Y. Hou, H. Zhang, and Q. Zhang. 2013. Hypoglycemic property of acidic polysaccharide extracted from Saccharina japonica and its potential mechanism. Carbohydrate Polymers 95 (1):143–7. doi: 10.1016/j.carbpol.2013.02.076.
  • Wang, Y., J. Wang, Y. Zhao, S. Hu, D. Shi, and C. Xue. 2016. Fucoidan from sea cucumber Cucumariafrondosa exhibits anti-hyperglycemic effects in insulin resistant mice via activating the PI3K/PKB pathway and GLUT4. Journal of Bioscience and Bioengineering 121 (1):36–42. doi: 10.1016/j.jbiosc.2015.05.012.
  • Weisberg, S. P., D. McCann, M. Desai, M. Rosenbaum, R. L. Leibel, and A. W. Ferrante. 2003. Obesity is associated with macrophage accumulation in adipose tissue. The Journal of Clinical Investigation 112 (12):1796–808.
  • Wijesekara, I., R. Pangestuti, and S. K. Kim. 2011. Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydrate Polymers 84 (1):14–21. doi: 10.1016/j.carbpol.2010.10.062.
  • Willson, T. M., J. E. Cobb, D. J. Cowan, R. W. Wiethe, I. D. Correa, S. R. Prakash, K. D. Beck, L. B. Moore, S. A. Kliewer, and J. M. Lehmann. 1996. The structure − activity relationship between peroxisome proliferator-activated receptor γ agonism and the antihyperglycemic activity of thiazolidinediones. Journal of Medicinal Chemistry 39 (3):665–8.
  • Woo, M. N., S. M. Jeon, H. J. Kim, M. K. Lee, S. K. Shin, Y. C. Shin, Y. B. Park, and M. S. Choi. 2010. Fucoxanthin supplementation improves plasma and hepatic lipid metabolism and blood glucose concentration in high-fat fed C57BL/6N mice. Chemico-Biological Interactions 186 (3):316–22.
  • World Health Organization. 2018. Noncommunicable diseases country profiles 2018.
  • Xu, H., G. T. Barnes, Q. Yang, G. Tan, D. Yang, C. J. Chou, J. Sole, A. Nichols, J. S. Ross, L. A. Tartaglia, et al. 2003. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. Journal of Clinical Investigation 112 (12):1821–30. doi: 10.1172/JCI200319451.
  • Yan, X., Y. Chuda, M. Suzuki, and T. Nagata. 1999. Fucoxanthin as the major antioxidant in Hijikia fusiformis, a common edible seaweed. Bioscience, Biotechnology, and Biochemistry 63 (3):605–7.
  • Yang, H. W., K. H. N. Fernando, J. Y. Oh, X. Li, Y. J. Jeon, and B. Ryu. 2019. Anti-obesity and anti-diabetic effects of Ishigeokamurae. Marine Drugs 17 (4):202. doi: 10.3390/md17040202.
  • Yang, C. F., S. S. Lai, Y. H. Chen, D. Liu, B. Liu, C. Ai, X. Z. Wan, L. Y. Gao, X. H. Chen, and C. Zhao. 2019. Anti-diabetic effect of oligosaccharides from seaweed Sargassum confusum via JNK-IRS1/PI3K signalling pathways and regulation of gut microbiota. Food and Chemical Toxicology 131:110562.
  • Yan, X., C. Yang, G. Lin, Y. Chen, S. Miao, B. Liu, and C. Zhao. 2019. Antidiabetic potential of green seaweed Enteromorpha prolifera flavonoids regulating insulin signaling pathway and gut microbiota in type 2 diabetic mice. Journal of Food Science 84 (1):165–73.
  • Ye, H., K. Wang, C. Zhou, J. Liu, and X. Zeng. 2008. Purification, antitumor and antioxidant activities in vitro of polysaccharides from the brown seaweed Sargassum pallidum. Food Chemistry 111 (2):428–32.
  • Yin, X. 2013. In vitro investigation of the inhibitory effect of fucoidan on ɑ-glucoisidase enzyme activity. PhD diss., University of Tasmania.
  • Yoshinaga, K., and R. Mitamura. 2019. Effects of Undaria pinnatifida (Wakame) on Postprandial Glycemia and Insulin Levels in Humans: A Randomized Crossover Trial. Plant Foods for Human Nutrition :1–7.
  • You, H. N., H. A. Lee, M. H. Park, J. H. Lee, and J. S. Han. 2015. Phlorofucofuroeckol A isolated from Ecklonia cava alleviates postprandial hyperglycemia in diabetic mice. European Journal of Pharmacology 752:92–6.
  • Yu, W. C., Y. L. Chen, P. A. Hwang, T. H. Chen, and T. C. Chou. 2017. Fucoidan ameliorates pancreatic β‐cell death and impaired insulin synthesis in streptozotocin‐treated β cells and mice via a Sirt‐1‐dependent manner. Molecular Nutrition & Food Research 61 (10):1700136–7. doi: 10.1002/mnfr.201700136.
  • Yuan, Y.,. J. Zhang, J. Fan, J. Clark, P. Shen, Y. Li, and C. Zhang. 2018. Microwave assisted extraction of phenolic compounds from four economic brown macroalgae species and evaluation of their antioxidant activities and inhibitory effects on α-amylase, α-glucosidase, pancreatic lipase and tyrosinase. Food Research International (Ottawa, Ont.) 113:288–97. doi: 10.1016/j.foodres.2018.07.021.
  • Zaharudin, N., A. A. Salmeán, and L. O. Dragsted. 2018. Inhibitory effects of edible seaweeds, polyphenolics and alginates on the activities of porcine pancreatic α-amylase. Food Chemistry 245:1196–203.
  • Zaharudin, N., D. Staerk, and L. O. Dragsted. 2019. Inhibition of α-glucosidase activity by selected edible seaweeds and fucoxanthin. Food Chemistry 270:481–6.
  • Zava, T. T., and D. T. Zava. 2011. Assessment of Japanese iodine intake based on seaweed consumption in Japan: A literature-based analysis. Thyroid Research 4 (1):14–7. doi: 10.1186/1756-6614-4-14.
  • Zeng, A., R. Yang, S. Yu, and W. Zhao. 2020. A novel hypoglycemic agent: Polysaccharides from laver (Porphyra spp.). Food & Function 11 (10):9048–56.
  • Zhang, Q., T. Liu, C. Y. Ng, and G. Li. 2014. Diabetes mellitus and atrial remodeling: Mechanisms and potential upstream therapies. Cardiovascular Therapeutics 32 (5):233–41.
  • Zhao, C., C. Yang, M. Chen, X. Lv, B. Liu, L. Yi, L. Cornara, M. C. Wei, Y. C. Yang, R. Tundis, et al. 2018. Regulatory efficacy of brown seaweed Lessonia nigrescens extract on the gene expression profile and intestinal microflora in type 2 diabetic mice. Molecular Nutrition & Food Research 62 (4):1700730. doi: 10.1002/mnfr.201700730.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.