2,855
Views
21
CrossRef citations to date
0
Altmetric
Review Articles

Current advances in the anti-inflammatory effects and mechanisms of natural polysaccharides

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon

References

  • Ananthakrishnan, A. N. 2015. Environmental risk factors for inflammatory bowel diseases: A review. Digestive Diseases and Sciences 60 (2):290–8. doi: 10.1007/s10620-014-3350-9.
  • Atreya, R., J. Mudter, S. Finotto, J. Müllberg, T. Jostock, S. Wirtz, M. Schütz, B. Bartsch, M. Holtmann, C. Becker, et al. 2000. Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: Evidence in Crohn disease and experimental colitis in vivo. Nature Medicine 6 (5):583–8. doi: 10.1038/nm1110-1341.
  • Bewtra, M., C. M. Brensinger, V. T. Tomov, T. B. Hoang, C. E. Sokach, C. A. Siegel, and J. D. Lewis. 2014. An optimized patient-reported ulcerative colitis disease activity measure derived from the Mayo score and the simple clinical colitis activity index. Inflammatory Bowel Diseases 21 (1):1070–8. doi: 10.1097/mib.0000000000000256.
  • Cai, Y., W. Liu, Y. Lin, S. Zhang, B. Zou, D. Xiao, L. Lin, Y. Zhong, H. Zheng, Q. Liao, et al. 2019. Compound polysaccharides ameliorate experimental colitis by modulating gut microbiota composition and function. Journal of Gastroenterology and Hepatology 34 (9):1554–62. doi: 10.1111/jgh.14583.
  • Camoglio, L., A. A. Te Velde, A. J. Tigges, P. K. Das, and S. J. Van Deventer. 1998. Altered expression of interferon-gamma and interleukin-4 in inflammatory bowel disease. Inflammatory Bowel Diseases 4 (4):285–90. doi: 10.1002/ibd.3780040406.
  • Cao, Y., J. Gao, L. Zhang, N. Qin, B. Zhu, and X. Xia. 2021. Jellyfish skin polysaccharides enhance intestinal barrier function and modulate the gut microbiota in mice with DSS-induced colitis. Food & Function 12 (20):10121–35. doi: 10.1039/D1FO02001C.
  • Cario, E., and D. K. Podolsky. 2006. Toll-like receptor signaling and its relevance to intestinal inflammation. Annals of the New York Academy of Sciences 1072 (1):332–8. doi: 10.1196/annals.1326.006.
  • Celestine, W., H. Philip, and F. Lynnette. 2016. Potential benefits of dietary fibre intervention in inflammatory bowel disease. International Journal of Molecular Sciences 17 (6):919–29. doi:10.3390/ijms17060919.
  • Chassaing, B., J. D. Aitken, M. Malleshappa, and M. Vijay-Kumar. 2014. Dextran sulfate sodium (DSS)-induced colitis in mice. Current Protocols in Immunology 104:15.25.1–4. doi: 10.1002/0471142735.im1525s104.
  • Chen, Q., O. Chen, I. M. Martins, H. Hou, X. Zhao, J. B. Blumberg, and B. Li. 2017. Collagen peptides ameliorate intestinal epithelial barrier dysfunction in immunostimulatory Caco-2 cell monolayers via enhancing tight junctions. Food & Function 8 (3):1144–51. doi: 10.1039/C6FO01347C.
  • Cheng, F., Y. Zhang, Q. Li, F. Zeng, and K. Wang. 2020. Inhibition of dextran sodium sulfate-induced experimental colitis in mice by Angelica sinensis polysaccharide. Journal of Medicinal Food 23 (6):584–92. doi: 10.1089/jmf.2019.4607.
  • Cho, C.-W., S. Ahn, T.-G. Lim, H.-D. Hong, Y. K. Rhee, D.-C. Yang, and M. Jang. 2017. Cynanchum wilfordii Polysaccharides Suppress Dextran Sulfate Sodium-Induced Acute Colitis in Mice and the Production of Inflammatory Mediators from Macrophages. Mediators of Inflammation 2017:1–14. doi: 10.1155/2017/3859856.
  • Chen, L. H., Z. B. Lin, and W. D. Li. 2011. Ganoderma lucidum polysaccharides reduce methotrexate-induced small intestinal damage in mice via induction of epithelial cell proliferation and migration. Acta Pharmacologica Sinica 32 (12):1505–12. doi: 10.1038/aps.2011.126.
  • Chen, L. A., M. S. Van, E. Albesiano, A. Goodwin, S. Wu, H. Yu, K. Carroll, and C. Sears. 2015. Fecal detection of enterotoxigenic Bacteroides fragilis. European Journal of Clinical Microbiology & Infectious Diseases : official Publication of the European Society of Clinical Microbiology 34 (9):1871–7. doi: 10.1007/s10096-015-2425-7.
  • Chen, Y.-F., J.-J. Zheng, C. Qu, Y. Xiao, F.-F. Li, Q.-X. Jin, H.-H. Li, F.-P. Meng, G.-H. Jin, and D. Jin. 2019. Inonotus obliquus polysaccharide ameliorates dextran sulphate sodium induced colitis involving modulation of Th1/Th2 and Th17/Treg balance. Artificial Cells, Nanomedicine, and Biotechnology 47 (1):757–66. doi: 10.1080/21691401.2019.1577877.
  • Cristina, L. C. M., M. I. Mateus, R. M. A. Elisa, M. J. M. Roberto, and M. J. Alves. 2020. Passion fruit (Passiflora edulis) leaf aqueous extract ameliorates intestinal epithelial barrier dysfunction and reverts inflammatory parameters in Caco-2 cells monolayer. Food Research International 133:109162. doi: 10.1016/j.foodres.2020.109162.
  • Cui, L., W. Wang, Y. Luo, Q. Ning, Z. Xia, J. Chen, L. Feng, H. Wang, J. Song, X. B. Tan, et al. 2019. Polysaccharide from Scutellaria baicalensis Georgi ameliorates colitis via suppressing NF-κB signaling and NLRP3 inflammasome activation. International Journal of Biological Macromolecules 132:393–405. doi: 10.1016/j.ijbiomac.2019.03.230.
  • Denis, M. C., Y. Desjardins, A. Furtos, V. Marcil, S. Dudonné, A. Montoudis, C. Garofalo, E. Delvin, A. Marette, and E. Levy. 2015. Prevention of oxidative stress, inflammation and mitochondrial dysfunction in the intestine by different cranberry phenolic fractions. Clinical Science (London, England: 1979) 128 (3):197–212. doi: 10.1042/CS20140210.
  • Derrien, M., C. Belzer, and W. M. de Vos. 2017. Akkermansia muciniphila and its role in regulating host functions. Microbial Pathogenesis 106:171–81. doi: 10.1016/j.micpath.2016.02.005.
  • Du, B., C. Lin, Z. Bian, and B. Xu. 2015. An insight into anti-inflammatory effects of fungal beta-glucans. Trends in Food Science & Technology 41 (1):49–59. doi: 10.1016/j.tifs.2014.09.002.
  • Eom, T., Y. S. Kim, C. H. Choi, M. J. Sadowsky, and T. Unno. 2018. Current understanding of microbiota- and dietary-therapies for treating inflammatory bowel disease. Journal of Microbiology (Seoul, Korea) 56 (3):189–98. doi: 10.1007/s12275-018-8049-8.
  • Fernández, J., S. Redondo-Blanco, I. Gutiérrez-del-Río, E. M. Miguélez, C. J. Villar, and F. Lombó. 2016. Colon microbiota fermentation of dietary prebiotics towards short-chain fatty acids and their roles as anti-inflammatory and antitumour agents: A review. Journal of Functional Foods 25:511–22. doi: 10.1016/j.jff.2016.06.032.
  • Filardy, A. A., J. He, J. Bennink, J. Yewdell, and B. L. Kelsall. 2016. Posttranscriptional control of NLRP3 inflammasome activation in colonic macrophages. Mucosal Immunology 9 (4):850–8. doi: 10.1038/mi.2015.109.
  • Furusawa, Y., Y. Obata, S. Fukuda, T. A. Endo, G. Nakato, D. Takahashi, Y. Nakanishi, C. Uetake, K. Kato, T. Kato, et al. 2013. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504 (7480):446–50. doi: 10.1038/nature12721.
  • Goldsmith, J. R., and R. B. Sartor. 2014. The role of diet on intestinal microbiota metabolism: Downstream impacts on host immune function and health, and therapeutic implications. Journal of Gastroenterology 49 (5):785–98. doi: 10.1007/s00535-014-0953-z.
  • Gong, J., M. Hu, Z. Huang, K. Fang, D. Wang, Q. Chen, J. Li, D. Yang, X. Zou, L. Xu, et al. 2017. Berberine attenuates intestinal mucosal barrier dysfunction in Type 2 diabetic rats. Frontiers in Pharmacology 8:42 doi: 10.3389/fphar.2017.00042.
  • Gudi, R., N. Perez, B. M. Johnson, M. Hanief-Sofi, R. Brown, S. Quan, S. Karumuthil-Melethil, and C. Vasu. 2019. Complex dietary polysaccharide modulates gut immune function and microbiota, and promotes protection from autoimmune diabetes . Immunology 157 (1):70–85. doi: 10.1111/imm.13048.
  • Gupta, S., and N. Abu-Ghannam. 2011. Bioactive potential and possible health effects of edible brown seaweeds. Trends in Food Science & Technology 22 (6):315–26. doi: 10.1016/j.tifs.2011.03.011.
  • Håkansson, Å., N. Tormo-Badia, A. Baridi, J. Xu, G. Molin, M. L. Hagslätt, C. Karlsson, B. Jeppsson, C. M. Cilio, and S. Ahrné. 2015. Immunological alteration and changes of gut microbiota after dextran sulfate sodium (DSS) administration in mice. Clinical and Experimental Medicine 15 (1):107–20. doi: 10.1007/s10238-013-0270-5.
  • Han, R., L. Wang, Z. Zhao, L. You, S. Pedisić, V. Kulikouskaya, and Z. Lin. 2020. Polysaccharide from Gracilaria lemaneiformis prevents colitis in Balb/c mice via enhancing intestinal barrier function and attenuating intestinal inflammation. Food Hydrocolloids. 109:106048. doi: 10.1016/j.foodhyd.2020.106048.
  • Hanaoka, R., Y. Ueno, S. Tanaka, K. Nagai, T. Onitake, K. Yoshioka, and K. Chayama. 2011. The Water-Soluble Extract from Cultured Medium of Ganoderma lucidum (Reishi) Mycelia (Designated as MAK) Ameliorates Murine Colitis Induced by Trinitrobenzene Sulphonic Acid. Scandinavian Journal of Immunology. 74 (5):454–62. doi: 10.1111/j.1365-3083.2011.02601.x.
  • Heim, K. E., A. R. Tagliaferro, and D. J. Bobilya. 2002. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. The Journal of Nutritional Biochemistry 13 (10):572–84. doi: 10.1016/S0955-2863(02)00208-5.
  • Hou, C., L. Chen, L. Yang, and X. Ji. 2020. An insight into anti-inflammatory effects of natural polysaccharides. International Journal of Biological Macromolecules 153:248–55. doi: 10.1016/j.ijbiomac.2020.02.315.
  • Huang, X., S. Nie, and M. Xie. 2017. Interaction between gut immunity and polysaccharides. Critical Reviews in Food Science and Nutrition 57 (14):2943–55. doi: 10.1080/10408398.2015.1079165.
  • Huang, F., R. Zhang, L. Dong, J. Guo, Y.-Y. Deng, Y. Yi, and M. Zhang. 2015. Antioxidant and antiproliferative activities of polysaccharide fractions from Litchi pulp. Food & Function 6 (8):2598–606. doi: 10.1039/C5FO00249D.
  • Hu, L., H. Li, W. Li, J. Chen, J. Yang, and J. Gu. 2017. The mechanism of alopolysaccharide protecting ulceralive colitis. Biomedicine & Pharmacotherapy 88 (4):145–50. doi: 10.1016/j.biopha.2016.11.138.
  • Hussain, T., B. Tan, Y. Yin, F. Blachier, M. C. B. Tossou, and N. Rahu. 2016. Oxidative stress and inflammation: What polyphenols can do for us? Oxidative Medicine and Cellular Longevity 2016:1–9. doi: 10.1155/2016/7432797.
  • Hu, Q., B. Yuan, X. Wu, H. Du, M. Gu, Y. Han, W. Yang, M. Song, and H. Xiao. 2019. Dietary intake of Pleurotus eryngii ameliorated dextran-sodium-sulfate-induced colitis in mice. Molecular Nutrition & Food Research 63 (17):1801265. doi: 10.1002/mnfr.201801265.
  • Jandhyala, S., R. Talukdar, C. Subramanyam, H. Vuyyuru, M. Sasikala, and N. Reddy. 2015. Role of the normal gut microbiota. World Journal of Gastroenterology 21 (29):8787–803. doi: 10.3748/wjg.v21.i29.8787.
  • Jang, J.-C., K. M. Lee, and S.-G. Ko. 2016. Angelica acutiloba Kitagawa Extract Attenuates DSSInduced Murine Colitis. Mediators of Inflammation 2016: 1–13. doi: 10.1155/2016/9275083.
  • Jia, Y. Q., Z. W. Yuan, X. S. Zhang, J. Q. Dong, X. N. Liu, X. T. Peng, W. L. Yao, P. Ji, Y. M. Wei, and Y. L. Hua. 2020. Total alkaloids of Sophora alopecuroides L. ameliorated murine colitis by regulating bile acid metabolism and gut microbiota. Journal of Ethnopharmacology 255:112775 doi: 10.1016/j.jep.2020.112775.
  • Jia, J., P. Zhang, C. Zhang, G. Jiang, W. Zheng, S. Song, and C. Ai. 2021. Sulfated polysaccharides from pacific abalone attenuated DSS-induced acute and chronic ulcerative colitis in mice via regulating intestinal micro-ecology and the NF-κB pathway. Food & Function 12 (22):11351–65. doi: 10.1039/D1FO02431K.
  • Ji, X., C. Hou, Y. Gao, Y. Xue, Y. Yan, and X. Guo. 2020. Metagenomic analysis of gut microbiota modulatory effects of jujube (Ziziphus jujuba Mill.) polysaccharides in a colorectal cancer mouse model. Food & Function 11 (1):163–73. doi: 10.1039/c9fo02171j.
  • Ji, X., C. Hou, X. Zhang, L. Han, S. Yin, Q. Peng, and M. Wang. 2019. Microbiome-metabolomic analysis of the impact of Zizyphus jujuba cv. Muzao polysaccharides consumption on colorectal cancer mice fecal microbiota and metabolites. International Journal of Biological Macromolecules 131:1067–76. doi: 10.1016/j.ijbiomac.2019.03.175.
  • Jin, M., Y. Wang, X. Yang, H. Yin, S. Nie, and X. Wu. 2019. Structure characterization of a polysaccharide extracted from noni (Morinda citrifolia L.) and its protective effect against DSS-induced bowel disease in mice. Food Hydrocolloids 90:189–97. doi: 10.1016/j.foodhyd.2018.11.049.
  • Jurjus, A. R., N. N. Khoury, and J. M. Reimund. 2004. Animal models of inflammatory bowel disease. Journal of Pharmacological and Toxicological Methods 50 (2):81–92. doi: 10.1016/j.vascn.2003.12.002.
  • Kang, Y., Y. Xue, M. Du, and M.-J. Zhu. 2017. Preventive effects of Goji berry on dextran-sulfatesodium-induced colitis in mice. The Journal of Nutritional Biochemistry 40: 70–6. doi: 10.1016/j.jnutbio.2016.10.009.
  • Kanwal, S., T. P. Joseph, S. Aliya, S. Song, M. Z. Saleem, M. A. Nisar, Y. Wang, A. Meyiah, Y. Ma, and Y. Xin. 2020. Attenuation of DSS induced colitis by Dictyophora indusiata polysaccharide (DIP) via modulation of gut microbiota and inflammatory related signaling pathways. Journal of Functional Foods 64:103641. doi: 10.1016/j.jff.2019.103641.
  • Kaoutari, A. E., F. Armougom, J. I. Gordon, D. Raoult, and B. Henrissat. 2013. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nature Reviews. Microbiology 11 (7):497–504. doi: 10.1038/nrmicro3050.
  • Katsanos, K. H., and K. A. Papadakis. 2017. Inflammatory bowel disease: Updates on molecular targets for biologics. Gut and Liver 11 (4):455–63. doi: 10.5009/gnl16308.
  • Kiesler, P., I. J. Fuss, and W. Strober. 2015. Experimental models of inflammatory bowel diseases. Cellular and Molecular Gastroenterology and Hepatology 1 (2):154–70. doi: 10.1016/j.jcmgh.2015.01.006.
  • Lange, K. W., J. Hauser, Y. Nakamura, and S. Kanaya. 2015. Dietary seaweeds and obesity. Food Science and Human Wellness 4 (3):87–96. doi: 10.1016/j.fshw.2015.08.001.
  • Levy-Ontman, O., M. Huleihel, R. Hamias, T. Wolak, and E. Paran. 2017. An anti-inflammatory effect of red microalga polysaccharides in coronary artery endothelial cells. Atherosclerosis 264:11–8. doi: 10.1016/j.atherosclerosis.2017.07.017.
  • Li, X. M. 2007. Protective effect of Lycium barbarum polysaccharides on streptozotocin-induced oxidative stress in rats. International Journal of Biological Macromolecules 40 (5):461–5. doi: 10.1016/j.ijbiomac.2006.11.002.
  • Liang, J., S. Chen, J. Chen, J. Lin, Q. Xiong, Y. Yang, J. Yuan, L. Zhou, L. He, S. Hou, et al. 2018. Therapeutic roles of polysaccharides from Dendrobium officinaleon colitis and its underlying mechanisms. Carbohydrate Polymers 185:159–68. doi: 10.1016/j.carbpol.2018.01.013.
  • Liang, J., J. Liang, H. Hao, H. Lin, P. Wang, Y. Wu, X. Jiang, C. Fu, Q. Li, P. Ding, et al. 2017. The extracts of Morinda officinalis and its hairy roots attenuate dextran sodium sulfate-induced chronic ulcerative colitis in mice by regulating inflammation and lymphocyte apoptosis. Frontiers in Immunology 8:905. doi: 10.3389/fimmu.2017.00905.
  • Li, R., Y. Chen, M. Shi, X. Xu, Y. Zhao, X. Wu, and Y. Zhang. 2016. Gegen Qinlian decoction alleviates experimental colitis via ­suppressing TLR4/NF-κB signaling and enhancing antioxidant effect. Phytomedicine : international Journal of Phytotherapy and Phytopharmacology 23 (10):1012–20. doi: 10.1016/j.phymed.2016.06.010.
  • Liu, X., X. Yu, X. Xu, X. Zhang, and X. Zhang. 2018. The protective effects of Poria cocos-derived polysaccharide CMP33 against IBD in mice and its molecular mechanism. Food & Function 9 (11):5936–49. doi: 10.1039/c8fo01604f.
  • Li, Y., W. Xu, Y. Sun, Y. Wang, Y. Tang, Y. Li, X. Gao, C. Song, L. Liu, and Q. Mei. 2020. Modified apple polysaccharide regulates microbial dysbiosis to suppress high-fat diet-induced obesity in C57BL/6J mice. European Journal of Nutrition 59 (5):2025–37. doi: 10.1007/s00394-019-02051-z.
  • Lv, J., Y. Zhang, Z. Tian, F. Liu, Y. Shi, Y. Liu, and P. Xia. 2017. Astragalus polysaccharides protect against dextran sulfate sodium-induced colitis by inhibiting NF-κВ activation. International Journal of Biological Macromolecules 98:723–9. doi: 10.1016/j.ijbiomac.2017.02.024.
  • Mackie, A., B. Bajka, and N. Rigby. 2016. Roles for dietary fibre in the upper GI tract: The importance of viscosity. Food Research International 88:234–8. 11.011. doi: 10.1016/j.foodres.2015.
  • Manichanh, C., N. Borruel, F. Casellas, and F. Guarner. 2012. The gut microbiota in IBD. Nature Reviews. Gastroenterology & Hepatology 9 (10):599–608. doi: 10.1038/nrgastro.2012.152.
  • Matricon, J., N. Barnich, and D. Ardid. 2010. Immunopathogenesis of inflammatory bowel disease. Self/nonself 1 (4):299–309. doi: 10.3748/wjg.14.390.
  • McGuckin, M. A., R. Eri, L. A. Simms, T. H. J. Florin, and G. Radford-Smith. 2009. Intestinal barrier dysfunction in inflammatory bowel diseases. Inflammatory Bowel Diseases 15 (1):100–13. doi: 10.1002/ibd.20539.
  • Miao, X. P., X. N. Sun, L. J. Cui, Q. F. Cao, G. F. Zhuang, T. Z. Deng, and D. Y. Zhang. 2015. Suppressive effect of pectic polysaccharides extracted from Rauwolfia verticillata (Lour.) Baill.var.hainanensis Tsiang on inflammation by regulation of NF-κB pathway and interleukin-17 in mice with dextran sulphatesodium-induced ulcerative coliti. Asian Pacific Journal of Tropical Medicine 8 (2):147–52. doi: 10.1016/S1995-7645(14)60306-0.
  • Morgan, X. C., T. L. Tickle, H. Sokol, D. Gevers, K. L. Devaney, D. V. Ward, J. A. Reyes, S. A. Shah, N. LeLeiko, S. B. Snapper, et al. 2012. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biology 13 (9):R79 doi: 10.1186/gb-2012-13-9-r79.
  • Mudter, J., and M. F. Neurath. 2006. The role of signal transducers and activators of transcription in T inflammatory bowel diseases. Inflammatory Bowel Diseases 9 (5):332–7. doi:10.1097/0005472509000-00008.
  • Mueller, M., S. Hobiger, and A. Jungbauer. 2010. Anti-inflammatory activity of extracts from fruits, herbs and spices. Food Chemistry 122 (4):987–96. doi: 10.1016/j.foodchem.2010.03.041.
  • Nanau, R. M., and M. G. Neuman. 2012. Metabolome and inflammasome in inflammatory bowel disease. Translational Research 160 (1):1–28. doi: 10.1016/j.trsl.2011.08.006.
  • Neurath, M., I. Fuss, and W. Strober. 2000. TNBS-Colitis. International Reviews of Immunology 19 (1):51–62. doi: 10.3109/08830180009048389.
  • Paunovic, V., and M. M. Harnett. 2013. Mitogen-activated protein kinases as therapeutic targets for rheumatoid arthritis. Drugs 73 (2):101–15. doi: 10.1007/s40265-013-0014-6.
  • Piechota-Polanczyk, A., and J. Fichna. 2014. Review article: The role of oxidative stress in pathogenesis and treatment of inflammatory bowel diseases. Naunyn-Schmiedeberg’s Archives of Pharmacology 387 (7):605–20. doi: 10.1007/s00210-014-0985-1.
  • Pigneur, B., and H. Sokol. 2016. Fecal microbiota transplantation in inflammatory bowel disease: The quest for the holy grail. Mucosal Immunology 9 (6):1360–5. doi: 10.1038/mi.2016.67.
  • Radhika, G., S. Jada, B. Robert, M. J. Benjamin, and V. Chenthamarakshan. 2019. Pretreatment with yeast-derived complex dietary polysaccharides suppresses gut inflammation, alters the microbiota composition, and increases immune regulatory short-chain fatty acid production in C57BL/6 mice. The Journal of Nutrition 150:1291–302. doi: 10.1093/jn/nxz328.
  • Ramos, G. P., and K. A. Papadakis. 2019. Mechanisms of disease: Inflammatory bowel diseases. Mayo Clinic Proceedings 94 (1):155–65. doi: 10.1016/j.mayocp.2018.09.013.
  • Ren, Y., Y. Geng, Y. Du, W. Li, Z.-M. Lu, H.-Y. Xu, G.-H. Xu, J.-S. Shi, and Z.-H. Xu. 2018. Polysaccharide of Hericium erinaceus attenuates colitis in C57BL/6 mice via regulation of oxidative stress, inflammation-related signaling pathways and modulating the composition of the gut microbiota. The Journal of Nutritional Biochemistry 57:67–76. doi: 10.1016/j.jnutbio.2018.03.005.
  • Requena, T., M. C. Martínez-Cuesta, and C. Peláez. 2018. Diet and microbiota linked in health and disease. Food & Function 9 (2):688–704. doi: 10.1039/c7fo01820g.
  • Rodríguez-Nogales, A., F. Algieri, J. Garrido-Mesa, T. Vezza, M. P. Utrilla, N. Chueca, F. García, M. E. Rodríguez-Cabezas, and J. Gálvez. 2018. Intestinal anti-inflammatory effect of the probiotic Saccharomyces boulardii in DSS-induced colitis in mice: Impact on microRNAs expression and gut microbiota composition. The Journal of Nutritional Biochemistry 61:129–39. doi: 10.1016/j.jnutbio.2018.08.005.
  • Rogler, G. 2010. Gastrointestinal and liver adverse effects of drugs used for treating IBD. Best Practice & Research. Clinical Gastroenterology 24 (2):157–65. doi: 10.1016/j.bpg.2009.10.011.
  • Rogler, G. 2014. Chronic ulcerative colitis and colorectal cancer. Cancer Letters 345 (2):235–41. doi: 10.1016/j.canlet.2013.07.032.
  • Sabater, C., J. A. Molina-Tijeras, T. Vezza, N. Corzo, A. Montilla, and P. Utrilla. 2019. Intestinal anti-inflammatory effects of artichoke pectin and modified pectin fractions in the dextran sulfate sodium model of mice colitis. Artificial neural network modelling of inflammatory markers. Food & Function 10 (12):7793–805. doi: 10.1039/c9fo02221j.
  • Schmitz, H., C. Barmeyer, M. Fromm, N. Runkel, H. D. Foss, C. J. Bentzel, E. O. Riecken, and J. D. Schulzke. 1999. Altered tight junction structure contributes to the impaired epithelial barrier function in ulcerative colitis. Gastroenterology 116 (2):301–9. doi: 10.1016/S0016-5085(99)70126-5.
  • Seo, S.-U., N. Kamada, R. Muñoz-Planillo, Y.-G. Kim, D. Kim, Y. Koizumi, M. Hasegawa, S. D. Himpsl, H. P. Browne, T. D. Lawley, et al. 2015. Distinct commensals induce interleukin-1β via NLRP3 inflammasome in inflammatory monocytes to promote intestinal inflammation in response to injury. Immunity 42 (4):744–55. doi: 10.1016/j.immuni.2015.03.004.
  • Shao, X., C. Sun, X. Tang, X. Zhang, D. Han, S. Liang, R. Qu, X. Hui, Y. Shan, L. Hu, et al. 2020. Anti-inflammatory and intestinal microbiota modulation properties of jinxiang garlic (Allium sativum L.) polysaccharides toward dextran sodium sulfate-induced colitis. Journal of Agricultural and Food Chemistry 68 (44):12295–309. doi: 10.1021/acs.jafc.0c04773.
  • Sokol, H., B. Pigneur, L. Watterlot, O. Lakhdari, L. G. Bermúdez-Humarán, J.-J. Gratadoux, S. Blugeon, C. Bridonneau, J.-P. Furet, G. Corthier, et al. 2008. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proceedings of the National Academy of Sciences of the United States of America 105 (43):16731–6. doi: 10.1073/pnas.0804812105.
  • Solà, R., E. Bruckert, R.-M. Valls, S. Narejos, X. Luque, M. Castro-Cabezas, G. Doménech, F. Torres, M. Heras, X. Farrés, et al. 2010. Soluble fibre (Plantago ovata husk) reduces plasma low-density lipoprotein (LDL) cholesterol, triglycerides, insulin, oxidised LDL and systolic blood pressure in hypercholesterolaemic patients: A randomised trial. Atherosclerosis 211 (2):630–7. doi: 10.1016/j.atherosclerosis.2010.03.010.
  • Song, W., Y. Li, X. Zhang, and Z. Wang. 2019. Potent anti-inflammatory activity of polysaccharides extracted from Blidingia minima and their effect in a mouse model of inflammatory bowel disease. Journal of Functional Foods 61:103494. doi: 10.1016/j.jff.2019.103494.
  • Sun, J., H. Chen, J. Kan, Y. Gou, J. Liu, X. Zhang, X. Wu, S. Tang, R. Sun, C. Qian, et al. 2020. Anti-inflammatory properties and gut microbiota modulation of an alkali-soluble polysaccharide from purple sweet potato in DSS-induced colitis mice. International Journal of Biological Macromolecules 153:708–22. doi: 10.1016/j.ijbiomac.2020.03.053.
  • Sun, X., M. Duan, Y. Liu, T. Luo, N. Ma, S. Song, and C. Ai. 2018. The beneficial effects of Gracilaria lemaneiformis polysaccharides on obesity and the gut microbiota in high fat diet-fed mice. Journal of Functional Foods 46:48–56. doi: 10.1016/j.jff.2018.04.041.
  • Sun, Y., L. Fan, W. Mian, F. Zhang, X. Liu, Y. Tang, X. Zeng, Q. Mei, and Y. Li. 2018. Modified apple polysaccharide influences MUC-1 expression to prevent ICR mice from colitis-associated carcinogenesis. International Journal of Biological Macromolecules 120:1387–95. doi: 10.1016/j.ijbiomac.2018.09.142.
  • Sun, Y., X. Shi, X. Zheng, S. Nie, and X. Xu. 2019. Inhibition of dextran sodium sulfate-induced colitis in mice by Baker’s yeast polysaccharides. Carbohydrate Polymers 207 (3):371–81. doi: 10.1016/j.carbpol.2018.11.087.
  • Tao, J. H., J. A. Duan, Z. Wei, J. Shu, J. M. Guo, and D. D. Wei. 2018. Polysaccharides from Chrysanthemum morifolium Ramat ameliorate colitis rats via regulation of the metabolic profiling and NF-κ B/TLR4 and IL-6/JAK2/STAT3 signaling pathways. Frontiers in Pharmacology 9:746–56. doi: 10.3389/fphar.2016.00253.
  • Tong, L.-C., Y. Wang, Z.-B. Wang, W.-Y. Liu, S. Sun, L. Li, D.-F. Su, and L.-C. Zhang. 2016. Propionate ameliorates dextran sodium sulfate-induced colitis by improving intestinal barrier function and reducing inflammation and oxidative stress. Frontiers in Pharmacology 7:253 doi: 10.3389/fphar.2016.00253.
  • Uwe, S. 2008. Anti-inflammatory interventions of NF-kappaB signaling: potential applications and risks. Biochemical Pharmacology 75 (8):1567–79. doi: 10.1016/j.bcp.2007.10.027.
  • Van der Sluis, M., B. A. E. De Koning, A. C. J. M. De Bruijn, A. Velcich, J. P. P. Meijerink, J. B. Van Goudoever, H. A. Büller, J. Dekker, I. Van Seuningen, and I. B. Renes, et al. 2006. Muc2-deficient mice spontaneously develop colitis, indicating that muc2 is critical for colonic protection. Gastroenterology 131 (1):117–29. doi: 10.1053/j.gastro.2006.04.020.
  • Villanueva-Millán, M. J., P. Pérez-Matute, and J. A. Oteo. 2015. Gut microbiota: A key player in health and disease. A review focused on obesity. Journal of Physiology and Biochemistry 71 (3):509–25. doi: 10.1007/s13105-015-0390-3.
  • Wang, L., C. Li, Q. Huang, X. Fu, and R. H. Liu. 2019. In vitro digestibility and prebiotic potential of a novel polysaccharide from Rosa roxburghii Tratt fruit. Journal of Functional Foods 52:408–17. doi: 10.1016/j.jff.2018.11.021.
  • Wang, H., Y. Wang, J. Zhao, J. Jiang, Y. Zhou, P. Shi, Q. Liu, and Y. Sun. 2019. Dietary nondigestible polysaccharides ameliorate colitis by improving gut microbiota and CD4+ differentiation, as well as facilitating M2 macrophage polarization. JPEN. Journal of Parenteral and Enteral Nutrition 43 (3):401–11. doi: 10.1002/jpen.1427.
  • Wang, Y., N. Zhang, J. Kan, X. Zhang, X. Wu, R. Sun, S. Tang, J. Liu, C. Qian, and C. Jin. 2019. Structural characterization of water-soluble polysaccharide from Arctium lappa and its effects on colitis mice. Carbohydrate Polymers 213:89–99. doi: 10.1016/j.carbpol.2019.02.090.
  • Wang, D., Y. Zhang, S. Yang, D. Zhao, and M. Wang. 2019. A polysaccharide from cultured mycelium of Hericium erinaceus relieves ulcerative colitis by counteracting oxidative stress and improving mitochondrial function. International Journal of Biological Macromolecules 125:572–9. doi: 10.1016/j.ijbiomac.2018.12.092.
  • Wilczak, J., K. Błaszczyk, D. Kamola, M. Gajewska, J. P. Harasym, M. Jałosińska, S. Gudej, D. Suchecka, M. Oczkowski, and J. Gromadzka-Ostrowska. 2015. The effect of low or high molecular weight oat beta-glucans on the inflammatory and oxidative stress status in the colon of rats with LPS-induced enteritis. Food & Function 6 (2):590–603. doi: 10.1039/C4FO00638K.
  • Wu, G. D., J. Chen, C. Hoffmann, K. Bittinger, Y. Y. Chen, S. A. Keilbaugh, M. Bewtra, D. Knights, W. A. Walters, R. Knight, et al. 2011. Linking long-term dietary patterns with gut microbial enterotypes. Science (New York, N.Y.) 334 (6052):105–8. doi: 10.1126/science.1208344.
  • Yamamoto, S., and X. Ma. 2009. Role of Nod2 in the development of Crohn’s disease. Microbes and Infection 11 (12):912–8. doi: 10.1016/j.micinf.2009.06.005.
  • Yang, W., D. Ren, Y. Zhao, L. Liu, and X. Yang. 2021. Fuzhuan brick tea polysaccharide improved ulcerative colitis in association with gut microbiota-derived tryptophan metabolism. Journal of Agricultural and Food Chemistry 69 (30):8448–59. doi: 10.1021/acs.jafc.1c02774.
  • Ye, Y., M. Koo, Y. Li, H. Matsui, and C. Cho. 2001. Angelica sinensis modulates migration and proliferation of gastric epithelial cells. Life Sciences 68 (8):961–8. doi: 10.1016/S0024-3205(00)00994-2.
  • Ying, N., Q. Lin, and F. Luo. 2017. Effects of non-starch polysaccharides on inflammatory bowel disease. International Journal of Molecular Sciences 18 (7):1372–96. 18071372. doi: 10.3390/ijms.
  • Yue, Y., S. C. Wu, Z. Li, J. Li, X. F. Li, J. Xiang, and H. Ding. 2015. Wild jujube polysaccharides protect against experimental inflammatory bowel disease by enabling enhanced intestinal barrier function. Food & Function 6 (8):2568–77. doi: 10.1039/C5FO00378D.
  • Zha, Z., Y. Lv, H. Tang, T. Li, Y. Miao, J. Cheng, G. Wang, Y. Tan, Y. Zhu, X. Xing, et al. 2020. An orally administered butyrate-releasing xylan derivative reduces inflammation in dextran sulphate sodium-induced murine colitis. International Journal of Biological Macromolecules 156:1217–33. doi: 10.1016/j.ijbiomac.2019.11.159.
  • Zhang, P. P., Z. T. Meng, L. C. Wang, L. M. Guo, and K. Li. 2015. Astragalus polysaccharide promotes the release of mature granulocytes through the L-selectin signaling pathway. Chinese Medicine 10 (1):17–29. doi: 10.1186/s13020-015-0043-z.
  • Zhang, Z., J. Liu, P. Shen, Y. Cao, X. Lu, X. Gao, Y. Fu, B. Liu, and N. Zhang. 2016. Zanthoxylum bungeanum pericarp extract prevents dextran sulfate sodium-induced experimental colitis in mice via the regulation of T LR4 and T LR4-related signaling pathways. International Immunopharmacology 41:127–35. doi: 10.1016/j.intimp.2016.10.021.
  • Zhao, H., Y. Luo, C. Lu, N. Lin, C. Xiao, S. Guan, D-a Guo, Z. Liu, D. Ju, X. He, et al. 2010. Enteric mucosal immune response might trigger the immunomodulation activity of Ganoderma lucidum polysaccharide in mice. Planta Medica 76 (3):223–7. doi: 10.1055/s-0029-1186055.
  • Zhou, W., Y. Yan, J. Mi, H. Zhang, L. Lu, Q. Luo, X. Li, X. Zeng, and Y. Cao. 2018. Simulated digestion and fermentation in vitro by human gut microbiota of polysaccharides from bee collected pollen of chinese wolfberry. Journal of Agricultural and Food Chemistry 66 (4):898–907. doi: 10.1021/acs.jafc.7b05546.
  • Zhu, H., and Y. R. Li. 2012. Oxidative stress and redox signaling mechanisms of inflammatory bowel disease: Updated experimental and clinical evidence. Experimental Biology and Medicine (Maywood, N.J.) 237 (5):474–80. doi: 10.1258/ebm.2011.011358.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.