2,077
Views
9
CrossRef citations to date
0
Altmetric
Review Articles

Oleogels prepared with low molecular weight gelators: Texture, rheology and sensory properties, a review

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Aliasl Khiabani, A., M. Tabibiazar, L. Roufegarinejad, H. Hamishehkar, and A. Alizadeh. 2020. Preparation and characterization of carnauba wax/adipic acid oleogel: A new reinforced oleogel for application in cake and beef burger. Food Chemistry 333:127446. doi: 10.1016/j.foodchem.2020.127446. [pubmedMismatch]
  • Australian Dietary Guidelines. 2013. Eat for health, Australian Dietary Guidelines, providing the scientific evidence for healthier Australian diets. edited by Department of Health and Ageing: Australian Government
  • Barroso, N. G., P. K. Okuro, A. P. B. Ribeiro, and R. L. Cunha. 2020. Tailoring properties of mixed-component oleogels: Wax and monoglyceride interactions towards flaxseed oil structuring. Gels 6 (1):5. doi: 10.3390/gels6010005.
  • Beckett, S. T. 2009. Industrial chocolate manufacture and use. 4th ed. UK: Wiley-Blackwell.
  • Bemer, H. L., M. Limbaugh, E. D. Cramer, W. J. Harper, and F. Maleky. 2016. Vegetable organogels incorporation in cream cheese products. Food Research International (Ottawa, Ont.) 85:67–75. doi: 10.1016/j.foodres.2016.04.016.
  • Bin Sintang, M. D., S. Danthine, A. Brown, D. Van de Walle, A. R. Patel, I. Tavernier, T. Rimaux, and K. Dewettinck. 2017. Phytosterols-induced viscoelasticity of oleogels prepared by using monoglycerides. Food Research International (Ottawa, Ont.) 100 (Pt 1):832–40. doi: 10.1016/j.foodres.2017.07.079.
  • Blach, C., A. J. Gravelle, F. Peyronel, J. Weiss, S. Barbut, and A. G. Marangoni. 2016. Revisiting the crystallization behavior of stearyl alcohol : stearic acid (SO : SA) mixtures in edible oil. RSC Advances 6 (84):81151–63. doi: 10.1039/C6RA15142F.
  • Blake, A. I., E. D. Co, and A. G. Marangoni. 2014. Structure and physical properties of plant wax crystal networks and their relationship to oil binding capacity. Journal of the American Oil Chemists’ Society 91 (6):885–903. doi: 10.1007/s11746-014-2435-0.
  • Blake, A. I., J. F. Toro-Vazquez, and H. S. Hwang. 2018. Wax oleogels (eds. Nissim Garti and G. Marangoni Alejandro). San Diego, CA: AOCS Press.
  • Cabrera, S., J. Rojas, and A. Moreno. 2020. Oleogels and their contribution in the production of healthier food products: The fats of the future. Journal of Food and Nutrition Research 8 (4):10. doi: 10.12691/jfnr-8-4-3.
  • Callau, M., K. Sow-Kebe, N. Jenkins, and A. L. Fameau. 2020. Effect of the ratio between fatty alcohol and fatty acid on foaming properties of whipped oleogels. Food Chemistry 333:127403 doi: 10.1016/j.foodchem.2020.127403.
  • Calligaris, S., M. Alongi, P. Lucci, and M. Anese. 2020. Effect of different oleogelators on lipolysis and curcuminoid bioaccessibility upon in vitro digestion of sunflower oil oleogels. Food Chemistry 314:126146. doi: 10.1016/j.foodchem.2019.126146.
  • ChemSrc. 2018. Candelilla wax. Last Modified January 27, 2021. Accessed August 17, 2021. https://www.chemsrc.com/en/cas/8006-44-8_1465811.html.
  • Chen, C.-H., and E. M. Terentjev. 2018. Monoglycerides in oils (eds. Nissim Garti and G. Marangoni Alejandro). AOCS Press.
  • Choi, K. O., H. S. Hwang, S. Jeong, S. Kim, and S. Lee. 2020. The thermal, rheological, and structural characterization of grapeseed oil oleogels structured with binary blends of oleogelator. Journal of Food Science 85 (10):3432–41. doi: 10.1111/1750-3841.15442.
  • Co, E. D., and A. G. Marangoni. 2018. Oleogels: An Introduction. In, ed Nissim Garti and G. Marangoni Alejandro. San Diego, CA: AOCS Press.
  • da Silva, T. L. T., D. B. Arellano, and S. Martini. 2018. Physical properties of candelilla wax, monoacylglycerols, and fully hydrogenated oil oleogels. Journal of the American Oil Chemists’ Society 95 (7):797–811. doi: 10.1002/aocs.12096.
  • da Silva, T. L. T., D. B. Arellano, and S. Martini. 2019. Use of high‐intensity ultrasound to change the physical properties of oleogels and emulsion gels. Journal of the American Oil Chemists’ Society 96 (6):681–91. doi: 10.1002/aocs.12215.
  • da Silva, T. L. T., K. F. Chaves, G. D. Fernandes, J. B. Rodrigues, H. M. A. Bolini, and D. B. Arellano. 2018b. Sensory and technological evaluation of margarines with reduced saturated fatty acid contents using oleogel technology. Journal of the American Oil Chemists’ Society 95 (6):673–85. doi: 10.1002/aocs.12074.
  • Dassanayake, L. S. K., D. R. Kodali, and S. Ueno. 2011. Formation of oleogels based on edible lipid materials. Current Opinion in Colloid & Interface Science 16 (5):432–9. doi: 10.1016/j.cocis.2011.05.005.
  • Davidovich-Pinhas, M., S. Barbut, and A. G. Marangoni. 2016. Development, characterization, and utilization of food-grade polymer oleogels. Annual Review of Food Science and Technology 7:65–91. doi: 10.1146/annurev-food-041715-033225.
  • Demirkesen, I., and B. Mert. 2019. Utilization of beeswax oleogel‐shortening mixtures in gluten‐free bakery products. Journal of the American Oil Chemists’ Society 96 (5):545–54. doi: 10.1002/aocs.12195.
  • Doan, C. D., A. R. Patel, I. Tavernier, N. De Clercq, K. Van Raemdonck, D. Van de Walle, C. Delbaere, and K. Dewettinck. 2016. The feasibility of wax-based oleogel as a potential co-structurant with palm oil in low-saturated fat confectionery fillings. European Journal of Lipid Science and Technology 118 (12):1903–14. doi: 10.1002/ejlt.201500172.
  • Doan, C. D., C. M. To, M. De Vrieze, F. Lynen, S. Danthine, A. Brown, K. Dewettinck, and A. R. Patel. 2017b. Chemical profiling of the major components in natural waxes to elucidate their role in liquid oil structuring. Food Chemistry 214:717–25. doi: 10.1016/j.foodchem.2016.07.123.
  • Doan, C. D., D. Van de Walle, K. Dewettinck, and A. R. Patel. 2015. Evaluating the oil-gelling properties of natural waxes in rice bran oil: Rheological, thermal, and microstructural study. Journal of the American Oil Chemists’ Society 92 (6):801–11. doi: 10.1007/s11746-015-2645-0.
  • Doan, C. D., I. Tavernier, M. D. B. Sintang, S. Danthine, D. Van de Walle, T. Rimaux, and K. Dewettinck. 2017a. Crystallization and gelation behavior of low- and high melting waxes in rice bran oil: A case-study on berry wax and sunflower Wax. Food Biophysics 12 (1):97–108. doi: 10.1007/s11483-016-9467-y.
  • Fayaz, G., S. A. H. Goli, and M. Kadivar. 2017. A novel propolis wax-based organogel: Effect of oil type on its formation, crystal structure and thermal properties. Journal of the American Oil Chemists’ Society 94 (1):47–55. doi: 10.1007/s11746-016-2915-5.
  • Feichtinger, A., and E. Scholten. 2020. Preparation of protein oleogels: Effect on structure and functionality. Foods 9 (12):1745.1745. doi: 10.3390/foods912:.
  • Floter, E., T. Wettlaufer, V. Conty, and M. Scharfe. 2021. Oleogels-their applicability and methods of characterization. Molecules 26 (6):1673. doi: 10.3390/molecules2606:1673.
  • Franco, D., A. J. Martins, M. Lopez-Pedrouso, L. Purrinos, M. A. Cerqueira, A. A. Vicente, L. M. Pastrana, C. Zapata, and J. M. Lorenzo. 2019. Strategy towards replacing pork backfat with a linseed oleogel in frankfurter sausages and its evaluation on physicochemical, nutritional, and sensory characteristics. Foods 8 (9):366. doi: 10.3390/foods8090:366.
  • Franco, D., A. J. Martins, M. Lopez-Pedrouso, M. A. Cerqueira, L. Purrinos, L. M. Pastrana, A. A. Vicente, C. Zapata, and J. M. Lorenzo. 2020. Evaluation of linseed oil oleogels to partially replace pork backfat in fermented sausages. Journal of the Science of Food and Agriculture 100 (1):218–24. doi: 10.1002/jsfa.10025.
  • Fratini, F., G. Cilia, B. Turchi, and A. Felicioli. 2016. Beeswax: A minireview of its antimicrobial activity and its application in medicine. Asian Pacific Journal of Tropical Medicine 9 (9):839–21. doi: 10.1016/j.apjtm.2016.07.003.
  • Gandolfo, F. G., A. Bot, and E. Flöter. 2004. Structuring of edible oils by long-chain FA, fatty alcohols, and their mixtures. Journal of the American Oil Chemists’ Society 81 (1):1–6. doi: 10.1007/s11746-004-0851-5.
  • Gaudino, N., S. M. Ghazani, S. Clark, A. G. Marangoni, and N. C. Acevedo. 2019. Development of lecithin and stearic acid based oleogels and oleogel emulsions for edible semisolid applications. Food Research International (Ottawa, Ont.) 116:79–89. doi: 10.1016/j.foodres.2018.12.021.
  • Ghan, S. Y., L. F. Siow, C. P. Tan, K. W. Cheong, and Y. Y. Thoo. 2020. Influence of soya lecithin, sorbitan and glyceryl monostearate on physicochemical properties of organogels. Food Biophysics 15 (3):386–95. doi: 10.1007/s11483-020-09633-z.
  • Giacomozzi, A. S., C. A. Palla, M. E. Carrin, and S. Martini. 2019. Physical properties of monoglycerides oleogels modified by concentration, cooling rate, and high-intensity ultrasound. Journal of Food Science 84 (9):2549–61. doi: 10.1111/1750-3841.14762.
  • Giacomozzi, A. S., M. E. Carrin, and C. A. Palla. 2018. Muffins elaborated with optimized monoglycerides oleogels: From solid fat replacer obtention to product quality evaluation. Journal of Food Science 83 (6):1505–15. doi: 10.1111/1750-3841.14174.
  • Giacomozzi, A., C. Palla, M. E. Carrin, and S. Martini. 2020. Tailoring physical properties of monoglycerides oleogels using high-intensity ultrasound. Food Research International (Ottawa, Ont.) 134:109231 doi: 10.1016/j.foodres.2020.109231.
  • Gómez-Estaca, J., A. M. Herrero, B. Herranz, M. D. Álvarez, F. Jiménez-Colmenero, and S. Cofrades. 2019b. Characterization of ethyl cellulose and beeswax oleogels and their suitability as fat replacers in healthier lipid pâtés development. Food Hydrocolloids. 87:960–9. doi: 10.1016/j.foodhyd.2018.09.029.
  • Gómez-Estaca, J., T. Pintado, F. Jiménez-Colmenero, and S. Cofrades. 2019a. Assessment of a healthy oil combination structured in ethyl cellulose and beeswax oleogels as animal fat replacers in low-fat, PUFA-enriched pork burgers. Food and Bioprocess Technology 12 (6):1068–81. doi: 10.1007/s11947-019-02281-3.
  • Gómez-Estaca, J., T. Pintado, F. Jiménez-Colmenero, and S. Cofrades. 2020. The effect of household storage and cooking practices on quality attributes of pork burgers formulated with PUFA- and curcumin-loaded oleogels as healthy fat substitutes. LWT – Food Science and Technology 119:108909. doi: 10.1016/j.lwt.2019.108909.
  • Guo, S., M. Song, X. Gao, L. Dong, T. Hou, X. Lin, W. Tan, Y. Cao, M. Rogers, and Y. Lan. 2020. Assembly pattern of multicomponent supramolecular oleogel composed of ceramide and lecithin in sunflower oil: Self-assembly or self-sorting? Food & Function 11 (9):7651–60. doi: 10.1039/d0fo00635a.
  • Hendy, R. J., K. R. Butterworth, I. F. Gaunt, I. S. Kiss, and P. Grasso. 1978. Long-term toxicity study of sorbitan monostearate (Span 60) in mice. Food and Cosmetics Toxicology 16 (6):527–34. doi: 10.1016/S0015-6264(78)80219-3.
  • Huang, H., R. Hallinan, and F. Maleky. 2018. Comparison of different oleogels in processed cheese products formulation. International Journal of Food Science & Technology 53 (11):2525–34. doi: 10.1111/ijfs.13846.
  • Hwang, H.-S., J. D. Gillman, J. K. Winkler-Moser, S. Kim, M. Singh, J. A. Byars, and R. L. Evangelista. 2018. Properties of Oleogels Formed With High-Stearic Soybean Oils and Sunflower Wax. Journal of the American Oil Chemists’ Society 95 (5):557–69. doi: 10.1002/aocs.12060.
  • Hwang, H.-S. 2020. A critical review on structures, health effects, oxidative stability, and sensory properties of oleogels. Biocatalysis and Agricultural Biotechnology 26:101657. doi: 10.1016/j.bcab.2020.:101657.
  • Jana, S., and S. Martini. 2016. Physical characterization of crystalline networks formed by binary blends of waxes in soybean oil. Food Research International (Ottawa, Ont.) 89 (Pt 1):245–53. doi: 10.1016/j.foodres.2016.08.003.
  • Jang, A., W. Bae, H. S. Hwang, H. G. Lee, and S. Lee. 2015. Evaluation of canola oil oleogels with candelilla wax as an alternative to shortening in baked goods. Food Chemistry 187:525–9. doi: 10.1016/j.foodchem.2015.04.110.
  • Jiang, Z., S. Geng, C. Liu, J. Jiang, and B. Liu. 2019. Preparation and characterization of lutein ester-loaded oleogels developed by monostearin and sunflower oil. Journal of Food Biochemistry 43 (11):e12992 doi: 10.1111/jfbc.12992.
  • Jung, D., I. Oh, J. Lee, and S. Lee. 2020. Utilization of butter and oleogel blends in sweet pan bread for saturated fat reduction: Dough rheology and baking performance. LWT – Food Science and Technology 125:109194. doi: 10.1016/j.lwt.2020.:109194.
  • Kim, J. Y., J. Lim, J. Lee, H. S. Hwang, and S. Lee. 2017. Utilization of oleogels as a replacement for solid fat in aerated baked goods: Physicochemical, rheological, and tomographic characterization. Journal of Food Science 82 (2):445–52. doi: 10.1111/1750-3841.13583.
  • Kouzounis, D., A. Lazaridou, and E. Katsanidis. 2017. Partial replacement of animal fat by oleogels structured with monoglycerides and phytosterols in frankfurter sausages. Meat Science 130:38–46. doi: 10.1016/j.meatsci.2017.04.004.
  • Kupiec, M., A. Zbikowska, K. Marciniak-Lukasiak, and M. Kowalska. 2020. Rapeseed oil in new application: Assessment of structure of oleogels based on their physicochemical properties and microscopic observations. Agriculture 10 (6):211. doi: 10.3390/agriculture10060:211.
  • Li, J., H. Yu, Y. Yang, C. J. Drummond, and C. E. Conn. 2021. Effect of crystallization state on the gel properties of oleogels based on β-sitosterol. Food Biophysics 16 (1):48–57. doi: 10.1007/s11483-020-09648-6.
  • Li, L., W. Wan, W. Cheng, G. Liu, and L. Han. 2019. Oxidatively stable curcumin‐loaded oleogels structured by β‐sitosterol and lecithin: Physical characteristics and release behavior in vitro. International Journal of Food Science & Technology 54 (7):2502–10. doi: 10.1111/ijfs.14208.
  • Li, S., G. Wu, X. Li, Q. Jin, X. Wang, and H. Zhang. 2021. Roles of gelator type and gelation technology on texture and sensory properties of cookies prepared with oleogels. Food Chemistry 356:129667 doi: 10.1016/j.foodchem.2021.129667.
  • Lim, J., H.-S. Hwang, and S. Lee. 2017. Oil-structuring characterization of natural waxes in canola oil oleogels: Rheological, thermal, and oxidative properties. Applied Biological Chemistry 60 (1):17–22. doi: 10.1007/s13765-016-0243-y.
  • Lim, J., S. Jeong, I. K. Oh, and S. Lee. 2017b. Evaluation of soybean oil-carnauba wax oleogels as an alternative to high saturated fat frying media for instant fried noodles. LWT – Food Science and Technology 84:788–94. doi: 10.1016/j.lwt.2017.06.054.
  • Lim, J., S. Jeong, J.-H. Lee, S. Park, J. Lee, and S. Lee. 2017a. Effect of shortening replacement with oleogels on the rheological and tomographic characteristics of aerated baked goods. Journal of the Science of Food and Agriculture 97 (11):3727–32. doi: 10.1002/jsfa.8235.
  • López-Pedrouso, M., /, J. M. Lorenzo, B. Gullón, P. C. B. Campagnol, and D. Franco. 2021. Novel strategy for developing healthy meat products replacing saturated fat with oleogels. Current Opinion in Food Science 40:40–5. doi: 10.1016/j.cofs.2020.06.003.
  • Marangoni, A. G., and N. Garti. 2011. 1 – An overview of the past, present, and future of organogels. USA: Elsevier Inc.
  • Martins, A. J., A. A. Vicente, L. M. Pastrana, and M. A. Cerqueira. 2020. Oleogels for development of health-promoting food products. Food Science and Human Wellness 9 (1):31–9. doi: 10.1016/j.fshw.2019.12.001.
  • Martins, A. J., J. M. Lorenzo, D. Franco, A. A. Vicente, R. L. Cunha, L. M. Pastrana, J. Quiñones, and M. A. Cerqueira. 2019. Omega‐3 and polyunsaturated fatty acids‐enriched hamburgers using sterol‐based oleogels. European Journal of Lipid Science and Technology 121 (11)1900111. doi: 10.1002/ejlt.20:.
  • Martins, A. J., J. M. Lorenzo, D. Franco, M. Pateiro, R. Dominguez, P. E. S. Munekata, L. M. Pastrana, A. A. Vicente, R. L. Cunha, and M. A. Cerqueira. 2020. Characterization of enriched meat-based Pate manufactured with oleogels as fat substitutes. Gels 6 (2):17. doi: 10.3390/gels6020017.
  • Martins, A. J., M. A. Cerqueira, L. H. Fasolin, R. L. Cunha, and A. A. Vicente. 2016. Beeswax organogels: Influence of gelator concentration and oil type in the gelation process. Food Research International 84:170–9. doi: 10.1016/j.foodres.2016.03.035.
  • Meng, Z., Y. Guo, Y. Wang, and Y. Liu. 2019. Oleogels from sodium stearoyl lactylate-based lamellar crystals: Structural characterization and bread application. Food Chemistry 292:134–42. doi: 10.1016/j.foodchem.2018.11.042.
  • Mert, B., and I. Demirkesen. 2016a. Evaluation of highly unsaturated oleogels as shortening replacer in a short dough product. LWT – Food Science and Technology 68:477–84. doi: 10.1016/j.lwt.2015.12.063.
  • Mert, B., and I. Demirkesen. 2016b. Reducing saturated fat with oleogel/shortening blends in a baked product. Food Chemistry 199:809–16. doi: 10.1016/j.foodchem.2015.12.087.
  • Moghtadaei, M.,. N. Soltanizadeh, and S. A. H. Goli. 2018. Production of sesame oil oleogels based on beeswax and application as partial substitutes of animal fat in beef burger. Food Research International 108:368–77. doi: 10.1016/j.foodres.2018.03.051.
  • Moriano, M. E., and C. Alamprese. 2017. Organogels as novel ingredients for low saturated fat ice creams. LWT – Food Science and Technology 86:371–6. doi: 10.1016/j.lwt.2017.07.034.
  • Moschakis, T., I. Dergiade, A. Lazaridou, C. G. Biliaderis, and E. Katsanidis. 2017. Modulating the physical state and functionality of phytosterols by emulsification and organogel formation: Application in a model yogurt system. Journal of Functional Foods 33:386–95. doi: 10.1016/j.jff.2017.04.007.
  • National Rsearch Council (US) Committee on Diet and Health. 1989. Diet and health: Implications for reducing chronic disease risk. Washington, D.C: National Academy Press.
  • O’Sullivan, C. M., S. Barbut, and A. G. Marangoni. 2016. Edible oleogels for the oral delivery of lipid soluble molecules: Composition and structural design considerations. Trends in Food Science & Technology 57:59–73. doi: 10.1016/j.tifs.2016.08.018.
  • Öğütcü, M., N. Arifoğlu, and E. Yılmaz. 2015. Preparation and characterization of virgin olive oil-beeswax oleogel emulsion products. Journal of the American Oil Chemists’ Society 92 (4):459–71. doi: 10.1007/s11746-015-2615-6.
  • Oh, I., and S. Lee. 2020. Rheological, microstructural, and tomographical studies on the rehydration improvement of hot air-dried noodles with oleogel. Journal of Food Engineering 268109750. doi: 10.1016/j.jfoodeng.2019.:.
  • Okuro, P. K., A. J. Martins, A. A. Vicente, and R. L. Cunha. 2020. Perspective on oleogelator mixtures, structure design and behaviour towards digestibility of oleogels. Current Opinion in Food Science 35:27–35. doi: 10.1016/j.cofs.2020.01.001.
  • Okuro, P. K., T. P. Santos, and R. L. Cunha. 2021. Compositional and structural aspects of hydro- and oleogels: Similarities and specificities from the perspective of digestibility. Trends in Food Science & Technology 111:55–67. doi: 10.1016/j.tifs.2021.02.053.
  • Onacik-Gur, S., and A. Zbikowska. 2020. Effect of high-oleic rapeseed oil oleogels on the quality of short-dough biscuits and fat migration. Journal of Food Science and Technology 57 (5):1609–18. doi: 10.1007/s13197-019-04193-8.
  • Orsavova, J., L. Misurcova, J. Vavra Ambrozova, R. Vicha, and J. Mlcek. 2015. Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids. International Journal of Molecular Sciences 16 (6):12871–90. doi: 10.3390/ijms160612871.
  • Pakseresht, S., and M. Mazaheri Tehrani. 2020. Advances in multi-component supramolecular oleogels- a review. Food Reviews International :1–23. doi: 10.1080/87559129.2020.1742153.
  • Palla, C. A., M. F. Wasinger, and M. E. Carrin. 2021. Monoglyceride oleogels as fat replacers in filling creams for sandwich cookies. Journal of the Science of Food and Agriculture 101 (6):2398–405. doi: 10.1002/jsfa.10863.
  • Palla, C., A. Giacomozzi, D. B. Genovese, and M. E. Carrín. 2017. Multi–objective optimization of high oleic sunflower oil and monoglycerides oleogels: Searching for rheological and textural properties similar to margarine. Food Structure 12:1–14. doi: 10.1016/j.foostr.2017.02.005.
  • Panagiotopoulou, E., T. Moschakis, and E. Katsanidis. 2016. Sunflower oil organogels and organogel-in-water emulsions (part II): Implementation in frankfurter sausages. LWT – Food Science and Technology 73:351–6. doi: 10.1016/j.lwt.2016.06.006.
  • Pang, M., X. Wang, L. Cao, Z. Shi, Z. Lei, and S. Jiang. 2020b. Structure and thermal properties of β‐sitosterol‐beeswax‐sunflower oleogels. International Journal of Food Science & Technology 55 (5):1900–8. doi: 10.1111/ijfs.14370.
  • Pang, M., Z. Shi, Z. Lei, Y. Ge, S. Jiang, and L. Cao. 2020. Structure and thermal properties of beeswax-based oleogels with different types of vegetable oil. Grasas y Aceites 71 (4):380. doi: 10.3989/gya.0806192.
  • Papadaki, A., N. Kopsahelis, D. M. G. Freire, I. Mandala, and A. A. Koutinas. 2020. Olive oil oleogel formulation using wax esters derived from soybean fatty acid distillate. Biomolecules 10 (1):106. doi: 10.3390/biom10010:106.
  • Park, C., and F. Maleky. 2020. A critical review of the last 10 years of oleogels in food. Frontiers in Sustainable Food Systems 4: 139–146. doi: 10.3389/fsufs.2020.00139.
  • Patel, A. R. 2018. Shellac-based oleogels (eds. Nissim Garti and G. Marangoni Alejandro). San Diego, CA: AOCS Press.
  • Patel, A. R., and K. Dewettinck. 2015. Comparative evaluation of structured oil systems: Shellac oleogel, HPMC oleogel, and HIPE gel. European Journal of Lipid Science and Technology : EJLST 117 (11):1772–81. doi: 10.1002/ejlt.201400553.
  • Pehlivanoğlu, H., M. Demirci, O. S. Toker, N. Konar, S. Karasu, and O. Sagdic. 2018. Oleogels, a promising structured oil for decreasing saturated fatty acid concentrations: Production and food-based applications. Critical Reviews in Food Science and Nutrition 58 (8):1330–41. doi: 10.1080/10408398.2016.1256866.
  • Pintado, T., and S. Cofrades. 2020. Quality characteristics of healthy dry fermented sausages formulated with a mixture of olive and chia oil structured in oleogel or emulsion gel as animal fat replacer. Foods 9 (6):830.830. doi: 10.3390/foods9060:.
  • PubChem. 2021a. Glyceryl monostearate Last Modified September 18, 2021, Accessed September 20, 2021. https://pubchem.ncbi.nlm.nih.gov/compound/Glyceryl-monostearate.
  • PubChem. 2021b. Lecithin from soybean. National Library of Medicine, Last Modified September 18, 2021, Accessed September 20, 2021. https://pubchem.ncbi.nlm.nih.gov/compound/Lecithin-from-Soybean.
  • PubChem. 2021c. Shellac. National Library of Medicine, Last Modified September 18, 2021, Accessed September 20, 2021. https://pubchem.ncbi.nlm.nih.gov/compound/shellac.
  • PubChem. 2021d. Sorbitan monostearate. National Library of Medicine, Last Modified September 18, 2021, Accessed September 20, 2021. https://pubchem.ncbi.nlm.nih.gov/compound/Sorbitan-monostearate.
  • Pușcaș, A., V. Mureșan, and S. Muste. 2021. Application of analytical methods for the comprehensive analysis of oleogels-A review. Polymers (Basel) 13 (12):1934. doi: 10.3390/polym13121934.
  • Pușcaș, A., V. Mureșan, C. Socaciu, and S. Muste. 2020. Oleogels in food: A review of current and potential applications. Foods 9 (1):70. doi: 10.3390/foods9010070.
  • Rios, R. V., M. D. F. Pessanha, P. F. de Almeida, C. L. Viana, and S. C. d S. Lannes. 2014. Application of fats in some food products. Food Science and Technology (Campinas) 34 (1):3–15. doi: 10.1590/S0101-20612014000100001.
  • Rogers, M. A. 2018. Ceramide oleogels (eds. Nissim Garti and G. Marangoni Alejandro). AOCS Press.
  • Rogers, M. A., P. A. Spagnuolo, T. M. Wang, and L. Angka. 2017. A potential bioactive hard-stock fat replacer comprised of a molecular gel. Food Science & Nutrition 5 (3):579–87. doi: 10.1002/fsn3.433.
  • Rogers, M. A., T. Strober, A. Bot, J. F. Toro-Vazquez, T. Stortz, and A. G. Marangoni. 2014. Edible oleogels in molecular gastronomy. International Journal of Gastronomy and Food Science 2 (1):22–31. doi: 10.1016/j.ijgfs.2014.05.001.
  • Sagiri, S. S., U. Kasiviswanathan, G. S. Shaw, M. Singh, A. Anis, and K. Pal. 2016. Effect of sorbitan monostearate concentration on the thermal, mechanical and drug release properties of oleogels. Korean Journal of Chemical Engineering 33 (5):1720–7. doi: 10.1007/s11814-015-0295-4.
  • Sagiri, S. S., V. K. Singh, K. Pal, I. Banerjee, and P. Basak. 2015. Stearic acid based oleogels: A study on the molecular, thermal and mechanical properties. Materials Science & Engineering. C, Materials for Biological Applications 48:688–99. doi: 10.1016/j.msec.2014.12.018.
  • Sahu, S., M. Ghosh, and D. K. Bhattacharyya. 2020. Utilization of unsaponifiable matter from rice bran oil fatty acid distillate for preparing an antioxidant-rich oleogel and evaluation of its properties. Grasas y Aceites 71 (1):336. doi: 10.3989/gya.0938182.
  • Samateh, M., S. S. Sagiri, and G. John. 2018. Molecular oleogels: Green approach in structuring vegetable oils (eds. Nissim Garti and G. Marangoni Alejandro). San Diego, CA: AOCS Press.
  • Sarkisyan, V., R. Sobolev, Y. Frolova, A. Malinkin, M. Makarenko, and A. Kochetkova. 2021. Beeswax fractions used as potential oil gelling agents. Journal of the American Oil Chemists’ Society 98 (3):281–96. doi: 10.1002/aocs.12451.
  • Scharfe, M., and E. Flöter. 2020. Oleogelation: From scientific feasibility to applicability in food products. European Journal of Lipid Science and Technology 122 (12):2000213. doi: 10.1002/ejlt.20:2000213.
  • Scharfe, M., Y. Ahmane, J. Seilert, J. Keim, and E. Flöter. 2019. On the effect of minor oil components on β‐sitosterol/γ‐oryzanol oleogels. European Journal of Lipid Science and Technology 121 (8):1800487. doi: 10.1002/ejlt.20:1800487.
  • Scholten, E. 2019. Edible oleogels: How suitable are proteins as a structurant? Current Opinion in Food Science 27:36–42. doi: 10.1016/j.cofs.2019.05.001.
  • Si, H., L.-Z. Cheong, J. Huang, X. Wang, and H. Zhang. 2016. Physical properties of soybean oleogels and oil migration evaluation in model praline system. Journal of the American Oil Chemists’ Society 93 (8):1075–84. doi: 10.1007/s11746-016-2846-1.
  • Sigma-Aldrich. 2021a. 1-Tetradecanol, 1-Octadecanol. Accessed August 17, 2021. https://www.sigmaaldrich.com/AU/en/substance/1tetradecanol21439112721?context=product https://www.sigmaaldrich.com/AU/en/substance/1octadecanol27049112925?context=product.
  • Sigma-Aldrich. 2021b. Gamma-Oryzanol. Accessed August 17, 2021. https://www.sigmaaldrich.com/AU/en/product/usp/1479202?context=product.
  • Sigma-Aldrich. 2021c. Sodium stearoyl lactylate. Accessed August 17, 2021. https://www.sigmaaldrich.com/AU/en/product/combiblocksinc/com497516257?context=bbe.
  • Sigma-Aldrich. 2021d. Stearic acid. Accessed August 17, 2021. https://www.sigmaaldrich.com/AU/en/substance/stearicacid2844857114?context=product.
  • Sigma-Aldrich. 2021e. β-Sitosterol. Accessed August 17, 2021. https://www.sigmaaldrich.com/AU/en/substance/bsitosterol4147183465.
  • Singh, A., F. I. Auzanneau, and M. A. Rogers. 2017. Advances in edible oleogel technologies – A decade in review. Food Research International (Ottawa, Ont.) 97:307–17. doi: 10.1016/j.foodres.2017.04.022.
  • Siraj, N., M. A. Shabbir, T. Ahmad, A. Sajjad, M. R. Khan, M. I. Khan, and M. S. Butt. 2015. Organogelators as a saturated fat replacer for structuring edible oils. International Journal of Food Properties 18 (9):1973–89. doi: 10.1080/10942912.2014.951891.
  • Soleimanian, Y., S. A. H. Goli, A. Shirvani, A. Elmizadeh, and A. G. Marangoni. 2020. Wax-based delivery systems: Preparation, characterization, and food applications. Comprehensive Reviews in Food Science and Food Safety 19 (6):2994–3030. doi: 10.1111/1541-4337.12614.
  • Sun, P., B. Xia, Z. J. Ni, Y. Wang, E. Elam, K. Thakur, Y. L. Ma, and Z. J. Wei. 2021. Characterization of functional chocolate formulated using oleogels derived from β-sitosterol with γ-oryzanol/lecithin/stearic acid. Food Chemistry 360:130017 doi: 10.1016/j.foodchem.2021.130017.
  • Tarté, R., J. S. Paulus, N. C. Acevedo, K. J. Prusa, and S.-L. Lee. 2020. High-oleic and conventional soybean oil oleogels structured with rice bran wax as alternatives to pork fat in mechanically separated chicken-based bologna sausage. LWT – Food Science and Technology 131:109659. doi: 10.1016/j.lwt.2020.109659.
  • Taube, E. 1952. Carnauba wax – product of a Brazilian plam. Economic Botany 6 (4):379–401. doi: 10.1007/BF02984886.
  • Tavernier, I., C. D. Doan, D. Van de Walle, S. Danthine, T. Rimaux, and K. Dewettinck. 2017. Sequential crystallization of high and low melting waxes to improve oil structuring in wax-based oleogels. RSC Advances 7 (20):12113–25. doi: 10.1039/C6RA27650D.
  • Terech, P., and R. G. Weiss. 1997. Low molecular mass gelators of organic liquids and the properties of their gels. Chemical Reviews 97 (8):3133–60. doi: 10.1021/cr9700282.
  • Toro-Vazquez, J. F., M. A. Charó-Alonso, J. D. Pérez-Martínez, and J. A. Morales-Rueda. 2011. 6 – Candelilla wax as an organogelator for vegetable oils— an alternative to develop trans-free products for the food industry. USA: Elsevier Inc.
  • Trujillo-Ramirez, D., C. Lobato-Calleros, E. J. Vernon-Carter, and J. Alvarez-Ramirez. 2019. Cooling rate, sorbitan and glyceryl monostearate gelators elicit different microstructural, viscoelastic and textural properties in chia seed oleogels. Food Research International (Ottawa, Ont.) 119:829–38. doi: 10.1016/j.foodres.2018.10.066.
  • Uvanesh, K., S. S. Sagiri, I. Banerjee, H. Shaikh, K. Pramanik, A. Anis, and K. Pal. 2016b. Effect of Tween 20 on the properties of stearate oleogels: An in-depth analysis. Journal of the American Oil Chemists’ Society 93 (5):711–9. doi: 10.1007/s11746-016-2810-0.
  • Uvanesh, K., S. S. Sagiri, K. Senthilguru, K. Pramanik, I. Banerjee, A. Anis, S. M. Al-Zahrani, and K. Pal. 2016a. Effect of Span 60 on the microstructure, crystallization kinetics, and mechanical properties of stearic acid oleogels: An In-depth Analysis. Journal of Food Science 81 (2):E380–7. doi: 10.1111/1750-3841.13170.
  • Valoppi, F., S. Calligaris, and A. G. Marangoni. 2017b. Structure and physical properties of oleogels containing peanut oil and saturated fatty alcohols. European Journal of Lipid Science and Technology 119 (5)1600252. doi: 10.1002/ejlt.20:.
  • Valoppi, F., S. Calligaris, L. Barba, N. Šegatin, N. P. Ulrih, and M. C. Nicoli. 2017. Influence of oil type on formation, structure, thermal, and physical properties of monoglyceride-based organogel. European Journal of Lipid Science and Technology 119 (2)1500549. doi: 10.1002/ejlt.20:.
  • Vernon-Carter, E. J., J. Alvarez-Ramirez, M. Meraz, L. A. Bello-Perez, and S. Garcia-Diaz. 2020. Canola oil/candelilla wax oleogel improves texture, retards staling and reduces in vitro starch digestibility of maize tortillas. Journal of the Science of Food and Agriculture 100 (3):1238–45. doi: 10.1002/jsfa.10135.
  • Wang, W., J. Chen, Q. Zhou, L. Jiang, L. Wang, Y. Dai, D. Yu, and W. Elfalleh. 2021. Crude wax extracted from rice bran oil improves oleogel properties and oxidative stability. European Journal of Lipid Science and Technology 123 (6):2000091. doi: 10.1002/ejlt.202000091.
  • WHO. 2020. Healthy diet. Geneva, Switzerland: World Health Organization. https://www.who.int/news-room/factsheets/detail/healthy-diet.
  • Wijarnprecha, K., K. Aryusuk, P. Santiwattana, S. Sonwai, and D. Rousseau. 2018. Structure and rheology of oleogels made from rice bran wax and rice bran oil. Food Research International (Ottawa, Ont.) 112:199–208. doi: 10.1016/j.foodres.2018.06.005.
  • Willett, S. A., and C. C. Akoh. 2019. Physicochemical Characterization of Yellow Cake Prepared with Structured Lipid Oleogels. Journal of Food Science 84 (6):1390–9. doi: 10.1111/1750-3841.14624.
  • Winkler-Moser, J. K., J. Anderson, F. C. Felker, and H.-S. Hwang. 2019. Physical properties of beeswax, sunflower wax, and candelilla wax mixtures and oleogels. Journal of the American Oil Chemists’ Society 96 (10):1125–42. doi: 10.1002/aocs.12280.
  • Wolfer, T. L., N. C. Acevedo, K. J. Prusa, J. G. Sebranek, and R. Tarte. 2018. Replacement of pork fat in frankfurter-type sausages by soybean oil oleogels structured with rice bran wax. Meat Science 145:352–62. doi: 10.1016/j.meatsci.2018.07.012.
  • Yadav, I., U. Kasiviswanathan, C. Soni, S. R. Paul, S. K. Nayak, S. S. Sagiri, A. Anis, and K. Pal. 2017. Stearic acid modified stearyl alcohol oleogel: Analysis of the thermal, mechanical and drug release properties. Journal of Surfactants and Detergents 20 (4):851–61. doi: 10.1007/s11743-017-1974-4.
  • Yang, D. X., X. W. Chen, and X. Q. Yang. 2018. Phytosterol-based oleogels self-assembled with monoglyceride for controlled volatile release. Journal of the Science of Food and Agriculture 98 (2):582–9. doi: 10.1002/jsfa.8500.
  • Yang, S., G. Li, A. S. M. Saleh, H. Yang, N. Wang, P. Wang, X. Yue, and Z. Xiao. 2017. Functional characteristics of oleogel prepared from sunflower oil with β-sitosterol and stearic acid. Journal of the American Oil Chemists’ Society 94 (9):1153–64. doi: 10.1007/s11746-017-3026-7.
  • Yang, S., M. Zhu, N. Wang, X. Cui, Q. Xu, A. S. M. Saleh, Y. Duan, and Z. Xiao. 2018. Influence of oil type on characteristics of β-sitosterol and stearic acid based oleogel. Food Biophysics 13 (4):362–73. doi: 10.1007/s11483-018-9542-7.
  • Yilmaz, E., M. Ogutcu, and Y. K. Yuceer. 2015. Physical properties, volatiles compositions and sensory descriptions of the aromatized hazelnut oil-wax organogels. Journal of Food Science 80 (9):S2035–S44. doi: 10.1111/1750-3841.12992.
  • Zetzl, A. K., A. G. Marangoni and S. Barbut. 2012. Mechanical properties of ethylcellulose oleogels and their potential for saturated fat reduction in frankfurters. Food & Function 3 (3):327. doi: 10.1039/c2fo10202a.
  • Zhang, R., T. Zhang, M. Hu, Y. Xue, and C. Xue. 2021. Effects of oleogels prepared with fish oil and beeswax on the gelation behaviors of protein recovered from Alaska Pollock. LWT – Food Science and Technology 137:110423. doi: 10.1016/j.lwt.2020.110423.
  • Zhao, W., Z. Wei, and C. Xue. 2021. Recent advances on food-grade oleogels: Fabrication, application and research trends. Critical Reviews in Food Science and Nutrition :1–18. doi: 10.1080/10408398.2021.1922354.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.