1,110
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Application of starch-based nanoparticles and cyclodextrin for prebiotics delivery and controlled glucose release in the human gut: a review

, , , , , , , , , & ORCID Icon show all

References

  • Acevedo-Guevara, L., L. Nieto-Suaza, L. T. Sanchez, M. I. Pinzon, and C. C. Villa. 2018. Development of native and modified banana starch nanoparticles as vehicles for curcumin. International Journal of Biological Macromolecules 111:498–504. doi: 10.1016/j.ijbiomac.2018.01.063.
  • Ahmad, M., P. Mudgil, A. Gani, F. Hamed, F. A. Masoodi, and S. Maqsood. 2019. Nano-encapsulation of catechin in starch nanoparticles: Characterization, release behavior and bioactivity retention during simulated in-vitro digestion. Food Chemistry 270:95–104. doi: 10.1016/j.foodchem.2018.07.024.
  • Apostolidis, E., and I. Mandala. 2020. Modification of resistant starch nanoparticles using high-pressure homogenization treatment. Food Hydrocolloids 103:105677. doi: 10.1016/j.foodhyd.2020.105677.
  • Bar, A., I. Diamantis, and W. P. Venetz. 2020. Alpha-cyclodextrin attenuates the glycemic and insulinemic impact of white bread in healthy male volunteers. Foods 9 (1):62. doi: 10.3390/foods9010062.
  • Bhandari, M. R., N. Jong-Anurakkun, G. Hong, and J. Kawabata. 2008. α-Glucosidase and α-amylase inhibitory activities of Nepalese medicinal herb Pakhanbhed (Bergenia ciliata, Haw.). Food Chemistry 106 (1):247–52. doi: 10.1016/j.foodchem.2007.05.077.
  • Chang, R., N. Ji, M. Li, L. Qiu, C. Sun, X. Bian, H. Qiu, L. Xiong, and Q. Sun. 2019a. Green preparation and characterization of starch nanoparticles using a vacuum cold plasma process combined with ultrasonication treatment. Ultrasonics Sonochemistry 58:104660 doi: 10.1016/j.ultsonch.2019.104660.
  • Chang, R., L. Xiong, M. Li, H. Chen, J. Xiao, S. Wang, L. Qiu, X. Bian, C. Sun, and Q. Sun. 2019b. Preparation of octenyl succinic anhydride-modified debranched starch vesicles for loading of hydrophilic functional ingredients. Food Hydrocolloids 94:546–52. doi: 10.1016/j.foodhyd.2019.04.006.
  • Chang, Y., X. Yan, Q. Wang, L. Ren, J. Tong, and J. Zhou. 2017. High efficiency and low cost preparation of size controlled starch nanoparticles through ultrasonic treatment and precipitation. Food Chem 227:369–75. doi: 10.1016/j.foodchem.2017.01.111.
  • Chen, Z., L. Zong, C. Chen, and J. Xie. 2020. Development and characterization of PVA-Starch active films incorporated with β-cyclodextrin inclusion complex embedding lemongrass (Cymbopogon citratus) oil. Food Packaging and Shelf Life 26:100565. doi: 10.1016/j.fpsl.2020.100565.
  • Cheuk, S. Y., F. F. Shih, E. T. Champagne, K. W. Daigle, J. A. Patindol, C. P. Mattison, and S. M. Boue. 2015. Nano-encapsulation of coenzyme Q10 using octenyl succinic anhydride modified starch. Food Chemistry 174:585–90. doi:10.1016/j.foodchem.2014.11.031.
  • Crini, G. 2014. Review: A history of cyclodextrins. Chemical Reviews 114 (21):10940–75. doi: 10.1021/cr500081p.
  • Dai, L., C. Li, J. Zhang, and F. Cheng. 2018. Preparation and characterization of starch nanocrystals combining ball milling with acid hydrolysis. Carbohydrate Polymers 180:122–7. doi: 10.1016/j.carbpol.2017.10.015.
  • Ding, Y., J. Zheng, X. Xia, T. Ren, and J. Kan. 2016. Preparation and characterization of resistant starch type IV nanoparticles through ultrasonication and miniemulsion cross-linking. Carbohydrate Polymers 141:151–9. doi: 10.1016/j.carbpol.2016.01.008.
  • Dong, H., Q. Zhang, J. Gao, L. Chen, and T. Vasanthan. 2021. Comparison of morphology and rheology of starch nanoparticles prepared from pulse and cereal starches by rapid antisolvent nanoprecipitation. Food Hydrocolloids 119:106828. doi: 10.1016/j.foodhyd.2021.106828.
  • Fan, H., J. Wang, Q. Meng, Y. Tian, X. Xu, and Z. Jin. 2017. Photoirradiation surface molecularly imprinted polymers for the separation of 6-O-α-D-maltosyl-β-cyclodextrin. Journal of Separation Science 40 (23):4653–60. doi: 10.1002/jssc.201700808.
  • Farrag, Y., W. Ide, B. Montero, M. Rico, S. Rodriguez-Llamazares, L. Barral, and R. Bouza. 2018. Preparation of starch nanoparticles loaded with quercetin using nanoprecipitation technique. International Journal of Biological Macromolecules 114:426–33. doi: 10.1016/j.ijbiomac.2018.03.134.
  • Foresti, M. L., M. d P. Williams, R. Martínez-García, and A. Vázquez. 2014. Analysis of a preferential action of α-amylase from B. licheniformis towards amorphous regions of waxy maize starch. Carbohydrate Polymers 102 (1):80–7. doi: 10.1016/j.carbpol.2013.11.013.
  • Gharib, R., H. Greige-Gerges, S. Fourmentin, C. Charcosset, and L. Auezova. 2015. Liposomes incorporating cyclodextrin-drug inclusion complexes: Current state of knowledge. Carbohydrate Polymers 129:175–86. doi: 10.1016/j.carbpol.2015.04.048.
  • Guo, Z. B., X. Z. Jia, X. Lin, B. Y. Chen, S. W. Sun, and B. D. Zheng. 2019. Insight into the formation, structure and digestibility of lotus seed amylose-fatty acid complexes prepared by high hydrostatic pressure. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association 128:81–8. doi: 10.1016/j.fct.2019.03.052.
  • Gupta, S. C., G. Kismali, and B. B. Aggarwal. 2013. Curcumin, a component of turmeric: From farm to pharmacy. BioFactors (Oxford, England) 39 (1):2–13. doi: 10.1002/biof.1079.
  • Hădărugă, N. G., R. N. Szakal, C. A. Chirilă, A. T. Lukinich-Gruia, V. Păunescu, C. Muntean, G. Rusu, G. Bujancă, and D. I. Hădărugă. 2020. Complexation of Danube common nase (Chondrostoma nasus L.) oil by β-cyclodextrin and 2-hydroxypropyl-β-cyclodextrin. Food Chemistry 303:125419 doi: 10.1016/j.foodchem.2019.125419.
  • Hasanvand, E., M. Fathi, and A. Bassiri. 2018. Production and characterization of vitamin D3 loaded starch nanoparticles: Effect of amylose to amylopectin ratio and sonication parameters. J Food Sci Technol 55 (4):1314–24. doi: 10.1007/s13197-018-3042-0.
  • Hedayati, S., M. Niakousari, and Z. Mohsenpour. 2020. Production of tapioca starch nanoparticles by nanoprecipitation-sonication treatment. International Journal of Biological Macromolecules 143:136–42. doi: 10.1016/j.ijbiomac.2019.12.003.
  • Herrera, M. P., T. Vasanthan, R. Hoover, and M. Izydorczyk. 2017. Molecular size distribution and amylase resistance of maize starch nanoparticles prepared by acid hydrolysis. Cereal Chemistry Journal 94 (2):262–9. doi: 10.1094/CCHEM-02-16-0028-R.
  • Hu, Y., Y. Qin, C. Qiu, X. M. Xu, Z. Y. Jin, and J. P. Wang. 2020. Ultrasound-assisted self-assembly of β-cyclodextrin/debranched starch nanoparticles as promising carriers of tangeretin. Food Hydrocolloids 108:106021. doi: 10.1016/j.foodhyd.2020.106021.
  • Huang, Y. M., P. Wu, J. Ying, Z. Z. Dong, and X. D. Chen. 2021. Mechanistic study on inhibition of porcine pancreatic α-amylase using the flavonoids from dandelion. Food Chemistry 344:128610 doi: 10.1016/j.foodchem.2020.128610.
  • Hussain, K., I. Ali, S. Ullah, M. Imran, S. Parveen, T. Kanwal, S. A. Shah, S. Saifullah, and M. R. Shah. 2021. Enhanced antibacterial potential of naringin loaded β cyclodextrin nanoparticles. Journal of Cluster Science 2021:1–11. doi: 10.1007/s10876-020-01972-8.
  • Jambhekar, S. S., and P. Breen. 2016. Cyclodextrins in pharmaceutical formulations I: Structure and physicochemical properties, formation of complexes, and types of complex. Drug Discovery Today 21 (2):356–62. doi: 10.1016/j.drudis.2015.11.017.
  • Jeong, O., and M. Shin. 2018. Preparation and stability of resistant starch nanoparticles, using acid hydrolysis and cross-linking of waxy rice starch. Food Chemistry 256:77–84. doi: 10.1016/j.foodchem.2018.02.098.
  • Jiang, S. S., M. Li, R. R. Chang, L. Xiong, and Q. J. Sun. 2018. In vitro inhibition of pancreatic α-amylase by spherical and polygonal starch nanoparticles. Food & Function 9 (1):355–63. doi: 10.1039/c7fo01381g.
  • Jiang, H. X., J. Y. Lio, M. Blanco, M. Campbell, and J. L. Jane. 2010. Resistant-starch formation in high-amylose maize starch during kernel development. Journal of Agricultural and Food Chemistry 58 (13):8043–7. doi: 10.1021/jf101056y.
  • Kang, X. M., B. Yu, H. Y. Zhang, J. Sui, L. Guo, A. M. Abd El-Aty, and B. Cui. 2021. The formation and in vitro enzymatic digestibility of starch-lipid complexes in steamed bread free from and supplemented with different fatty acids: Effect on textural and retrogradation properties during storage. International Journal of Biological Macromolecules 166:1210–9. doi: 10.1016/j.ijbiomac.2020.11.003.
  • Khatun, A., D. L. E. Waters, and L. Liu. 2019. A review of rice starch digestibility: Effect of composition and heat-moisture processing. Starch - Stärke 71 (9-10):1900090. doi: 10.1002/star.201900090.
  • Kheradvar, S. A., J. Nourmohammadi, H. Tabesh, and B. Bagheri. 2018. Starch nanoparticle as a vitamin E-TPGS carrier loaded in silk fibroin-poly(vinyl alcohol)-Aloe vera nanofibrous dressing . Colloids and Surfaces B, Biointerfaces 166:9–16. doi: 10.1016/j.colsurfb.2018.03.004.
  • Kim, H. Y., D. J. Park, J. Y. Kim, and S. T. Lim. 2013. Preparation of crystalline starch nanoparticles using cold acid hydrolysis and ultrasonication. Carbohydrate Polymers 98 (1):295–301. doi: 10.1016/j.carbpol.2013.05.085.
  • Kim, H. Y., S. S. Park, and S. T. Lim. 2015. Preparation, characterization and utilization of starch nanoparticles. Colloids and Surfaces B, Biointerfaces 126:607–20. doi: 10.1016/j.colsurfb.2014.11.011.
  • Kong, F. S., Z. P. Su, L. Z. Zhang, Y. Qin, and K. Zhang. 2019. Inclusion complex of grape seeds extracts with sulfobutyl ether beta-cyclodextrin: Preparation, characterization, stability and evaluation of alpha-glucosidase and alpha-amylase inhibitory effects in vitro. Lwt 101:819–26. doi: 10.1016/j.lwt.2018.12.007.
  • Kuttiyawong, K.,. S. Saehu, K. Ito, and P. Pongsawasdi. 2015. Synthesis of large-ring cyclodextrin from tapioca starch by amylomaltase and complex formation with vitamin E acetate for solubility enhancement. Process Biochemistry 50 (12):2168–76. doi: 10.1016/j.procbio.2015.10.014.
  • Le Corre, D., E. Vahanian, A. Dufresne, and J. Bras. 2012. Enzymatic pretreatment for preparing starch nanocrystals. Biomacromolecules 13 (1):132–7. doi: 10.1021/bm201333k.
  • Li, X. J., S. J. Ge, J. Yang, R. R. Chang, C. F. Liang, L. Xiong, M. Zhao, M. Li, and Q. J. Sun. 2017a. Synthesis and study the properties of StNPs/gum nanoparticles for salvianolic acid B-oral delivery system. Food Chemistry 229:111–9. doi: 10.1016/j.foodchem.2017.02.059.
  • Li, X. J., M. Li, J. Liu, N. Ji, C. F. Liang, Q. J. Sun, and L. Xiong. 2017b. Preparation of hollow biopolymer nanospheres employing starch nanoparticle templates for enhancement of phenolic acid antioxidant activities. Journal of Agricultural and Food Chemistry 65 (19):3868–82. doi: 10.1021/acs.jafc.7b01172.
  • Li, B., B. G. Liu, J. Q. Li, H. Z. Xiao, J. Y. Wang, and G. Z. Liang. 2015. Experimental and theoretical investigations on the supermolecular structure of isoliquiritigenin and 6-O-α-D-maltosyl-β-cyclodextrin inclusion complex. International Journal of Molecular Sciences 16 (8):17999–8017. doi: 10.3390/ijms160817999.
  • Lin, X., S. Sun, B. Wang, B. Zheng, and Z. Guo. 2020a. Structural and physicochemical properties of lotus seed starch nanoparticles. International Journal of Biological Macromolecules 157:240–6. doi: 10.1016/j.ijbiomac.2020.04.155.
  • Lin, X., S. Sun, B. Wang, B. Zheng, and Z. Guo. 2020b. Structural and physicochemical properties of lotus seed starch nanoparticles prepared using ultrasonic-assisted enzymatic hydrolysis. Ultrasonics Sonochemistry 68:105199 doi: 10.1016/j.ultsonch.2020.105199.
  • Liu, F., J. Antoniou, Y. Li, H. Majeed, R. Liang, Y. Ma, J. Ma, and F. Zhong. 2016. Chitosan/sulfobutylether-β-cyclodextrin nanoparticles as a potential approach for tea polyphenol encapsulation. Food Hydrocolloids 57 (1):291–300. doi: 10.1016/j.foodhyd.2016.01.024.
  • Liu, Q., W. Cai, T. Y. Zhen, N. Ji, L. Dai, L. Xiong, and Q. J. Sun. 2020. Preparation of debranched starch nanoparticles by ionic gelation for encapsulation of epigallocatechin gallate. International Journal of Biological Macromolecules 161:481–91. doi: 10.1016/j.ijbiomac.2020.06.070.
  • Liu, G. D., Z. Gu, Y. Hong, L. Cheng, and C. M. Li. 2017. Structure, functionality and applications of debranched starch: A review. Trends in Food Science & Technology 63:70–9. doi: 10.1016/j.tifs.2017.03.004.
  • Liu, P. F., R. Wang, X. M. Kang, B. Cui, and B. Yu. 2018. Effects of ultrasonic treatment on amylose-lipid complex formation and properties of sweet potato starch-based films. Ultrasonics Sonochemistry 44:215–22. doi: 10.1016/j.ultsonch.2018.02.029.
  • Lu, W., Y. Shen, A. Xie, and W. Zhang. 2013. Preparation and Protein Immobilization of Magnetic Dialdehyde Starch Nanoparticles. The Journal of Physical Chemistry B 117(14):3720–5. doi: 10.1021/jp3110908.
  • Mateo-Gallego, R., I. Moreno-Indias, A. M. Bea, L. Sánchez-Alcoholado, A. J. Fumanal, M. Quesada-Molina, A. Prieto-Martín, C. Gutiérrez-Repiso, F. Civeira, and F. J. Tinahones. 2021. An alcohol-free beer enriched with isomaltulose and a resistant dextrin modulates gut microbiome in subjects with type 2 diabetes mellitus and overweight or obesity: A pilot study. Food & Function 12 (8):3635–46. doi: 10.1039/d0fo03160g.
  • Meng, S., Y. Ma, J. Cui, and D. W. Sun. 2014. Preparation of corn starch-fatty acid complexes by high-pressure homogenization. Starch - Stärke 66 (9-10):809–17. doi: 10.1002/star.201400022.
  • Miao, T. T., K. Xiong, N. Ji, L. Xiong, C. R. Sun, X. J. Li, A. G. Ma, and Q. J. Sun. 2020. Resistant starch nanoparticles prepared from debranched starch by medium-temperature recrystallization. International Journal of Biological Macromolecules 155:598–604. doi: 10.1016/j.ijbiomac.2020.03.242.
  • Miskeen, S., Y. S. An, and J. Y. Kim. 2021. Application of starch nanoparticles as host materials for encapsulation of curcumin: Effect of citric acid modification. International Journal of Biological Macromolecules 183:1–11. doi: 10.1016/j.ijbiomac.2021.04.133.
  • Munhuweyi, K., O. J. Caleb, A. J. van Reenen, and U. L. Opara. 2018. Physical and antifungal properties of β-cyclodextrin microcapsules and nanofibre films containing cinnamon and oregano essential oils. LWT 87:413–22. doi: 10.1016/j.lwt.2017.09.012.
  • Nallasamy, P., T. Ramalingam, T. Nooruddin, R. Shanmuganathan, P. Arivalagan, and S. Natarajan. 2020. Polyherbal drug loaded starch nanoparticles as promising drug delivery system: Antimicrobial, antibiofilm and neuroprotective studies. Process Biochemistry 92:355–64. doi: 10.1016/j.procbio.2020.01.026.
  • Nihei, N.,. H. Okamoto, T. Furune, N. Ikuta, K. Sasaki, G. Rimbach, Y. Yoshikawa, and K. Terao. 2018. Dietary alpha-cyclodextrin modifies gut microbiota and reduces fat accumulation in high-fat-diet-fed obese mice. Biofactors 44 (4):336–47. doi: 10.1016/j.procbio.2020.01.026.
  • Norihiro, S. 2019. Anti-obesity effects of alpha-cyclodextrin-stabilized 4-methylthio-3-butenyl isothiocyanate from daikon (Raphanus sativus var. longipinnatus) in mice. Journal of Clinical Biochemistry and Nutrition 65 (2):99–108. doi: 10.3164/jcbn.19-11.
  • Nsor-Atindana, J., M. Yu, H. D. Goff, M. Chen, and F. Zhong. 2020. Analysis of kinetic parameters and mechanisms of nanocrystalline cellulose inhibition of α-amylase and α-glucosidase in simulated digestion of starch. Food & Function 11 (5):4719–31. doi: 10.1039/D0FO00317D.
  • Ogawa, N., C. Takahashi, and H. Yamamoto. 2015. Physicochemical characterization of cyclodextrin-drug interactions in the solid state and the effect of water on these interactions. Journal of Pharmaceutical Sciences 104 (3):942–54. doi: 10.1002/jps.24319.
  • Okumus, B. N., Z. Tacer-Caba, K. Kahraman, and D. Nilufer-Erdil. 2018. Resistant starch type V formation in brown lentil (Lens culinaris Medikus) starch with different lipids/fatty acids. Food Chemistry 240:550–8. doi: 10.1016/j.foodchem.2017.07.157.
  • Park, Y. U., J. H. Jung, D. H. Seo, D. H. Jung, J. H. Kim, E. J. Seo, N. I. Baek, and C. S. Park. 2018. GH57 amylopullulanase from Desulfurococcus amylolyticus JCM 9188 can make highly branched cyclodextrin via its transglycosylation activity. Enzyme and Microbial Technology 114:15–21. doi: 10.1016/j.enzmictec.2018.03.005.
  • Phue, W. H., D. Srinivasan, A. Hameed, V. Yaylayan, and S. George. 2020. Food grade silica nanoparticles cause non‐competitive type inhibition of human salivary α‐amylase because of surface interaction. Nano Select 2 (3):632–41. doi: 10.1002/nano.202000173.
  • Presas, E., F. McCartney, E. Sultan, C. Hunger, S. Nellen, C. V. Alvarez, U. Werner, D. Bazile, D. J. Brayden, and C. M. O’Driscoll. 2018. Physicochemical, pharmacokinetic and pharmacodynamic analyses of amphiphilic cyclodextrin-based nanoparticles designed to enhance intestinal delivery of insulin. Journal of Controlled Release : Official Journal of the Controlled Release Society 286:402–14. doi: 10.1016/j.jconrel.2018.07.045.
  • Presas, E., S. Tovar, J. Cunarro, J. P. O’Shea, and C. M. O’Driscoll. 2021. Pre-clinical evaluation of a modified cyclodextrin-based nanoparticle for intestinal delivery of liraglutide. Journal of Pharmaceutical Sciences 110 (1):292–313. doi: 10.1016/j.xphs.2020.10.058.
  • Putro, J. N., S. Ismadji, C. Gunarto, F. E. Soetaredjo, and Y. H. Ju. 2020. A study of anionic, cationic, and nonionic surfactants modified starch nanoparticles for hydrophobic drug loading and release. Journal of Molecular Liquids 298:112034. doi: 10.1016/j.molliq.2019.112034.
  • Putseys, J. A., L. Lamberts, and J. A. Delcour. 2010. Amylose-lipid complexes: Formation, identity and physico-chemical properties. Journal of Cereal Science 51 (3):238–47. doi: 10.1016/j.jcs.2010.01.011.
  • Pyrgiotakis, G., C. O. Blattmann, S. Pratsinis, and P. Demokritou. 2013. Nanoparticle-nanoparticle interactions in biological media by atomic force microscopy. Langmuir : The ACS Journal of Surfaces and Colloids 29 (36):11385–95. doi: 10.1021/la4019585.
  • Qi, L., G. Y. Ji, Z. G. Luo, Z. G. Xiao, and Q. Y. Yang. 2017. Characterization and drug delivery properties of OSA starch-based nanoparticles prepared in [C3OHmim] Ac-in-oil microemulsions system. ACS Sustainable Chemistry & Engineering 5 (10):9517–26. doi: 10.1021/acssuschemeng.7b02727.
  • Qiao, X., L. Yang, X. X. Hu, Y. R. Cao, Z. J. Li, J. Xu, and C. H. Xue. 2021. Characterization and evaluation of inclusion complexes between astaxanthin esters with different molecular structures and hydroxypropyl-β-cyclodextrin. Food Hydrocolloids 110:106208. doi: 10.1016/j.foodhyd.2020.106208.
  • Qiu, C., R. R. Chang, J. Yang, S. J. Ge, L. Xiong, M. Zhao, M. Li, and Q. J. Sun. 2017. Preparation and characterization of essential oil-loaded starch nanoparticles formed by short glucan chains. Food Chemistry 221:1426–33. doi: 10.1016/j.foodchem.2016.11.009.
  • Qiu, C., Y. Hu, Z. Y. Jin, D. J. McClements, Y. Qin, X. M. Xu, and J. P. Wang. 2019. A review of green techniques for the synthesis of size-controlled starch-based nanoparticles and their applications as nanodelivery systems. Trends in Food Science & Technology 92:138–51. doi: 10.1016/j.tifs.2019.08.007.
  • Qiu, C., J. P. Wang, H. Zhang, Y. Qin, X. M. Xu, and Z. Y. Jin. 2018. Novel approach with controlled nucleation and growth for green synthesis of size-controlled cyclodextrin-based metal-organic frameworks based on short-chain starch nanoparticles. Journal of Agricultural and Food Chemistry 66 (37):9785–93. 2018,doi: 10.1021/acs.jafc.8b03144.
  • Qiu, C., J. Yang, S. J. Ge, R. R. Chang, L. Xiong, and Q. J. Sun. 2016. Preparation and characterization of size-controlled starch nanoparticles based on short linear chains from debranched waxy corn starch. Lwt 74:303–10. doi: 10.1016/j.lwt.2016.07.062.
  • Quilaqueo, M., S. Millao, I. Luzardo-Ocampo, R. Campos-Vega, F. Acevedo, C. Shene, and M. Rubilar. 2019. Inclusion of piperine in β-cyclodextrin complexes improves their bioaccessibility and in vitro antioxidant capacity. Food Hydrocolloids 91:143–52. doi: 10.1016/j.foodhyd.2019.01.011.
  • Rakmai, J., B. Cheirsilp, J. C. Mejuto, A. Torrado-Agrasar, and J. Simal-Gandara. 2017. Physico-chemical characterization and evaluation of bio-efficacies of black pepper essential oil encapsulated in hydroxypropyl-beta-cyclodextrin. Food Hydrocolloids 65:157–64. doi: 10.1016/j.foodhyd.2016.11.014.
  • Reddy, C. K., M. Suriya, P. V. Vidya, and S. Haripriya. 2017. Synthesis and physico-chemical characterization of modified starches from banana (Musa AAB) and its biological activities in diabetic rats. International Journal of Biological Macromolecules 94 (Pt A):500–7. (Part A):doi: 10.1016/j.ijbiomac.2016.10.050.
  • Remanan, M. K., and F. Zhu. 2021. Encapsulation of rutin using quinoa and maize starch nanoparticles. Food Chemistry 353:128534. doi: 10.1016/j.foodchem.2020.128534.
  • Salehi, O., M. Sami, and A. Rezaei. 2021. Limonene loaded cyclodextrin nanosponge: Preparation, characterization, antibacterial activity and controlled release. Food Bioscience 42:101193. doi: 10.1016/j.fbio.2021.101193.
  • Shao, P., J. F. Zhang, Z. X. Fang, and P. L. Sun. 2014. Complexing of chlorogenic acid with β-cyclodextrins: Inclusion effects, antioxidative properties and potential application in grape juice. Food Hydrocolloids 41:132–9. doi: 10.1016/j.foodhyd.2014.04.003.
  • Sikalidis, A. K., and A. Maykish. 2020. The gut microbiome and type 2 diabetes mellitus: Discussing A complex relationship. Biomedicines 8 (1):8. doi: 10.3390/biomedicines8010008.
  • Sonnendecker, C., and W. Zimmermann. 2019. Change of the product specificity of a cyclodextrin glucanotransferase by semi-rational mutagenesis to synthesize large-ring cyclodextrins. Catalysts 9 (3):242. doi: ARTN 242 doi: 10.3390/catal9030242.
  • Sun, Q. J., H. R. Fan, and L. Xiong. 2014. Preparation and characterization of starch nanoparticles through ultrasonic-assisted oxidation methods. Carbohydrate Polymers 106 (1):359–64. doi: 10.1016/j.carbpol.2014.02.067.
  • Sun, H., X. H. Ma, S. Q. Zhang, D. Zhao, and X. Liu. 2018. Resistant starch produces antidiabetic effects by enhancing glucose metabolism and ameliorating pancreatic dysfunction in type 2 diabetic rats. International Journal of Biological Macromolecules 110:276–84. doi: 10.1016/j.ijbiomac.2017.11.162.
  • Tao, F. F., L. E. Hill, Y. K. Peng, and C. L. Gomes. 2014. Synthesis and characterization of β-cyclodextrin inclusion complexes of thymol and thyme oil for antimicrobial delivery applications. LWT - Food Science and Technology 59 (1):247–55. doi: 10.1016/j.lwt.2014.05.037.
  • Tumhom, S., K. Krusong, and P. Pongsawasdi. 2017. Y418 in 410s loop is required for high transglucosylation activity and large-ring cyclodextrin production of amylomaltase from Corynebacterium glutamicum. Biochemical and Biophysical Research Communications 488 (3):516–21. doi: 10.1016/j.bbrc.2017.05.078.
  • Vongpichayapaiboon, T., P. Pongsawasdi, and K. Krusong. 2016. Optimization of large-ring cyclodextrin production from starch by amylomaltase from Corynebacterium glutamicum and effect of organic solvent on product size. Journal of Applied Microbiology 120 (4):912–20. doi: 10.1111/jam.13087.
  • Walkey, C. D., J. B. Olsen, H. B. Guo, A. Emili, and W. C. W. Chan. 2012. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. Journal of the American Chemical Society 134 (4):2139–47. doi: 10.1021/ja2084338.
  • Wang, M., Z. Jin, L. Y. Liu, Z. Wang, F. Li, W. Sun, H. Y. Cai, X. Chen, W. Y. Shen, Z. Z. Zhu, et al. 2018. Inhibition of cyclodextrins on the activity of α-amylase. Journal of Inclusion Phenomena and Macrocyclic Chemistry 90 (3–4):351–6. doi: 10.1007/s10847-018-0789-x.
  • Wang, B. L., X. Lin, Y. X. Zheng, M. H. Zeng, M. L. Huang, and Z. B. Guo. 2021. Effect of homogenization-pressure-assisted enzymatic hydrolysis on the structural and physicochemical properties of lotus-seed starch nanoparticles. International Journal of Biological Macromolecules 167:1579–86. doi: 10.1016/j.ijbiomac.2020.11.113.
  • Wang, X. L., Z. P. Liu, and L. Y. Huang. 2019. pH and thermo dual-responsive starch-g-P(DEAEMA-co-PEGMA): Synthesis via SET-LRP, self-assembly and drug release behaviors. Reactive and Functional Polymers 141:165–71. doi: 10.1016/j.reactfunctpolym.2019.05.011.
  • Wang, C. X., D. J. McClements, A. Q. Jiao, J. P. Wang, Z. Y. Jin, and C. Qiu. 2022. Resistant starch and its nanoparticles: Recent advances in their green synthesis and application as functional food ingredients and bioactive delivery systems. Trends in Food Science & Technology 119:90–100. doi: 10.1016/j.tifs.2021.11.025.
  • Wang, L. L., X. H. Zhao, F. J. Yang, W. W. Wu, M. F. Wu, Y. Y. Li, and X. X. Zhang. 2019. Loading paclitaxel into porous starch in the form of nanoparticles to improve its dissolution and bioavailability. International Journal of Biological Macromolecules 138:207–14. doi: 10.1016/j.ijbiomac.2019.07.083.
  • Wu, J., Y. D. Huang, R. S. Yao, S. S. Deng, F. H. Li, and X. L. Bian. 2019. Preparation and characterization of starch nanoparticles from potato starch by combined solid-state acid-catalyzed hydrolysis and nanoprecipitation. Starch - Stärke 71 (9–10):1900095. doi: 10.1002/star.201900095.
  • Wu, Y. P., Y. Xiao, Y. X. Yue, K. Zhong, Y. L. Zhao, and H. Gao. 2020. A deep insight into mechanism for inclusion of 2R,3R-dihydromyricetin with cyclodextrins and the effect of complexation on antioxidant and lipid-lowering activities. Food Hydrocolloids 103:105718. doi: 10.1016/j.foodhyd.2020.105718.
  • Xu, Z. L., D. Yang, T. Long, L. Yuan, S. Qiu, D. F. Li, C. D. Mu, and L. M. Ge. 2022. pH-Sensitive nanoparticles based on amphiphilic imidazole/cholesterol modified hydroxyethyl starch for tumor chemotherapy. Carbohydrate Polymers 277:118827 doi: 10.1016/j.carbpol.2021.118827.
  • Xu, J., W. X. Zhao, Y. W. Ning, M. Bashari, F. F. Wu, H. Y. Chen, N. Yang, Z. Y. Jin, B. C. Xu, L. Zhang, et al. 2013. Improved stability and controlled release of ω3/ω6 polyunsaturated fatty acids by spring dextrin encapsulation. Carbohydrate Polymers 92 (2):1633–40. doi: 10.1016/j.carbpol.2012.11.037.
  • Xu, J., W. X. Zhao, Y. W. Ning, Z. Y. Jin, B. C. Xu, and X. M. Xu. 2012. Comparative study of spring dextrin impact on amylose retrogradation. Journal of Agricultural and Food Chemistry 60 (19):4970–6. doi: 10.1021/jf2052477.
  • Yang, J., R. R. Chang, S. J. Ge, M. Zhao, C. F. Liang, L. Xiong, and Q. J. Sun. 2016. The inhibition effect of starch nanoparticles on tyrosinase activity and its mechanism. Food & Function 7 (12):4804–15. doi: 10.1039/c6fo01228k.
  • Yang, X. Y., Y. F. Chen, S. Yao, J. Q. Qian, H. Guo, and X. H. Cai. 2019. Preparation of immobilized lipase on magnetic nanoparticles dialdehyde starch. Carbohydrate Polymers 218:324–32. doi: 10.1016/j.carbpol.2019.05.012.
  • Yang, J., H. Z. He, Z. B. Gu, L. Cheng, C. M. Li, Z. F. Li, and Y. Hong. 2020. Conjugated linoleic acid loaded starch-based emulsion nanoparticles: In vivo gastrointestinal controlled release. Food Hydrocolloids 101:105477. doi: 10.1016/j.foodhyd.2019.105477.
  • Yan, C. X., N. Liang, Q. Li, P. F. Yan, and S. P. Sun. 2019. Biotin and arginine modified hydroxypropyl-β-cyclodextrin nanoparticles as novel drug delivery systems for paclitaxel. Carbohydrate Polymers 216:129–39. doi: 10.1016/j.carbpol.2019.04.024.
  • Yan, X. X., H. Y. Wei, L. H. Kou, L. L. Ren, and J. Zhou. 2021. Acid hydrolysis of amylose granules and effect of molecular weight on properties of ethanol precipitated amylose nanoparticles. Carbohydrate Polymers 252:117243 doi: 10.1016/j.carbpol.2020.117243.
  • Yin, H., C. X. Wang, J. Yue, Y. Deng, S. S. Jiao, Y. Y. Zhao, J. Zhou, and T. Cao. 2021. Optimization and characterization of 1,8-cineole/hydroxypropyl-β-cyclodextrin inclusion complex and study of its release kinetics. Food Hydrocolloids 110:106159. doi: 10.1016/j.foodhyd.2020.106159.
  • Yu, M. T., N. Ji, Y. F. Wang, L. Dai, L. Xiong, and Q. J. Sun. 2021. Starch-based nanoparticles: Stimuli responsiveness, toxicity, and interactions with food components. Comprehensive Reviews in Food Science and Food Safety 20 (1):1075–100. doi: 10.1111/1541-4337.12677.
  • Zhang, B., Q. Huang, F. X. Luo, and X. Fu. 2012. Structural characterizations and digestibility of debranched high-amylose maize starch complexed with lauric acid. Food Hydrocolloids 28 (1):174–81. doi: 10.1016/j.foodhyd.2011.12.020.
  • Zhang, L. L., S. L. Man, H. N. Qiu, Z. Liu, M. Zhang, L. Ma, and W. Y. Gao. 2016. Curcumin-cyclodextrin complexes enhanced the anti-cancer effects of curcumin. Environmental Toxicology and Pharmacology 48:31–8. doi: 10.1016/j.etap.2016.09.021.
  • Zhang, Y. M., Q. Y. Xu, and Y. Liu. 2019. Molecular recognition and biological application of modified β-cyclodextrins. Science China Chemistry 62 (5):549–60. doi: 10.1007/s11426-018-9405-3.
  • Zheng, X. Y., C. Qiu, J. Long, A. Q. Jiao, X. M. Xu, Z. Y. Jin, and J. P. Wang. 2021. Preparation and characterization of porous starch/β-cyclodextrin microsphere for loading curcumin: Equilibrium, kinetics and mechanism of adsorption. Food Bioscience 41:101081. doi: 10.1016/j.fbio.2021.101081.
  • Zheng, B., T. T. Wang, H. W. Wang, L. Chen, and Z. K. Zhou. 2020. Studies on nutritional intervention of rice starch- oleic acid complex (resistant starch type V) in rats fed by high-fat diet. Carbohydrate Polymers 246:116637. doi: 10.1016/j.carbpol.2020.116637.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.