1,623
Views
11
CrossRef citations to date
0
Altmetric
Review Articles

The control of fungi and mycotoxins by food active packaging: a review

, , , & ORCID Icon

References

  • Agriopoulou, S., E. Stamatelopoulou, and T. Varzakas. 2020. Advances in occurrence, importance, and mycotoxin control strategies: Prevention and detoxification in foods. Foods 9 (2):137. doi: 10.3390/foods9020137.
  • Ahmad, M., N. P. Nirmal, M. Danish, J. Chuprom, and S. Jafarzedeh. 2016. Characterisation of composite films fabricated from collagen/chitosan and collagen/soy protein isolate for food packaging applications. RSC Advances 6 (85):82191–204. doi: 10.1039/C6RA13043G.
  • Akbarian Meymand, M. J., and A. Babaei. 2018. Investigating of antifungal activity of polylactic acid film containing iron nanoparticles in a food system. Iranian Journal of Medical Microbiology 12 (5):338–47.
  • Alghuthaymi, M. A., K. A. Abd-Elsalam, A. Shami, E. Said-Galive, E. V. Shtykova, and A. V. Naumkin. 2020. Silver/Chitosan nanocomposites: Preparation and characterization and their fungicidal activity against dairy cattle toxicosis Penicillium expansum. Journal of Fungi 6 (2):51. doi: 10.3390/jof6020051.
  • Alirezalu, K., S. Pirouzi, M. Yaghoubi, M. Karimi-Dehkordi, S. Jafarzadeh, and A. M. Khaneghah. 2021. Packaging of beef fillet with active chitosan film incorporated with ɛ-polylysine: An assessment of quality indices and shelf life assessment. Meat Science 108475.
  • Aloui, H., K. Khwaldia, F. Licciardello, A. Mazzaglia, G. Muratore, M. Hamdi, and C. Restuccia. 2014. Efficacy of the combined application of chitosan and Locust Bean Gum with different citrus essential oils to control postharvest spoilage caused by Aspergillus flavus in dates. International Journal of Food Microbiology 170:21–8.
  • Álvarez-Hernández, M. H., G. B. Martínez-Hernández, N. Castillejo, J. A. Martínez, and F. Artés-Hernández. 2021. Development of an antifungal active packaging containing thymol and an ethylene scavenger. Food Packaging and Shelf Life 29:100734. doi: 10.1016/j.fpsl.2021.100734.
  • Amiri, S., Z. M. Moghanjougi, M. R. Bari, and A. M. Khaneghah. 2021. Natural protective agents and their applications as bio-preservatives in the food industry: An overview of current and future applications. Italian Journal of Food Science 33 (SP1):55–68. doi: 10.15586/ijfs.v33iSP1.2045.
  • Azizi, M., F. Fazeli, M. Mohammadi, and A. M. Khaneghah. 2021. Incorporation of essential oils in Iranian traditional animal oil: An assessment of physicochemical and sensory assessment. Italian Journal of Food Science 33 (SP1):69–77. doi: 10.15586/ijfs.v33iSP1.2027.
  • Azlim, N. A., A. Mohammadi Nafchi, N. Oladzadabbasabadi, F. Ariffin, P. Ghalambor, S. Jafarzadeh, and A. A. Al‐Hassan. 2021. Fabrication and characterization of a pH‐sensitive intelligent film incorporating dragon fruit skin extract. Food Science & Nutrition 00: 1-12. doi: 10.1002/fsn3.2680.
  • Babaee, M., F. Garavand, A. Rehman, S. Jafarazadeh, E. Amini, and I. Cacciotti. 2022. Biodegradability, physical, mechanical and antimicrobial attributes of starch nanocomposites containing chitosan nanoparticles. International Journal of Biological Macromolecules 195:49–58.
  • Balaguer, M. P., P. Fajardo, H. Gartner, J. Gomez-Estaca, R. Gavara, E. Almenar, and P. Hernandez-Munoz. 2014. Functional properties and antifungal activity of films based on gliadins containing cinnamaldehyde and natamycin. International Journal of Food Microbiology 173:62–71.
  • Balaguer, M. P., G. Lopez-Carballo, R. Catala, R. Gavara, and P. Hernandez-Munoz. 2013. Antifungal properties of gliadin films incorporating cinnamaldehyde and application in active food packaging of bread and cheese spread foodstuffs. International Journal of Food Microbiology 166 (3):369–77.
  • Baldoni, D., R. I. Ventura-Aguilar, M. Hernández-López, M. L. Corona-Rangel, L. L. Barrera-Necha, Z. Correa-Pacheco, and S. Bautista-Baños. 2016. Calidad postcosecha de higos ‘black mission’tratados con cubiertas naturales. Revista Iberoamericana de Tecnología Postcosecha 17 (2):267–75.
  • Barikloo, H., and E. Ahmadi. 2018. Shelf life extension of strawberry by temperatures conditioning, chitosan coating, modified atmosphere, and clay and silica nanocomposite packaging. Scientia Horticulturae 240:496–508. doi: 10.1016/j.scienta.2018.06.012.
  • Barkai-Golan, R., and N. Paster. 2008. Mouldy fruits and vegetables as a source of mycotoxins: Part 1. World Mycotoxin Journal 1 (2):147–59. doi: 10.3920/WMJ2008.x018.
  • Barreto, T. A., S. C. A. Andrade, J. F. Maciel, N. M. O. Arcanjo, M. S. Madruga, B. Meireles, Â. M. T. Cordeiro, E. L. Souza, and M. Magnani. 2016. A chitosan coating containing essential oil from Origanum vulgare L. to control postharvest mold infections and keep the quality of cherry tomato fruit. Frontiers in Microbiology 7:1724. doi: 10.3389/fmicb.2016.01724.
  • Basaran, P., N. Basaran-Akgul, and L. Oksuz. 2008. Elimination of Aspergillus parasiticus from nut surface with low pressure cold plasma (LPCP) treatment. Food Microbiology 25 (4):626–32.
  • Bhat, R., R. V. Rai, and A. A. Karim. 2010. Mycotoxins in food and feed: Present status and future concerns. Comprehensive Reviews in Food Science and Food Safety 9 (1):57–81.
  • Bodaghi, H., Y. Mostofi, A. Oromiehie, Z. Zamani, B. Ghanbarzadeh, C. Costa, A. Conte, and M. A. Del Nobile. 2013. Evaluation of the photocatalytic antimicrobial effects of a TiO2 nanocomposite food packaging film by in vitro and in vivo tests. Lwt - Food Science and Technology 50 (2):702–6. doi: 10.1016/j.lwt.2012.07.027.
  • Burgess, K. M. N., J. B. Renaud, T. McDowell, and M. W. Sumarah. 2016. Mechanistic insight into the biosynthesis and detoxification of fumonisin mycotoxins. ACS Chemical Biology 11 (9):2618–25.
  • Cakmakci, S., M. Gurses, A. A. Hayaloglu, B. Cetin, P. Sekerci, and E. Dagdemir. 2015. Mycotoxin production capability of Penicillium roqueforti in strains isolated from mould-ripened traditional Turkish civil cheese. Food Additives & Contaminants: Part A 32 (2):245–9. doi: 10.1080/19440049.2014.997808.
  • Calderón-Castro, A., M. O. Vega-García, J. de Jesús Zazueta-Morales, P. R. Fitch-Vargas, A. Carrillo-López, R. Gutiérrez-Dorado, V. Limón-Valenzuela, and E. Aguilar-Palazuelos. 2018. Effect of extrusion process on the functional properties of high amylose corn starch edible films and its application in mango (Mangifera indica L.) cv. Tommy Atkins. Journal of Food Science and Technology 55 (3):905–14. doi: 10.1007/s13197-017-2997-6.
  • Cé, N., C. P. Z. Noreña, and A. Brandelli. 2012. Antimicrobial activity of chitosan films containing nisin, peptide P34, and natamycin. Cyta - Journal of Food 10 (1):21–6. doi: 10.1080/19476337.2010.537371.
  • Cha, D. S., K. Cooksey, M. S. Chinnan, and H. J. Park. 2003. Release of nisin from various heat-pressed and cast films. Lwt - Food Science and Technology 36 (2):209–13. doi: 10.1016/S0023-6438(02)00209-8.
  • Chaudhari, A. K., A. K. Dwivedy, V. K. Singh, S. Das, A. Singh, and N. K. Dubey. 2019. Essential oils and their bioactive compounds as green preservatives against fungal and mycotoxin contamination of food commodities with special reference to their nanoencapsulation. Environmental Science and Pollution Research International 26 (25):25414–31.
  • Cheng, M. 2018. Antimicrobial activity of essential oils and their application in active packaging to inhibit the growth of molds on bread. Canada: McGill University.
  • Chen, J., Y. Hu, J. Wang, H. Hu, and H. Cui. 2016. Combined effect of ozone treatment and modified atmosphere packaging on antioxidant defense system of fresh‐cut green peppers. Journal of Food Processing and Preservation 40 (5):1145–50. doi: 10.1111/jfpp.12695.
  • Chen, J., L. Sun, Y. Cheng, Z. Lu, K. Shao, T. Li, C. Hu, and H. Han. 2016. Graphene oxide-silver nanocomposite: Novel agricultural antifungal agent against Fusarium graminearum for crop disease prevention. ACS Applied Materials & Interfaces 8 (36):24057–70. doi: 10.1021/acsami.6b05730.
  • Civelek, I., and A. Cagri-Mehmetoglu. 2019. Determination of antifungal effect of edible coatings containing Williopsis saturnus var. saturnus against yeast and mold growth on kashar cheese. Journal of Food Science 84 (2):311–8. doi: 10.1111/1750-3841.14431.
  • da Cruz Cabral, L., V. F. Pinto, and A. Patriarca. 2013. Application of plant derived compounds to control fungal spoilage and mycotoxin production in foods. International Journal of Food Microbiology 166 (1):1–14.
  • da Silva, M. A., B. T. Iamanaka, M. H. Taniwaki, and T. G. Kieckbusch. 2013. Evaluation of the antimicrobial potential of alginate and alginate/chitosan films containing potassium sorbate and natamycin. Packaging Technology and Science 26 (8):479–92. doi: 10.1002/pts.2000.
  • Dagnas, S., B. Onno, and J.-M. Membré. 2014. Modeling growth of three bakery product spoilage molds as a function of water activity, temperature and pH. International Journal of Food Microbiology 186:95–104.
  • de Carvalho, A. P. A., and C. A. Conte-Junior. 2021. Health benefits of phytochemicals from Brazilian native foods and plants: Antioxidant, antimicrobial, anti-cancer, and risk factors of metabolic/endocrine disorders control. Trends in Food Science & Technology 111:534–48. doi: 10.1016/j.tifs.2021.03.006.
  • de Souza, C., A. M. Khaneghah, and C. A. F. Oliveira. 2021. The occurrence of aflatoxin M1 in industrial and traditional fermented milk: A systematic review study. Italian Journal of Food Science 33 (SP1):12–23. doi: 10.15586/ijfs.v33iSP1.1982.
  • de Souza, E. L., C. V. Sales, C. E. V. de Oliveira, L. A. A. Lopes, M. L. da Conceição, L. R. R. Berger, and T. Stamford. 2015. Efficacy of a coating composed of chitosan from Mucor circinelloides and carvacrol to control Aspergillus flavus and the quality of cherry tomato fruits. Frontiers in Microbiology 6:732. doi: 10.3389/fmicb.2015.00732.
  • del Sol González-Forte, L., J. I. Amalvy, and N. Bertola. 2019. Corn starch-based coating enriched with natamycin as an active compound to control mold contamination on semi-hard cheese during ripening. Heliyon 5 (6):e01957. doi: 10.1016/j.heliyon.2019.e01957.
  • Deng, L.-Z., Y. Tao, A. S. Mujumdar, Z. Pan, C. Chen, X.-H. Yang, Z.-L. Liu, H. Wang, and H.-W. Xiao. 2020. Recent advances in non-thermal decontamination technologies for microorganisms and mycotoxins in low-moisture foods. Trends in Food Science & Technology 106:104–12. doi: 10.1016/j.tifs.2020.10.012.
  • e Silva, P. d C., L. A. S. Pereira, A. M. T. Lago, M. Valquíria, É. M. de Rezende, G. R. Carvalho, J. E. Oliveira, and J. M. Marconcini. 2019. Physical-mechanical and antifungal properties of pectin nanocomposites/neem oil nanoemulsion for seed coating. Food Biophysics 14 (4):456–66. doi: 10.1007/s11483-019-09592-0.
  • Eghbal, N., E. Dumas, M. S. Yarmand, M. E. Mousavi, N. Oulahal, and A. Gharsallaoui. 2019. Antimicrobial films based on pectin and sodium caseinate for the release of antifungal natamycin. Journal of Food Processing and Preservation 43 (7):e13953. doi: 10.1111/jfpp.13953.
  • Esfahani, A., M. R. Ehsani, M. Mizani, and A. Mohammadi Nafchi. 2020. Application of bio-nanocomposite films based on nano-TiO2 and cinnamon essential oil to improve the physiochemical, sensory, and microbial properties of fresh pistachio. Journal of Nuts 11 (3):195–212.
  • Fakhouri, F. M., D. Costa, F. Yamashita, S. M. Martelli, R. C. Jesus, K. Alganer, F. P. Collares-Queiroz, and L. H. Innocentini-Mei. 2013. Comparative study of processing methods for starch/gelatin films. Carbohydrate Polymers 95 (2):681–9.
  • Fasake, V., S. K. Dash, K. Dhalsamant, N. R. Sahoo, and U. S. Pal. 2021. Effect of ozone and antimicrobial treatments on the shelf life of cauliflower under modified atmosphere packaging. Journal of Food Science and Technology:1–11.
  • Fasihi, H.,N. Noshirvani,M. Hashemi,M. Fazilati,H. Salavati, andV. Coma. 2019. Antioxidant and antimicrobial properties of carbohydrate-based films enriched with cinnamon essential oil by Pickering emulsion method. Food Packaging and Shelf Life 19:147–54. doi:10.1016/j.fpsl.2018.12.007.
  • Fitch-Vargas, P. R., E. Aguilar-Palazuelos, J. de Jesús Zazueta-Morales, M. O. Vega-García, J. E. Valdez-Morales, F. Martínez-Bustos, and N. Jacobo-Valenzuela. 2016. Physicochemical and microstructural characterization of corn starch edible films obtained by a combination of extrusion technology and casting technique. Journal of Food Science 81 (9):E2224–E2232.
  • Fitch-Vargas, P. R., E. Aguilar-Palazuelos, M. O. Vega-García, J. J. Zazueta-Morales, A. Calderón-Castro, A. Montoya-Rodríguez, C. I. Delgado-Nieblas, and I. L. Camacho-Hernández, Universidad Autónoma de Sinaloa. 2019. Effect of a corn starch coating obtained by the combination of extrusion process and casting technique on the postharvest quality of tomato. Revista Mexicana de Ingeniería Química 18 (3):789–801. doi: 10.24275/uam/izt/dcbi/revmexingquim/2019v18n3/Fitch.
  • Garavand, F., I. Cacciotti, N. Vahedikia, A. Rehman, Ö. Tarhan, S. Akbari-Alavijeh, R. Shaddel, A. Rashidinejad, M. Nejatian, S. Jafarzadeh, et al. 2020. A comprehensive review on the nanocomposites loaded with chitosan nanoparticles for food packaging. Critical Reviews in Food Science and Nutrition:1–34. doi: 10.1080/10408398.2020.1843133.
  • Garrido Assis, O. B., andD. De Britto. 2011. Evaluation of the antifungal properties of chitosan coating on cut apples using a non-invasive image analysis technique. Polymer International 60 (6):932–6. doi:10.1002/pi.3039.
  • Gavahian, M., Y.-H. Chu, J. M. Lorenzo, A. Mousavi Khaneghah, and F. J. Barba. 2020. Essential oils as natural preservatives for bakery products: Understanding the mechanisms of action, recent findings, and applications. Critical Reviews in Food Science and Nutrition 60 (2):310–21. doi: 10.1080/10408398.2018.1525601.
  • Gómez, J. V., A. Tarazona, F. Mateo, M. Jiménez, and E. M. Mateo. 2019. Potential impact of engineered silver nanoparticles in the control of aflatoxins, ochratoxin A and the main aflatoxigenic and ochratoxigenic species affecting foods. Food Control 101:58–68. doi: 10.1016/j.foodcont.2019.02.019.
  • González-Forte, L., S. del, J. I. Amalvy, and N. Bertola. 2019. Effect of natamycin on the physicochemical properties of corn starch based films and their effect on Penicillium spp. activity. International Journal of Polymer Analysis and Characterization 24 (1):63–74. doi: 10.1080/1023666X.2018.1517200.
  • Grande-Tovar, C. D., C. Chaves-Lopez, A. Serio, C. Rossi, and A. Paparella. 2018. Chitosan coatings enriched with essential oils: Effects on fungi involved in fruit decay and mechanisms of action. Trends in Food Science & Technology 78:61–71. doi: 10.1016/j.tifs.2018.05.019.
  • Gregirchak, N., O. Stabnikova, and V. Stabnikov. 2020. Application of lactic acid bacteria for coating of wheat bread to protect it from microbial spoilage. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 75 (2):223–9.
  • Guimarães, A., Ó. Ramos, M. Cerqueira, A. Venâncio, and L. Abrunhosa. 2020. Active whey protein edible films and coatings incorporating Lactobacillus buchneri for Penicillium nordicum control in cheese. Food and Bioprocess Technology 13 (6):1074–86. doi: 10.1007/s11947-020-02465-2.
  • Hadidi, M., S. Jafarzadeh, M. Forough, F. Garavand, S. Alizadeh, A. Salehabadi, A. M. Khaneghah, and S. M. Jafari. 2022. Plant protein-based food packaging films; recent advances in fabrication, characterization, and applications. Trends in Food Science & Technology 120:154–73. doi: 10.1016/j.tifs.2022.01.013.
  • Hammoudi, N., H. Ziani Cherif, F. Borsali, K. Benmansour, and A. Meghezzi. 2020. Preparation of active antimicrobial and antifungal alginate-montmorillonite/lemon essential oil nanocomposite films. Materials Technology 35 (7):383–94. doi: 10.1080/10667857.2019.1685292.
  • Hashemi Moosavi, M., A. Mousavi Khaneghah, F. Javanmardi, M. Hadidi, Z. Hadian, S. Jafarzadeh, E. Huseyn, and A. S. Sant’Ana. 2021. A review of recent advances in the decontamination of mycotoxin and inactivation of fungi by ultrasound. Ultrasonics Sonochemistry 79:105755.
  • Heras-Mozos, R., V. Muriel-Galet, G. López-Carballo, R. Catalá, P. Hernández-Muñoz, and R. Gavara. 2019. Development and optimization of antifungal packaging for sliced pan loaf based on garlic as active agent and bread aroma as aroma corrector. International Journal of Food Microbiology 290:42–8.
  • Hermawan, D., T. K. Lai, S. Jafarzadeh, D. A. Gopakumar, M. Hasan, F. A. T. Owolabi, N. A. Sri Aprilia, S. Rizal, and H. P. S. A. Khalil. 2019. Development of seaweed-based bamboo microcrystalline cellulose films intended for sustainable food packaging applications. BioResources 14 (2):3389–410. doi: 10.15376/biores.14.2.3389-3410.
  • Heshmati, A., M. Khorshidi, and A. M. Khaneghah. 2021. The prevalence and risk assessment of aflatoxin in sesame based products. Italian Journal of Food Science 33 (SP1):92–102. doi: 10.15586/ijfs.v33iSP1.2065.
  • Hossain, F., P. Follett, S. Salmieri, K. D. Vu, C. Fraschini, and M. Lacroix. 2019. Antifungal activities of combined treatments of irradiation and essential oils (EOs) encapsulated chitosan nanocomposite films in in vitro and in situ conditions. International Journal of Food Microbiology 295:33–40.
  • Hossain, F., P. Follett, S. Salmieri, K. D. Vu, M. Harich, and M. Lacroix. 2019. Synergistic effects of nanocomposite films containing essential oil nanoemulsions in combination with ionizing radiation for control of rice weevil Sitophilus oryzae in stored grains. Journal of Food Science 84 (6):1439–46. doi: 10.1111/1750-3841.14603.
  • Hossain, F., P. Follett, K. D. Vu, S. Salmieri, C. Fraschini, M. Jamshidian, and M. Lacroix. 2019. Antifungal activity of combined treatments of active methylcellulose-based films containing encapsulated nanoemulsion of essential oils and γ–irradiation: In vitro and in situ evaluations. Cellulose 26 (2):1335–54. doi: 10.1007/s10570-018-2135-2.
  • Hymery, N., V. Vasseur, M. Coton, J. Mounier, J. Jany, G. Barbier, and E. Coton. 2014. Filamentous fungi and mycotoxins in cheese: A review. Comprehensive Reviews in Food Science and Food Safety 13 (4):437–56.
  • Ijabadeniyi, O. A., A. Govender, O. F. Olagunju, and A. B. Oyedeji. 2021. The antimicrobial activity of two phenolic acids against foodborne Escherichia coli and Listeria monocytogenes and their effectiveness in a meat system. Italian Journal of Food Science 33 (1):39–45. doi: 10.15586/ijfs.v33i1.1933.
  • Jafari, K., A. E. Fathabad, Y. Fakhri, M. Shamsaei, M. Miri, R. Farahmandfar, and A. M. Khaneghah. 2021. Aflatoxin M1 in traditional and industrial pasteurized milk samples from Tiran County, Isfahan Province: A probabilistic health risk assessment. Italian Journal of Food Science 33 (SP1):103–16. doi: 10.15586/ijfs.v33iSP1.2054.
  • Jafari, F. J., and A. Javadi. 2020. The effect of chitosan coating incorporated with walnut leaf extract on shelf life of pistachio. Journal of Food Research 30 (3):221–32.
  • Jafarzadeh, S., A. Alias, F. Ariffin, and S. Mahmud. 2017. Characterization of semolina protein film with incorporated zinc oxide nano rod intended for food packaging. Polish Journal of Food and Nutrition Sciences 67 (3):183–90. doi: 10.1515/pjfns-2016-0025.
  • Jafarzadeh, S., A. K. Alias, F. Ariffin, S. Mahmud, A. Najafi, and M. Ahmad. 2017. Fabrication and characterization of novel semolina-based antimicrobial films derived from the combination of ZnO nanorods and nanokaolin. Journal of Food Science and Technology 54 (1):105–13.
  • Jafarzadeh, S., F. Ariffin, S. Mahmud, A. K. Alias, A. Najafi, and M. Ahmad. 2017. Characterization of semolina biopolymer films enriched with zinc oxide nano rods. Italian Journal of Food Science 29 (2):195.
  • Jafarzadeh, S., K. Abdolmalek, F. Javanmardi, M. Hadidi, and A. Mousavi Khaneghah. 2020. Recent advances in plant‐based compounds for mitigation of mycotoxin contamination in food products: current status, challenges, and perspectives. International Journal of Food Science & Technology. doi: 10.1111/ijfs.15555.
  • Jafarzadeh, S., and S. M. Jafari. 2020a. Impact of metal nanoparticles on the mechanical, barrier, optical and thermal properties of biodegradable food packaging materials. Critical Reviews in Food Science and Nutrition 61 (16):2640–2658. doi: 10.1080/10408398.2020.1783200
  • Jafarzadeh, S., S. M. Jafari, A. Salehabadi, A. M. Nafchi, U. S. Uthaya, and H. P. S. A. Khalil. 2020b. Biodegradable green packaging with antimicrobial functions based on the bioactive compounds from tropical plants and their by-products. Trends in Food Science & Technology 100:262–77. doi: 10.1016/j.tifs.2020.04.017.
  • Jafarzadeh, S., A. Mohammadi Nafchi, A. Salehabadi, N. Oladzad-Abbasabadi, and S. M. Jafari. 2021. Application of bio-nanocomposite films and edible coatings for extending the shelf life of fresh fruits and vegetables. Advances in Colloid and Interface Science 291:102405. doi: 10.1016/j.cis.2021.102405.
  • Jafarzadeh, S., J.-W. Rhim, A. K. Alias, F. Ariffin, and S. Mahmud. 2019. Application of antimicrobial active packaging film made of semolina flour, nano zinc oxide and nano-kaolin to maintain the quality of low-moisture mozzarella cheese during low-temperature storage. Journal of the Science of Food and Agriculture 99 (6):2716–25.
  • Jafarzadeh, S., A. Salehabadi, and S. M. Jafari. 2020a. 10 Metal nanoparticles as antimicrobial agents in food packaging, 379–414. Amsterdam, The Netherlands: Elsevier.
  • Jafarzadeh, S., A. Salehabadi, and S. M. Jafari. 2020b. Handbook of food nanotechnology: Applications and approaches, 379.
  • Jin, S., K. Li, Q. Gao, W. Zhang, H. Chen, S. Q. Shi, and J. Li. 2020. Assembly of graphene oxide into the hyperbranched frameworks for the fabrication of flexible protein-based films with enhanced conductivities. Composites Part B: Engineering 196:108110. doi: 10.1016/j.compositesb.2020.108110.
  • Karaca, H., M. B. Pérez-Gago, V. Taberner, and L. Palou. 2014. Evaluating food additives as antifungal agents against Monilinia fructicola in vitro and in hydroxypropyl methylcellulose–lipid composite edible coatings for plums. International Journal of Food Microbiology 179:72–9.
  • Kazemian-Bazkiaee, F., A. Ebrahimi, S. M. Hosseini, S. Shojaee-Aliabadi, M. Farhoodi, B. Rahmatzadeh, and Z. Sheikhi. 2020. Evaluating the protective effect of edible coatings on lipid oxidation, fatty acid composition, aflatoxins levels of roasted peanut kernels. Journal of Food Measurement and Characterization 14 (2):1025–38. doi: 10.1007/s11694-019-00352-9.
  • Khaneghah, A. M., Y. Fakhri, S. Raeisi, B. Armoon, and A. S. Sant’Ana. 2018c. Prevalence and concentration of ochratoxin A, zearalenone, deoxynivalenol and total aflatoxin in cereal-based products: A systematic review and meta-analysis. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 118:830–48. doi: 10.1016/j.fct.2018.06.037.
  • Khaneghah, A. M., Y. Fakhri, and A. S. Sant’Ana. 2018b. Impact of unit operations during processing of cereal-based products on the levels of deoxynivalenol, total aflatoxin, ochratoxin A, and zearalenone: A systematic review and meta-analysis. Food Chemistry 268:611–24. doi: 10.1016/j.foodchem.2018.06.072.
  • Khaneghah, A. M., L. M. Martins, A. M. von Hertwig, R. Bertoldo, and A. S. Sant’Ana. 2018a. Deoxynivalenol and its masked forms: Characteristics, incidence, control and fate during wheat and wheat-based products processing-A review. Trends in Food Science & Technology 71:13–24. doi: 10.1016/j.tifs.2017.10.012.
  • Khaneghah, A. M., M. H. Moosavi, C. A. Oliveira, F. Vanin, and A. S. Sant’Ana. 2020. Electron beam irradiation to reduce the mycotoxin and microbial contaminations of cereal-based products: An overview. Food and Chemical Toxicology 143:111557. doi: 10.1016/j.fct.2020.111557.
  • Khaneghah, A. M., M. Moosavi, S. S. Omar, C. A. F. Oliveira, M. Karimi-Dehkordi, Y. Fakhri, E. Huseyn, A. Nematollahi, M. Farahani, and A. S. Sant’Ana. 2021. The prevalence and concentration of aflatoxin M1 among different types of cheeses: A global systematic review, meta-analysis, and meta-regression. Food Control 125:107960. doi: 10.1016/j.foodcont.2021.107960.
  • Kharchoufi, S., L. Parafati, F. Licciardello, G. Muratore, M. Hamdi, G. Cirvilleri, and C. Restuccia. 2018. Edible coatings incorporating pomegranate peel extract and biocontrol yeast to reduce Penicillium digitatum postharvest decay of oranges. Food Microbiology 74:107–12.
  • Khezerlou, A., M. Alizadeh-Sani, M. Azizi-Lalabadi, and A. Ehsani. 2018. Nanoparticles and their antimicrobial properties against pathogens including bacteria, fungi, parasites and viruses. Microbial Pathogenesis 123:505–26.
  • Khodaei, D., F. Javanmardi, and A. M. Khaneghah. 2021. The global overview of the occurrence of mycotoxins in Cereals: A three-year survey. Current Opinion in Food Science 39:36–42. doi: 10.1016/j.cofs.2020.12.012.
  • Kim, J. M., M. H. Lee, J. A. Ko, D. H. Kang, H. Bae, and H. J. Park. 2018. Influence of food with high moisture content on oxygen barrier property of polyvinyl alcohol (PVA)/vermiculite nanocomposite coated multilayer packaging film. Journal of Food Science 83 (2):349–57.
  • Kõrge, K., H. Šeme, M. Bajić, B. Likozar, and U. Novak. 2020. Reduction in spoilage microbiota and cyclopiazonic acid mycotoxin with chestnut extract enriched chitosan packaging: Stability of inoculated Gouda cheese. Foods 9 (11):1645. doi: 10.3390/foods9111645.
  • Kumar, A., A. Kujur, P. P. Singh, and B. Prakash. 2019. Nanoencapsulated plant-based bioactive formulation against food-borne molds and aflatoxin B1 contamination: Preparation, characterization and stability evaluation in the food system. Food Chemistry 287:139–50. doi: 10.1016/j.foodchem.2019.02.045.
  • Kuorwel, K. K.,M. J. Cran,K. Sonneveld,J. Miltz, andS. W. Bigger. 2014. Evaluation of Antifungal Activity of Antimicrobial Agents on Cheddar Cheese. Packaging Technology and Science 27 (1):49–58. doi:10.1002/pts.2003.
  • Lee, J., M. A. Park, C. S. Yoon, J. H. Na, and J. Han. 2019. Characterization and preservation performance of multilayer film with insect repellent and antimicrobial activities for sliced wheat bread packaging. Journal of Food Science 84 (11):3194–203.
  • Lin, S., C. Chen, H. Luo, W. Xu, H. Zhang, J. Tian, R. Ju, and L. Wang. 2019. The combined effect of ozone treatment and polyethylene packaging on postharvest quality and biodiversity of Toona sinensis (A. Juss.) M. Roem. Postharvest Biology and Technology 154:1–10. doi: 10.1016/j.postharvbio.2019.04.010.
  • Liu, J., X. Yao, D. Yun, M. Zhang, C. Qian, and J. Liu. 2021. Development of active packaging films based on quaternary ammonium chitosan, polyvinyl alcohol and litchi (Litchi chinensis Sonn.) pericarp extract. Quality Assurance and Safety of Crops & Foods 13 (SP2):9–19. doi: 10.15586/qas.v13iSP2.945.
  • López-Meneses, A. K., M. Plascencia-Jatomea, J. Lizardi-Mendoza, D. Fernández-Quiroz, F. Rodríguez-Félix, R. R. Mouriño-Pérez, and M. O. Cortez-Rocha. 2018. Schinus molle L. essential oil-loaded chitosan nanoparticles: Preparation, characterization, antifungal and anti-aflatoxigenic properties. LWT 96:597–603. doi: 10.1016/j.lwt.2018.06.013.
  • Luo, Y., X. Liu, and J. Li. 2018. Updating techniques on controlling mycotoxins-A review. Food Control 89:123–32. doi: 10.1016/j.foodcont.2018.01.016.
  • Luz, C., J. Calpe, F. Saladino, F. B. Luciano, M. Fernandez‐Franzón, J. Mañes, and G. Meca. 2018. Antimicrobial packaging based on ɛ‐polylysine bioactive film for the control of mycotoxigenic fungi in vitro and in bread. Journal of Food Processing and Preservation 42 (1):e13370.
  • Lyagin, I., and E. Efremenko. 2019. Enzymes for detoxification of various mycotoxins: Origins and mechanisms of catalytic action. Molecules 24 (13):2362. doi: 10.3390/molecules24132362.
  • Maghsoudlou, A., Y. Maghsoudlou, M. Khomeiri, and M. Ghorbani. 2012. Evaluation of anti-fungal activity of chitosan and its effect on the moisture absorption and organoleptic characteristics of pistachio nuts. Research and Innovation in Food Science and Technology 1 (2):87–98.
  • Mahdavi, E., and P. Ariaii. 2021. Characterization of functional fish ham produced from Silver carp (Hypophthalmichthys molitrix) surimi enriched with natural antioxidant and vegetable fiber. Italian Journal of Food Science 33 (SP1):127–36. doi: 10.15586/ijfs.v33iSP1.2075.
  • Makhuvele, R., K. Naidu, S. Gbashi, V. C. Thipe, O. A. Adebo, and P. B. Njobeh. 2020. The use of plant extracts and their phytochemicals for control of toxigenic fungi and mycotoxins. Heliyon 6 (10):e05291.
  • Manso, S., D. Pezo, R. Gómez-Lus, and C. Nerín. 2014. Diminution of aflatoxin B1 production caused by an active packaging containing cinnamon essential oil. Food Control 45:101–8. doi: 10.1016/j.foodcont.2014.04.031.
  • Marshall, H., J. P. Meneely, B. Quinn, Y. Zhao, P. Bourke, B. F. Gilmore, G. Zhang, and C. T. Elliott. 2020. Novel decontamination approaches and their potential application for post-harvest aflatoxin control. Trends in Food Science & Technology 106:489–96. doi: 10.1016/j.tifs.2020.11.001.
  • Mateo, E. M., J. V. Gómez, I. Domínguez, J. V. Gimeno-Adelantado, R. Mateo-Castro, R. Gavara, and M. Jiménez. 2017. Impact of bioactive packaging systems based on EVOH films and essential oils in the control of aflatoxigenic fungi and aflatoxin production in maize. International Journal of Food Microbiology 254:36–46.
  • Mehyar, G. F.,H. M. Al-Qadiri, andB. G. Swanson. 2014. Edible Coatings and Retention of Potassium Sorbate on Apples, Tomatoes and Cucumbers to Improve Antifungal Activity During Refrigerated Storage. Journal of Food Processing and Preservation 38 (1):175–82. doi:10.1111/j.1745-4549.2012.00762.x.
  • Mei, L. X., A. M. Nafchi, F. Ghasemipour, A. M. Easa, S. Jafarzadeh, and A. A. Al-Hassan. 2020. Characterization of pH sensitive sago starch films enriched with anthocyanin-rich torch ginger extract. International Journal of Biological Macromolecules 164:4603–12.
  • Mert, I. D. 2020. The applications of microfluidization in cereals and cereal-based products: An overview. Critical Reviews in Food Science and Nutrition 60 (6):1007–24. doi: 10.1080/10408398.2018.1555134.
  • Mihaly Cozmuta, A., A. Peter, L. Mihaly Cozmuta, C. Nicula, L. Crisan, L. Baia, and A. Turila. 2015. Active packaging system based on Ag/TiO2 nanocomposite used for extending the shelf life of bread. Chemical and microbiological investigations. Packaging Technology and Science 28 (4):271–84. doi: 10.1002/pts.2103.
  • Mir, S. A., B. N. Dar, M. A. Shah, S. A. Sofi, A. M. Hamdani, C. A. F. Oliveira, M. Hashemi Moosavi, A. Mousavi Khaneghah, and A. S. Sant’Ana. 2021. Application of new technologies in decontamination of mycotoxins in cereal grains: Challenges, and perspectives. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 148:111976. doi: 10.1016/j.fct.2021.111976.
  • Mirza Alizadeh, A., S. A. Golzan, A. Mahdavi, S. Dakhili, Z. Torki, and H. Hosseini. 2021. Recent advances on the efficacy of essential oils on mycotoxin secretion and their mode of action. Critical Reviews in Food Science and Nutrition:1–26.
  • Misra, N. N., S. K. Pankaj, A. Segat, and K. Ishikawa. 2016. Cold plasma interactions with enzymes in foods and model systems. Trends in Food Science & Technology 55:39–47. doi: 10.1016/j.tifs.2016.07.001.
  • Mokhtarian, M., H. Tavakolipour, F. Bagheri, C. A. F. Oliveira, C. H. Corassin, and A. M. Khaneghah. 2020. Aflatoxin B1 in the Iranian pistachio nut and decontamination methods: A systematic review. Quality Assurance and Safety of Crops & Foods 12 (4):15–25. doi: 10.15586/qas.v12i4.784.
  • Moretti, A., A. F. Logrieco, and A. Susca. 2017. Mycotoxins: An underhand food problem. Mycotoxigenic Fungi:3–12.
  • Moslehi, Z., A. Mohammadi Nafchi, M. Moslehi, and S. Jafarzadeh. 2021. Aflatoxin, microbial contamination, sensory attributes, and morphological analysis of pistachio nut coated with methylcellulose. Food Science & Nutrition 9 (5):2576–84.
  • Mousavi Khaneghah, A., I. Eş, S. Raeisi, and Y. Fakhri. 2018. Aflatoxins in cereals: State of the art. Journal of Food Safety 38 (6):e12532. doi: 10.1111/jfs.12532.
  • Ochoa, T. A., B. E. G. Almendárez, A. A. Reyes, D. M. R. Pastrana, G. F. G. López, O. M. Belloso, and C. Regalado-González. 2017. Design and characterization of corn starch edible films including beeswax and natural antimicrobials. Food and Bioprocess Technology 10 (1):103–14. doi: 10.1007/s11947-016-1800-4.
  • Otero, V., R. Becerril, J. A. Santos, J. M. Rodríguez-Calleja, C. Nerín, and M.-L. García-López. 2014. Evaluation of two antimicrobial packaging films against Escherichia coli O157: H7 strains in vitro and during storage of a Spanish ripened sheep cheese (Zamorano). Food Control 42:296–302. doi: 10.1016/j.foodcont.2014.02.022.
  • Pankaj, S. K., H. Shi, and K. M. Keener. 2018. A review of novel physical and chemical decontamination technologies for aflatoxin in food. Trends in Food Science & Technology 71:73–83. doi: 10.1016/j.tifs.2017.11.007.
  • Passone, M. A.,N. S. Girardi, andM. Etcheverry. 2012. Evaluation of the control ability of five essential oils against Aspergillus section Nigri growth and ochratoxin A accumulation in peanut meal extract agar conditioned at different water activities levels. International Journal of Food Microbiology 159 (3):198–206. doi:10.1016/j.ijfoodmicro.2012.08.019.
  • Peressini, D., B. Bravin, R. Lapasin, C. Rizzotti, and A. Sensidoni. 2003. Starch–methylcellulose based edible films: Rheological properties of film-forming dispersions. Journal of Food Engineering 59 (1):25–32. doi: 10.1016/S0260-8774(02)00426-0.
  • Pintado, C. M. B. S., M. A. S. S. Ferreira, and I. Sousa. 2010. Control of pathogenic and spoilage microorganisms from cheese surface by whey protein films containing malic acid, nisin and natamycin. Food Control 21 (3):240–6. doi: 10.1016/j.foodcont.2009.05.017.
  • Prabha, K., P. Ghosh, S. Abdullah, R. M. Joseph, R. Krishnan, S. S. Rana, and R. C. Pradhan. 2021. Recent development, challenges, and prospects of extrusion technology. Future Foods 3:100019. doi: 10.1016/j.fufo.2021.100019.
  • Qian, M., D. Liu, X. Zhang, Z. Yin, B. B. Ismail, X. Ye, and M. Guo. 2021. A review of active packaging in bakery products: Applications and future trends. Trends in Food Science & Technology 114:459–71. doi: 10.1016/j.tifs.2021.06.009.
  • Qin, Z., L. Mo, M. Liao, H. He, and J. Sun. 2019. Preparation and characterization of soy protein isolate-based nanocomposite films with cellulose nanofibers and nano-silica via silane grafting. Polymers 11 (11):1835. doi: 10.3390/polym11111835.
  • Qiu, M.,C. Wu,G. Ren,X. Liang,X. Wang, andJ. Huang. 2014. Effect of chitosan and its derivatives as antifungal and preservative agents on postharvest green asparagus. Food Chemistry 155:105–11. doi:10.1016/j.foodchem.2014.01.026.
  • Quiles, J. M.,L. Manyes,F. Luciano,J. Mañes, andG. Meca. 2015. Influence of the antimicrobial compound allyl isothiocyanate against the Aspergillus parasiticus growth and its aflatoxins production in pizza crust. Food and Chemical Toxicology 83:222–8. doi:10.1016/j.fct.2015.06.017.
  • Razavi, R., Y. Maghsoudlou, M. Aalami, and M. Ghorbani. 2021. Impact of carboxymethyl cellulose coating enriched with Thymus vulgaris L. extract on physicochemical, microbial, and sensorial properties of fresh hazelnut (Corylus avellana L.) during storage. Journal of Food Processing and Preservation 45 (4):e15313. doi: 10.1111/jfpp.15313.
  • Rodríguez, A.,C. Nerín, andR. Batlle. 2008. New Cinnamon-Based Active Paper Packaging against Rhizopusstolonifer Food Spoilage. Journal of Agricultural and Food Chemistry 56 (15):6364–9. doi:10.1021/jf800699q.
  • Rohani Shirvan, A., N. Hemmatinejad, S. H. Bahrami, and A. Bashari. 2021. A comparison between solvent casting and electrospinning methods for the fabrication of neem extract-containing buccal films. Journal of Industrial Textiles:152808372110277. doi: 10.1177/15280837211027785.
  • Sarrocco, S., A. Mauro, and P. Battilani. 2019. Use of competitive filamentous fungi as an alternative approach for mycotoxin risk reduction in staple cereals: State of art and future perspectives. Toxins 11 (12):701. doi: 10.3390/toxins11120701.
  • Sarrocco, S., and G. Vannacci. 2018. Preharvest application of beneficial fungi as a strategy to prevent postharvest mycotoxin contamination: A review. Crop Protection 110:160–70. doi: 10.1016/j.cropro.2017.11.013.
  • Schettino, R., E. Pontonio, M. Gobbetti, and C. G. Rizzello. 2020. Extension of the shelf-life of fresh pasta using chickpea flour fermented with selected lactic acid bacteria. Microorganisms 8 (9):1322. doi: 10.3390/microorganisms8091322.
  • Senghor, L. A., A. Ortega-Beltran, J. Atehnkeng, K. A. Callicott, P. J. Cotty, and R. Bandyopadhyay. 2020. The atoxigenic biocontrol product Aflasafe SN01 is a valuable tool to mitigate aflatoxin contamination of both maize and groundnut cultivated in Senegal. Plant Disease 104 (2):510–20. doi: 10.1094/PDIS-03-19-0575-RE.
  • Senturk Parreidt, T., M. Schmid, and K. Müller. 2018. Effect of dipping and vacuum impregnation coating techniques with alginate based coating on physical quality parameters of cantaloupe melon. Journal of Food Science 83 (4):929–36. doi: 10.1111/1750-3841.14091.
  • Srinivasa, P. C., M. N. Ramesh, K. R. Kumar, and R. N. Tharanathan. 2004. Properties of chitosan films prepared under different drying conditions. Journal of Food Engineering 63 (1):79–85. doi: 10.1016/S0260-8774(03)00285-1.
  • Suhag, R., N. Kumar, A. T. Petkoska, and A. Upadhyay. 2020. Film formation and deposition methods of edible coating on food products: A review. Food Research International (Ottawa, ON). 136:109582.
  • Synowiec, A.,M. Gniewosz,K. Kraśniewska,J. L. Przybył,K. Bączek, andZ. Węglarz. 2014. Antimicrobial and antioxidant properties of pullulan film containing sweet basil extract and an evaluation of coating effectiveness in the prolongation of the shelf life of apples stored in refrigeration conditions. Innovative Food Science & Emerging Technologies 23:171–81. doi:10.1016/j.ifset.2014.03.006.
  • Taheur, F. B., B. Kouidhi, Y. M. A. Al Qurashi, J. B. Salah-Abbès, and K. Chaieb. 2019. Biotechnology of mycotoxins detoxification using microorganisms and enzymes. Toxicon: Official Journal of the International Society on Toxinology 160:12–22.
  • Takala, P. N., S. Salmieri, K. D. Vu, and M. Lacroix. 2011. Effects of combined treatments of irradiation and antimicrobial coatings on reduction of food pathogens in broccoli florets. Radiation Physics and Chemistry 80 (12):1414–8. doi: 10.1016/j.radphyschem.2011.07.005.
  • Tarazona, A.,E. M. Mateo,J. V. Gómez,R. Gavara,M. Jiménez, andF. Mateo. 2021. Machine learning approach for predicting Fusarium culmorum and F. proliferatum growth and mycotoxin production in treatments with ethylene-vinyl alcohol copolymer films containing pure components of essential oils. International Journal of Food Microbiology 338:109012 doi:10.1016/j.ijfoodmicro.2020.109012.
  • Tarazona, A., J. V. Gómez, R. Gavara, R. Mateo-Castro, J. V. Gimeno-Adelantado, M. Jiménez, and E. M. Mateo. 2018. Risk management of ochratoxigenic fungi and ochratoxin A in maize grains by bioactive EVOH films containing individual components of some essential oils. International Journal of Food Microbiology 269:107–19.
  • Tarazona, A., J. V. Gómez, E. M. Mateo, M. Jiménez, and F. Mateo. 2019. Antifungal effect of engineered silver nanoparticles on phytopathogenic and toxigenic Fusarium spp. and their impact on mycotoxin accumulation. International Journal of Food Microbiology 306:108259.
  • Tavakoli, H., H. Rastegar, M. Taherian, M. Samadi, and H. Rostami. 2017. The effect of nano-silver packaging in increasing the shelf life of nuts: An in vitro model. Italian Journal of Food Safety 6 (4):6874. doi: 10.4081/ijfs.2017.6874.
  • Tavakolipour, H., A. Kalbasi‐Ashtari, and M. Mokhtarian. 2020. Effects of coating pistachio kernels with mixtures of whey protein and selected herbal plant extracts on growth inhibition of Aspergillus flavus and prevention of aflatoxin during storage. Journal of Food Safety 40 (1):e12711. doi: 10.1111/jfs.12711.
  • Torrijos, R.,T. Nazareth,J. Pérez,J. Mañes, andG. Meca. 2019. Development of a Bioactive Sauce Based on Oriental Mustard Flour with Antifungal Properties for Pita Bread Shelf Life Improvement. Molecules 24 (6):1019 doi:10.3390/molecules24061019.
  • Ture, H., E. Eroglu, B. Ozen, and F. Soyer. 2011. Effect of biopolymers containing natamycin against Aspergillus niger and Penicillium roquefortii on fresh kashar cheese. International Journal of Food Science & Technology 46 (1):154–60. doi: 10.1111/j.1365-2621.2010.02465.x.
  • Ulutasdemir, T., and A. Cagri-Mehmetoglu. 2019. Effects of edible coating containing Williopsis saturnus var. saturnus on fungal growth and aflatoxin production by Aspergillus flavus in peanuts. Journal of Food Safety 39 (6):e12698. doi: 10.1111/jfs.12698.
  • Umesha, S., H. M. G. Manukumar, B. Chandrasekhar, P. Shivakumara, J. Shiva Kumar, S. Raghava, P. Avinash, M. Shirin, T. R. Bharathi, S. B. Rajini, et al. 2017. Aflatoxins and food pathogens: Impact of biologically active aflatoxins and their control strategies. Journal of the Science of Food and Agriculture 97 (6):1698–707.
  • Wan, J., B. Chen, and J. Rao. 2020. Occurrence and preventive strategies to control mycotoxins in cereal‐based food. Comprehensive Reviews in Food Science and Food Safety 19 (3):928–53. doi: 10.1111/1541-4337.12546.
  • Wei, X., X. Yang, A. Ma, J. Zhang, P. Peng, and J. Dong. 2021. Fullerene C60/Eucommia ulmoides rubber nanocomposite films with excellent UV-blocking performance for controlling wheat scab fungus. Industrial Crops and Products 162:113301. doi: 10.1016/j.indcrop.2021.113301.
  • Wu, Z., X. Huang, Y.-C. Li, H. Xiao, and X. Wang. 2018. Novel chitosan films with laponite immobilized Ag nanoparticles for active food packaging. Carbohydrate Polymers 199:210–8.
  • Yildirim, S., B. Röcker, M. K. Pettersen, J. Nilsen-Nygaard, Z. Ayhan, R. Rutkaite, T. Radusin, P. Suminska, B. Marcos, and V. Coma. 2018. Active packaging applications for food. Comprehensive Reviews in Food Science and Food Safety 17 (1):165–99. doi: 10.1111/1541-4337.12322.
  • Youssef, N.,S. Daoud, andM. Atwa. 2016. Effectiveness of chitosan and some essential oils as maize grain edible coating films on the growth of escherichia coli and staphyllococcus aureus and some mycotoxins produced by fusarium verticilloides and aspergillus flavus. Journal of Agricultural Chemistry and Biotechnology 7 (2):29–38. doi:10.21608/jacb.2016.40601.
  • Youssef, N. H. 2019. Role of chitosan and some plant parts wraps as alternative interior edible coat surrounding semi-hard cheese in inhibiting fungal growth and mycotoxins migration. Research on Crops 20 (4):869–879. doi: 10.31830/2348-7542.2019.129
  • Youssef, N. H. 2019a. Comparison between certain chitosan wraps and cellophane wraps on fungal inhibition and mycotoxins migration. Research on Crops 20 (spl):105–12. doi: 10.31830/2348-7542.2019.141
  • Youssef, N. H. 2019b. Role of chitosan and some plant parts wraps as alternative interior edible coat surrounding semi-hard cheese in inhibiting fungal growth and mycotoxins migration. Research on Crops 20 (4):869–79.
  • Zhai, W., T. You, X. Ouyang, and M. Wang. 2021. Recent progress in mycotoxins detection based on surface-enhanced Raman spectroscopy. Comprehensive Reviews in Food Science and Food Safety 20 (2):1887–909. doi: 10.1111/1541-4337.12686.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.