1,293
Views
6
CrossRef citations to date
0
Altmetric
Review Articles

Packaging materials and technologies for microwave applications: a review1

, ORCID Icon & ORCID Icon

References

  • Aamir, M., M. Ovissipour, S. S. Sablani, and B. Rasco. 2013. Predicting the quality of pasteurized vegetables using kinetic models: A review. International Journal of Food Science 2013:271271–29. doi: 10.1155/2013/271271.
  • Ahmed, J., and H. S. Ramaswamy. 2004. Microwave pasteurization and sterilization of foods. In Handbook of Food Preservation, ed. M. S. Rahman, 2nd ed. 692–709. Boca Raton, FL: CRC Press.
  • Alin, J., and M. Hakkarainen. 2010. Type of polypropylene material significantly influences the migration of antioxidants from polymer packaging to food simulants during microwave heating. Journal of Applied Polymer Science 118:n/a–1093. doi: 10.1002/app.32472.
  • ASTM F1349-91. 2008. Standard test method for nonvolatile ultraviolet (UV) absorbing extractables from microwave susceptors. West Conshohocken, PA: ASTM International.
  • Begley, T., L. Castle, A. Feigenbaum, R. Franz, K. Hinrichs, T. Lickly, P. Mercea, M. Milana, A. O’Brien, S. Rebre, R, et al. 2005. Evaluation of migration models that might be used in support of regulations for food-contact plastics. Food Additives and Contaminants 22 (1):73–90. doi: 10.1080/02652030400028035.
  • Begley, T. H., and H. C. Hollifield. 1991. Application of a poly (tetrafluoroethylene) single-sided migration cell for measuring migration through microwave susceptor films. In Food and Packaging Interactions II, ed. S. J. Risch and J. H. Hotchkiss. ACS Publications.
  • Bhattacharya, M., and T. Basak. 2016. A review on the susceptor assisted microwave processing of materials. Energy 97:306–38. doi: 10.1016/j.energy.2015.11.034.
  • Bhunia, K., S. S. Sablani, J. Tang, and B. Rasco. 2013. Migration of chemical compounds from packaging polymers during microwave, conventional heat treatment, and storage. Comprehensive Reviews in Food Science and Food Safety 12 (5):523–45. doi: 10.1111/1541-4337.12028.
  • Bhunia, K., H. Zhang, F. Liu, B. Rasco, J. Tang, and S. S. Sablani. 2016. Morphological changes in multilayer polymeric films induced after microwave-assisted pasteurization. Innovative Food Science & Emerging Technologies 38:124–30. doi: 10.1016/j.ifset.2016.09.024.
  • Biji, K., C. Ravishankar, C. Mohan, and T. S. Gopal. 2015. Smart packaging systems for food applications: A review. Journal of Food Science and Technology 52 (10):6125–35. doi: 10.1007/s13197-015-1766-7.
  • Bohrer, T. 2009. Shielding and field modification–thick metal films. In Development of packaging and products for use in microwave ovens, ed. P. Pesheck, and M. Lorence, 237–66. Cambridge, UK: Elsevier: Woodhead Publishing.
  • Bohrer, T. H., and R. K. Brown. 2001. Packaging techniques for microwaveable foods. In Handbook of microwave technology for food application, ed. A. K. Datta, 397–470. New York, US: Marcel Dekker, Inc.
  • Brigham, C. J., and A. J. Sinskey. 2012. Applications of polyhydroxyalkanoates in the medical industry. International Journal of Biotechnology for Wellness Industries 1:52–60. doi: 10.6000/1927-3037.2012.01.01.03.
  • Buckley, M., C. Cowan, and M. McCarthy. 2007. The convenience food market in Great Britain: Convenience food lifestyle (CFL) segments. Appetite 49 (3):600–17. doi: 10.1016/j.appet.2007.03.226.
  • Bujok, S., J. Peter, M. Halecký, P. Ecorchard, A. Machálková, G. S. Medeiros, J. Hodan, E. Pavlova, and H. Beneš. 2021. Sustainable microwave synthesis of biodegradable active packaging films based on polycaprolactone and layered ZnO nanoparticles. Polymer Degradation and Stability 190:109625. doi: j.polymdegradstab.2021.109625 doi: 10.1016/j.polymdegradstab.2021.109625.
  • Bur, A. J. 1985. Dielectric properties of polymers at microwave frequencies: A review. Polymer 26 (7):963–77. doi: 10.1016/0032-3861(85)90216-2.
  • CEN EN 14233. ( XXXX). Temperature at the plastic/food interface during microwave and conventional oven heating. Brussels, Belgium: CEN EN.
  • CFR 174.5. 1977. Washington D.C.: US Government Printing Office.
  • Chandrasekaran, S., S. Ramanathan, and T. Basak. 2013. Microwave food processing—A review. Food Research International 52 (1):243–61. doi: 10.1016/j.foodres.2013.02.033.
  • Chen, M., E. J. Siochi, T. C. Ward, and J. E. McGrath. 1993. Basic ideas of microwave processing of polymers. Polymer Engineering and Science 33 (17):1092–109. doi: 10.1002/pen.760331703.
  • Chen, F., A. D. Warning, A. K. Datta, and X. Chen. 2017. Susceptors in microwave cavity heating: Modeling and experimentation with a frozen pie. Journal of Food Engineering 195:191–205. doi: 10.1016/j.jfoodeng.2016.09.018.
  • Çiğil, A. B., H. Cankurtaran, and M. V. Kahraman. 2017. Photo-crosslinked thiolene based hybrid polymeric sensor for humidity detection. Reactive and Functional Polymers 114:75–85. doi: 10.1016/j.reactfunctpolym.2017.03.002.
  • Commission Directive 97/48/EC. 1997. Amending for the second time Council Directive 82/711/EEC laying down the basic rules necessary for testing migration of the constituents of plastics materials and articles intended to come in contact with foodstuffs (Plastics: Basic rules for testing migration, second amendment).
  • Council Directive 82/711/EEC. 1982. Laying down the basic rules for testing migration of the constituents of plastic materials and articles intended to come into contact with foodstuffs. Official Journal L297:26.
  • Council Directive 85/572/EEC. 1985. Framing the list of simulants to be used for testing migration of the constituents of plastic materials and articles intended to come into contact with foodstuffs. Official Journal L372:12. CRL FCM.
  • Delight Packaging Oy. 2019. DeLigh. Accessed May 20, 2019. http://www.delight.fi/en/products/.
  • Erle, U. J. 2017. U.S. Patent Application No. 15/424,330.
  • EU regulations. 2017. Production, storage, and transportation of shell eggs. Washington, D.C: FDA.
  • European Chilled Food Federation (ECFF). 2006. Recommendations for the production of prepacked chilled food. Ed. 2, 1–88. Rome, Italy.
  • Fabra, M., A. López-Rubio, and J. Lagaron. 2014. Biopolymers for food packaging applications. In Smart polymers and their applications, ed. M. R. Aguilar, and J. M. San Román, 476–509. Cambridge: Elsevier, Woodhead.
  • FDA Guidance Documents. 2007. Guidance for industry: Preparation of premarket submissions for food contact substances (chemistry recommendations). Accessed May 5, 2019. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-preparation-premarket-submissions-food-contact-substances-chemistry.
  • FDA. 2011. Fish and fisheries products hazards and controls guidance. Services DoHaH.
  • Freshtech, Inc. 2016. How FreshTech "Supreme steam®" cook system works. Accessed June 9, 2018. http://www.freshtechinc.com/science-how-supreme-steam-works.php.
  • Gajdoš, J., K. Galić, Z. Kurtanjek, and N. Ciković. 2000. Gas permeability and DSC characteristics of polymers used in food packaging. Polymer Testing 20 (1):49–57. doi: 10.1016/S0142-9418(99)00078-1.
  • Galdi, M. R., R. Olivieri, L. Liguori, D. Albanese, M. D. Matteo, and L. D. Maio. 2016. Multilayer nanocomposite polymetric packaging for microwave applications. Journal of Applied Packaging Research 8 (4).
  • Galdi, M., R. Olivieri, L. Liguori, D. Albanese, M. D. Matteo, and L. D. Maio. 2015. PET based nanocomposite films for microwave packaging applications. In AIP conference proceedings. Vol. 1695, 020059. AIP Publishing. doi: 10.1063/1.4937337.
  • Gallo, A. J. 2009. Rigid passive microwave packaging forms. In Development of packaging and products for use in microwave ovens, 195–206. Cambridge, UK: Woodhead Publishing Elsevier. doi: 10.1016/C2017-0-03377-3.
  • Gallo, T., and M. Lorence. 2020. Passive microwave packaging forms. In Development of packaging and products for use in microwave ovens, 249–60. Cambridge, UK: Woodhead Publishing Elsevier. doi: 10.1016/C2017-0-03377-3.
  • George, R. M., and S. A. Burnett. 1991. General guidelines for microwaveable products. Food Control 2 (1):35–44. doi: 10.1016/0956-7135(91)90116-E.
  • González, J., A. Ferrer, R. Oria, and M. L. Salvador. 2008. Determination of O2 and CO2 transmission rates through microperforated films for modified atmosphere packaging of fresh fruits and vegetables. Journal of Food Engineering 86 (2):194–201. doi: 10.1016/j.jfoodeng.2007.09.023.
  • Green Paper Products, LLC. 2019. Biodegradable cold cups, lids. Accessed May 30, 2019. https://greenpaperproducts.com/biodegradable-cold-cups.aspx.
  • Guan, D., V. C. Plotka, S. Clark, and J. Tang. 2002. Sensory evaluation of microwave treated macaroni and cheese. Journal of Food Processing and Preservation 26 (5):307–22. doi: 10.1111/j.1745-4549.2002.tb00487.x.
  • Guo, Z., H. Liu, Y. Wu, X. Wang, and D. Wu. 2019. Design and fabrication of pH-responsive microencapsulated phase change materials for multipurpose applications. Reactive and Functional Polymers 140:111–23. doi: 10.1016/j.reactfunctpolym.2019.04.015.
  • Gupta, K. M. 2011. Starch based composites for packaging applications. In Handbook of bioplastics and biocomposites engineering applications, ed. S. Pilla, 189–267. New Jersey, US: John Wiley & Sons.
  • Haldimann, M., A. Blanc, and V. Dudler. 2007. Exposure to antimony from polyethylene terephthalate (PET) trays used in ready-to-eat meals. Food Additives and Contaminants 24 (8):860–8. doi: 10.1080/02652030701297511.
  • Harrington, R. 2010. Polypropylene film used to create self-venting microwavable packaging. Accessed April 20, 2018. https://www.bakeryandsnacks.com/Article/2010/11/08/Polypropylene-film-used-to-create-self-venting-microwavable-packaging.
  • Huang, L., and J. Sites. 2007. Automatic control of a microwave heating process for in-package pasteurization of beef frankfurters. Journal of Food Engineering 80 (1):226–33. doi: 10.1016/j.jfoodeng.2006.05.019.
  • Huang, L., and J. Sites. 2010. New automated microwave heating process for cooking and pasteurization of microwaveable foods containing raw meats. Journal of Food Science 75 (2):E110–E115. doi: 10.1111/j.1750-3841.2009.01482.x.
  • Indian Centre for Plastics in the Environment. 2018. Micro-ovenable packages and retortable packages. Accessed April 1, 2018. http://icpe.in/icpefoodnpackaging/pdfs/27_microovenable.pdf.
  • Isakson, G. A., and C. L. Larson. 1987. U.S. Patent No. 4,640,838. Washington, DC: U.S. Patent and Trademark Office.
  • Jackson, P., H. Brembeck, J. Everts, M. Fuentes, B. Halkier, F. D. Hertz, A. Meah, V. Viehoff, and C. Wenzl. 2018. A short history of convenience food. In Reframing convenience food, 15–38. Springer International Publishing.
  • Jung-Gook, L. 2018. Investigating the boom in South Korea’s instant rice industry. Accessed May 30, 2019. http://english.hani.co.kr/arti/english_edition/e_business/867862.html.
  • Kalla, A. M., and R. Devaraju. 2017. Microwave energy and its application in food industry: A review. Asian Journal of Dairy and Food Research 36 (OF):37–44. doi: 10.18805/ajdfr.v0iOF.7303.
  • Khosravi-Darani, K., and D. Bucci. 2015. Application of poly (hydroxyalkanoate) in food packaging: Improvements by nanotechnology. Chemical and Biochemical Engineering Quarterly 29 (2):275–85. doi: 10.15255/CABEQ.2014.2260.
  • Kim, D., I. Park, J. Seo, H. Han, and W. Jang. 2015. Effects of the paraffin wax (PW) content on the thermal and permeation properties of the LDPE/PW composite films. Journal of Polymer Research 22 (2):19. doi: 10.1007/s10965-014-0650-x.
  • Kim, D., and J. Seo. 2018. A review: Breathable films for packaging applications. Trends in Food Science & Technology 76:15–27. doi: 10.1016/j.tifs.2018.03.020.
  • Kim, D., S. Thanakkasaranee, K. Lee, K. Sadeghi, and J. Seo. 2021. Smart packaging with temperature-dependent gas permeability maintains the quality of cherry tomatoes. Food Bioscience 41 (100997):100997. doi: 10.1016/j.fbio.2021.100997.
  • Knight, D. J., and L. A. Creighton. 2004. Regulation of food packaging in Europe and the USA. Vol. 15. iSmithers Rapra Publishing.
  • Kuraray Co. 2006. Annual Report 2006. Downloaded from http://www.kuraray.co.jp/ir/library/pdf/annual/ar2006.pdf.
  • Lingle, R. 2013. Microwaveable bacon pack sizzles as 2013 AIMCAL product of the year. Accessed May 25, 2018. http://www.packagingdigest.com/decorative-materials/bacon-package-sizzles-aimcal-product-year.
  • Lingle, R. 2017. Cutting-edge news on MATS processing and packaging. Accessed May 30, 2019. https://www.packagingdigest.com/food-packaging/cutting-edge-news-mats-1709.
  • Lingle, R. 2018. PHA bioplastics a ‘tunable’ solution for convenience food packaging. Accessed May 30, 2019. https://www.plasticstoday.com/packaging/pha-bioplastics-tunable-solution-convenience-food-packaging/157388153458558.
  • Liu, L., H. Bakhshi, S. Jiang, H. Schmalz, and S. Agarwal. 2018. Composite polymeric membranes with directionally embedded fibers for controlled dual actuation. Macromolecular Rapid Communications 39 (10):1800082. doi: 10.1002/marc.201800082.
  • Luan, D., Y. Wang, J. Tang, and D. Jain. 2017. Frequency distribution in domestic microwave ovens and its influence on heating pattern. Journal of Food Science 82 (2):429–36. doi: 10.1111/1750-3841.13587
  • Marsh, K., and B. Bugusu. 2007. Food packaging—Roles, materials, and environmental issues. Journal of Food Science 72 (3):R39–R55. doi: 10.1111/j.1750-3841.2007.00301.x
  • Masaeli, E., M. Morshed, M. H. Nasr-Esfahani, S. Sadri, J. Hilderink, A. van Apeldoorn, C. A. van Blitterswijk, and L. Moroni. 2013. Fabrication, characterization and cellular compatibility of poly (hydroxy alkanoate) composite nanofibrous scaffolds for nerve tissue engineering. PloS One 8 (2):e57157. doi: 10.1371/journal.pone.0057157
  • McNeal, T. P., and H. C. Hollifield. 1993. Determination of volatile chemicals released from microwave-heat-susceptor food packaging. Journal of AOAC International 76 (6):1268–75. doi: 10.1093/jaoac/76.6.1268.
  • Miller, G. 1995. U.S. Patent No. 5,464,969. Washington, DC: U.S. Patent and Trademark Office.
  • Misko, G. G. 2015. FDA’s multiple “conditions of use. Food safety magazine. Mitsui Chemicals; The secret of Easy-Peel’s secure sealing and smooth unsealing. Accessed May 31, 2019. https://www.mitsuichem.com/en/techno/feature/feature04.htm.
  • Mitsui Chemicals. 2019. The secret of Easy-Peel’s secure sealing and smooth unsealing. Accessed May 31, 2019. https://www.mitsuichem.com/en/techno/feature/feature04.htm.
  • Mokwena, K. K., and J. Tang. 2012. Ethylene vinyl alcohol: A review of barrier properties for packaging shelf stable foods. Critical Reviews in Food Science and Nutrition 52 (7):640–50. doi: 10.1080/10408398.2010.504903
  • Mokwena, K. K., J. Tang, and M. P. Laborie. 2011. Water absorption and oxygen barrier characteristics of ethylene vinyl alcohol films. Journal of Food Engineering 105 (3):436–43. doi: 10.1016/j.jfoodeng.2011.02.040.
  • Mokwena, K. K., J. Tang, C. P. Dunne, T. C. Yang, and E. Chow. 2009. Oxygen transmission of multilayer EVOH films after microwave sterilization. Journal of Food Engineering 92 (3):291–6. doi: 10.1016/j.jfoodeng.2008.11.011.
  • Mondi. 2018. SteamPack -Flexible microwaveable packaging with self-venting function. Accessed June 10, 2018. https://www.mondigroup.com/en/products-and-solutions/flexible-packaging-bags-and-pouches/flexible-products/steampack/.
  • Monge, B. A. L., G. Curtzwiler, P. Dixon, K. Harrata, J. Talbert, and K. Vorst. 2019. PFOA and PFOS levels in microwave paper packaging between 2005 and 2018. Food Additives & Contaminants: Part B 12 (3):191–8. doi: 10.1080/19393210.2019.1592238.
  • Oppermann, W. J. 1983. U.S. Patent No. 4,419,373. Washington, DC: U.S. Patent and Trademark Office.
  • Ozdemir, I., F. Monnet, and B. Gouble. 2005. Simple determination of the O2 and CO2 permeances of microperforated pouches for modified atmosphere packaging of respiring foods. Postharvest Biology and Technology 36 (2):209–13. doi: 10.1016/j.postharvbio.2004.10.008.
  • Ozen, B. F., and J. D. Floros. 2001. Effects of emerging food processing techniques on the packaging materials. Trends in Food Science & Technology 12 (2):60–7. doi: 10.1016/S0924-2244(01)00053-X.
  • Packaging Digest. 2017. Cutting-edge news on MATS processing and packaging. Accessed May 30, 2019. https://www.packagingdigest.com/food-packaging/cutting-edge-news-mats-1709.
  • Packaging World. 2006. Venting film for microwavables. Accessed May 15, 2018. https://www.packworld.com/article/food/frozen/venting-film-microwavables.
  • Packaging World. 2012. Microwave pasteurization hits Japan. Accessed May 30, 2019. https://www.packworld.com/article/food/meals/microwave-pasteurization-hits-japan.
  • Packaging World. 2017. New microwave pasteurization line fuels Swedish food producer’s success. Accessed May 30, 2019. https://www.packworld.com/article/food/refrigerated/new-microwave-pasteurization-line-fuels-swedish-food-producers-success.
  • PackagingLaw. 2009. What are FDA’s regulations on food packaging and microwave use. Accessed May 15, 2019. https://www.packaginglaw.com/ask-an-attorney/what-are-fdas-regulations-food-packaging-and-microwave-use.
  • Pascall, M. A., and J. H. Han. 2018. Packaging for nonthermal processing of food. Vol. 320. New Jersey, US: John Wiley & Sons, Inc.
  • Pendrous, R. 2011. Microwave in-pack pasteurisation gives chilled meals 30-day shelf-life. Accessed April 10, 2019. https://www.foodmanufacture.co.uk/Article/2011/05/01/Microwave-in-pack-pasteurisation-gives-chilled-meals-30-day-shelf-life.
  • Peng, H., H. Ren, M. Dang, Y. Zhang, Z. Gu, X. Yao, and H. Lin. 2019. The dimensional effect of MgTiO3 ceramic filler on the microwave dielectric properties of PTFE/MgTiO3 composite with ultra-low dielectric loss. Journal of Materials Science: Materials in Electronics 30 (7):6680–7.
  • Peng, J., J. Tang, D. Luan, F. Liu, Z. Tang, F. Li, and W. Zhang. 2017. Microwave pasteurization of pre-packaged carrots. Journal of Food Engineering 202:56–64. doi: 10.1016/j.jfoodeng.2017.01.003.
  • Pesheck, P., and M. Lorence. 2009. Development of packaging and products for use in microwave ovens. Cambridge, UK: Woodhead Publishing Elsevier. doi: 10.1016/C2017-0-03377-3.
  • PinnPACK. 2019. DeLight®. Accessed May 15, 2019. https://www.pinnpack.com/delight.
  • Pradittham, A., N. Charitngam, S. Puttajan, D. Atong, and C. Pechyen. 2014. Surface modified CaCO3 by palmitic acid as nucleating agents for polypropylene film: Mechanical, thermal and physical properties. Energy Procedia 56:264–73. doi: 10.1016/j.egypro.2014.07.157.
  • Rahman, M. S. 2014. Innovations in food packaging. In Introduction to advanced food process engineering, ed. J. K. Sahu, 293–314. Boca Raton, FL: CRC Press.
  • Raveendran, A., M. T. Sebastian, and S. Raman. 2019. Applications of microwave materials: A review. Journal of Electronic Materials 48 (5):2601–34. doi: 10.1007/s11664-019-07049-1.
  • Razza, F., F. Degli Innocenti, A. Dobon, C. Aliaga, C. Sanchez, and M. Hortal. 2015. Environmental profile of a bio-based and biodegradable foamed packaging prototype in comparison with the current benchmark. Journal of Cleaner Production 102:493–500. doi: 10.1016/j.jclepro.2015.04.033.
  • Regier, M. 2014. Microwavable food packaging. In Innovations in food packaging, ed. J. H. Han, 2nd ed., 495–514. San Diego: Academic Press.
  • Regulation (EC). 2004. No. 1935/2004 of the European Parliament and of the Council of 27.10.2004 on materials and articles intended to come into contact with food and repealing Directives 80/590/EEC and 89/109/EEC. Official Journal L338:4.
  • Riquet, A. M., C. Breysse, L. Dahbi, C. Loriot, I. Séverin, and M. C. Chagnon. 2016. The consequences of physical post-treatments (microwave and electron-beam) on food/packaging interactions: A physicochemical and toxicological approach. Food Chemistry 199:59–69. doi: 10.1016/j.foodchem.2015.09.034.
  • Risch, S. 1993. Safety assessment of microwave susceptors and other high temperature packaging materials. Food Additives and Contaminants 10 (6):655–61. doi: 10.1080/02652039309374192.
  • Risch, S. 2009. Regulatory issues in microwave packaging. In Development of packaging and products for use in microwave ovens, ed. P. Pesheck and M. Lorence, 283–9. Cambridge: Woodhead.
  • Risch, S. J. 2000. New developments in packaging materials. In Food packaging: Testing methods and applications, ed. S. J. Risch, 1–7. Washington D.C., USA: American Chemical Society.
  • Rivera, C. S., D. Blanco, M. L. Salvador, and M. E. Venturini. 2010. Shelf-life extension of fresh Tuber aestivum and Tuber melanosporum truffles by modified atmosphere packaging with microperforated films . Journal of Food Science 75 (4):E225–E233. doi: 10.1111/j.1750-3841.2010.01602.x.
  • Robertson, G. 2016. Food packaging: Principles and practice. 3rd ed. Boca Raton, FL: CRC Press, Taylor & Francis Group.
  • Sadeghi, K., and J. Seo. 2021. Photografting coating: An innovative approach to “non‐migratory” active packaging. Advanced Functional Materials 31 (28):2010759. doi: 10.1002/adfm.202010759.
  • Sadeghi, K., Y. Lee, and J. Seo. 2021. Ethylene scavenging systems in packaging of fresh produce: A review. Food Reviews International 37 (2):155–76. doi: 10.1080/87559129.2019.1695836.
  • Sapozhnikova, Y., A. Nuñez, and J. Johnston. 2021. Screening of chemicals migrating from plastic food contact materials for oven and microwave applications by liquid and gas chromatography-Orbitrap mass spectrometry. Journal of Chromatography A 1651:462261. doi: 10.1016/j.chroma.2021.462261.
  • Schäfer, A. 2010. EU legislation. In Global legislation for food packaging materials, ed. R. Rijk and R. Veraart, 1–24. Weinheim, Germany: John Wiley & Sons.
  • Schiffmann, R. 2017. Packaging for microwave foods. In The microwave processing of foods, ed. M. Regier, K. Knoerzer, and H. Schubert, 2nd ed., 273–99. Woodhead Publishing.
  • Schiffmann, R. F. 2001. Microwave processes for the food industry. In Handbook of Microwave Technology for Food Application, ed. A. K. Datta, 299–338. New York: Marcel Dekker, Inc.
  • Schneider, J., M. I. Akbar, J. Dutroncy, D. Kiesler, M. Leins, A. Schulz, M. Walker, U. Schumacher, and U. Stroth. 2009. Silicon oxide barrier coatings deposited on polymer materials for applications in food packaging industry. Plasma Processes and Polymers 6 (S1):S700–S704. doi: 10.1002/ppap.200931702.
  • Schug, D. 2018. Technology helps processors produce natural foods and beverages. https://www.foodengineeringmag.com/articles/97357-technology-helps-processors-produce-natural-foods-and-beverages. Accessed June 1, 2019.
  • Schwartz, M. 2008. Smart materials. New York: CRC press.
  • Seyedalizadeh, M., and F. Abdolmaleki. 2019. The effect of microwave on migration of styrene monomer polystyrene food packaging and compared to other thermal processes. Journal of Food Biosciences and Technology 9 (1):69–76.
  • Shahinpoor, M., and H.-J. Schneider. 2008. Intelligent materials: Royal Society of Chemistry.
  • Sharma, A., V. V. Tyagi, C. Chen, and D. Buddhi. 2009. Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews 13 (2):318–45. doi: 10.1016/j.rser.2007.10.005.
  • Sharma, S. 2017. Effect of microwave heating on the migration of additives from PS, PP and PET container into food stimulants. International Journal of Science, Engineering and Computer Technology 7:61–4.
  • Shin, J., and S. E. M. Selke. 2014. Food packaging. In Food processing: Principles and applications, ed. S. Clark, S. Jung, and B. Lamsal, 249–73. Chichester, West Sussex, UK: John Wiley & Sons.
  • Sibi, N., I. J. Induja, K. P. Surendran, and G. Subodh. 2018. Natural garnet reinforced high density polyethylene composites for sustainable microwave substrates. Materials Research Bulletin 106:478–84. doi: 10.1016/j.materresbull.2018.06.002.
  • Silberbauer, A., and M. Schmid. 2017. Packaging concepts for ready-to-eat food: Recent progress. Journal of Packaging Technology and Research 1 (3):113–26. doi: 10.1007/s41783-017-0019-9.
  • Siracusa, V., I. Blanco, S. Romani, U. Tylewicz, and M. Dalla Rosa. 2012. Gas permeability and thermal behavior of polypropylene films used for packaging minimally processed fresh-cut potatoes: A case study. Journal of Food Science 77 (10):E264–E272. doi: 10.1111/j.1750-3841.2012.02905.x.
  • Soares, N., D. Rutishauser, N. Melo, R. Cruz, and N. Andrade. 2002. Inhibition of microbial growth in bread through active packaging. Packaging Technology and Science 15 (3):129–32. doi: 10.1002/pts.576.
  • Sonar, C. R., S. Al-Ghamdi, F. Marti, J. Tang, and S. S. Sablani. 2020. Performance evaluation of biobased/biodegradable films for in-package thermal pasteurization. Innovative Food Science & Emerging Technologies 66:102485. doi: 10.1016/j.ifset.2020.102485.
  • Stanley, R. A., and K. Petersen. 2017. Microwave-assisted pasteurization and sterilization—Commercial perspective. In The microwave processing of foods, ed. M. Regier, K. Knoerzer, and H. Schubert, 2nd ed., 200–19. Woodhead Publishing.
  • Taebang Patec. 2015. ZZim pak. Accessed May 25, 2018. http://www.taebang.com/bbs/content.php?co_id=sub6_en.
  • Tang, J. 2015. Unlocking potentials of microwaves for food safety and quality. Journal of Food Science 80 (8):E1776–E1793. doi: 10.1111/1750-3841.12959.
  • Tang, J., Y. K. Hong, S. Inanoglu, and F. Liu. 2018. Microwave pasteurization for ready-to-eat meals. Current Opinion in Food Science 23:133–41. doi: 10.1016/j.cofs.2018.10.004.
  • Tang, Z., G. Mikhaylenko, F. Liu, J.-H. Mah, R. Pandit, F. Younce, and J. Tang. 2008. Microwave sterilization of sliced beef in gravy in 7-oz trays. Journal of Food Engineering 89 (4):375–83. doi: 10.1016/j.jfoodeng.2008.04.025.
  • Technavio. 2017. Microwave packaging market – Drivers and forecasts by Technavio. Accessed April 2, 2018. www.businesswire.com/news/home/20170921005169/en/Microwave-Packaging-Market-Drivers-Forecasts-Technavio.
  • Technavio. 2018. Key findings of the global commercial microwave ovens market. Accessed April 2, 2018. https://www.businesswire.com/news/home/20180403005689/en/Key-Findings-Global-Commercial-Microwave-Ovens-Market.
  • Thanakkasaranee, S., and J. Seo. 2021. Tunable temperature-responsive permeable composite films using polyethylene glycol as a phase change material. Food Packaging and Shelf Life 28:100683. doi: 10.1016/j.fpsl.2021.100683.
  • Thanakkasaranee, S., D. Kim, and J. Seo. 2018. Preparation and characterization of poly (ether-block-amide)/polyethylene glycol composite films with temperature-dependent permeation. Polymers 10 (2):225. doi: 10.3390/polym10020225.
  • Thanakkasaranee, S., K. Sadeghi, and J. Seo. 2021. Smart steam release of newly developed temperature-responsive nanocomposite films derived from phase change material. Polymer 219:123543. doi: 10.1016/j.polymer.2021.123543.
  • Thurber, H., and G. W. Curtzwiler. 2020. Suitability of poly (butylene succinate) as a coating for paperboard convenience food packaging. International Journal of Biobased Plastics 2 (1):1–12. doi: 10.1080/24759651.2020.1785094.
  • Toyo, S. 2018. Retortable pouches for the microwave oven with an automatic steam-releasing function. Accessed June 9, 2018. https://www.toyo-seikan.co.jp/e/technique/filmcup/functional/e-rp.html.
  • U.S. Food and Drug Administration. 2017. Resources for you (radiation-emitting products) – Microwave oven radiation. Accessed May 20, 2018. https://www.fda.gov/radiation-emittingproducts/resourcesforyouradiationemittingproducts/ucm252762.htm.
  • Ummartyotin, S., and C. Pechyen. 2016. Microcrystalline-cellulose and polypropylene based composite: A simple, selective and effective material for microwavable packaging. Carbohydrate Polymers 142:133–40. doi: 10.1016/j.carbpol.2016.01.020.
  • Varriano-Marston, E. 2002. U.S. Patent No. 6,441,340. Washington, DC: U.S. Patent and Trademark Office.
  • Vast Films, Ltd. 2018. Microwave susceptors. Accessed May 19, 2018. http://www.vastfilm.com/index_files/Page1204.htm.
  • Veraart, R. 2010. Compliance testing, declaration of compliance, and supporting documentation in the EU. In Global legislation for food packaging materials, ed. R. Rijk and R. Veraart, 197–221. Weinheim, Germany: John Wiley & Sons.
  • Wu, P., G. Jones, C. Shelle, and B. Woelfli. 2007. Novel microporous films and their composites. Journal of Engineered Fibers and Fabrics 2 (1):155892500700200–59. doi: 10.1177/155892500700200105.
  • Yantai Bagease Packaging Products. 2017. Grilled chicken bag. Accessed April 10, 2019. http://www.bagplastics.cn/quality-9357517-grilled-chicken-bag-rotisserie-chicken-bags-microwave-grilled-chicken-bag.
  • Yoon, C. S., S. I. Hong, A. R. Cho, H. S. Lee, H. W. Park, and K. T. Lee. 2015. Analysis of the causes of deformation of packaging materials used for ready-to-eat foods after microwave heating. Korean Journal of Food Science and Technology 47 (1):63–9. doi: 10.9721/KJFST.2015.47.1.63.
  • Yoon, E. 2017. The grocery industry confronts a new problem. https://hbr.org/2017/09/the-grocery-industry-confronts-a-new-problem-only-10-of-americans-love-cooking
  • Zhang, H., J. Patel, K. Bhunia, S. Al-Ghamdi, C. R. Sonar, C. F. Ross, J. Tang, and S. S. Sablani. 2019. Color, vitamin C, β-carotene and sensory quality retention in microwave-assisted thermally sterilized sweet potato puree: Effects of polymeric package gas barrier during storage. Food Packaging and Shelf Life 21:100324. doi: 10.1016/j.fpsl.2019.100324.
  • Zhang, H., K. Bhunia, N. Munoz, L. Li, M. Dolgovskij, B. Rasco, J. Tang, and S. S. Sablani. 2017. Linking morphology changes to barrier properties of polymeric packaging for microwave‐assisted thermal sterilized food. Journal of Applied Polymer Science 134 (44):45481. doi: 10.1002/app.45481.
  • Zhang, K., and X. Y. Wu. 2004. Temperature and pH-responsive polymeric composite membranes for controlled delivery of proteins and peptides. Biomaterials 25 (22):5281–91. doi: 10.1016/j.biomaterials.2003.12.032.
  • Zuckerman, H., and J. Miltz. 1994. Changes in thin‐layer susceptors during microwave heating. Packaging Technology and Science 7 (1):21–6. doi: 10.1002/pts.2770070105.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.