985
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Potato protein: current review of structure, technological properties, and potential application on spray drying microencapsulation

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Akharume, F. U., R. E. Aluko, and A. A. Adedeji. 2021. Modification of plant proteins for improved functionality: A review. Comprehensive Reviews in Food Science and Food Safety 20 (1):198–224. doi: 10.1111/1541-4337.12688.
  • Andlinger, D. J., A. C. Bornkeßel, I. Jung, B. Schroeter, I. Smirnova, and U. Kulozik. 2021. Microstructures of potato protein hydrogels and aerogels produced by thermal crosslinking and supercritical drying. Food Hydrocolloids 112:106305.106305. doi: 10.1016/j.foodhyd.2020.:.
  • Ansari, I. T., and T. Mu. 2018. A murine model of wheat versus potato allergy: Patatin and 53kDa protein are the potential allergen from potato. Molecular Immunology 101:284–93. doi: 10.1016/j.molimm.2018.07.012.
  • Asokan, A. M., J. Y. Yang, and W. T. Lin. 2018. Anti-hypertrophic and anti-apoptotic effects of short peptides of potato protein hydrolysate against hyperglycemic condition in cardiomyoblast cells. Biomedicine and Pharmacotherapy 107:1667–73. doi: 10.1016/j.biopha.2018.08.070.
  • Avramenko, N. A., C. Chang, N. H. Low, and M. T. Nickerson. 2016. Encapsulation of flaxseed oil within native and modified lentil protein-based microcapsules. Food Research International 81:17–24. doi: 10.1016/j.foodres.2015.12.028.
  • Avramenko, N. A., N. H. Low, and M. T. Nickerson. 2013. The effects of limited enzymatic hydrolysis on the physicochemical and emulsifying properties of a lentil protein isolate. Food Research International 51 (1):162–9. doi: 10.1016/j.foodres.2012.11.020.
  • Baier, A. K., and D. Knorr. 2015. Influence of high isostatic pressure on structural and functional characteristics of potato protein. Food Research International 77:753–61. doi: 10.1016/j.foodres.2015.05.053.
  • Bakry, A. M., S. Abbas, B. Ali, H. Majeed, M. Y. Abouelwafa, A. Mousa, and L. Liang. 2016. Microencapsulation of oils: A comprehensive review of benefits, techniques, and applications. Comprehensive Reviews in Food Science and Food Safety 15 (1):143–82. doi: 10.1111/1541-4337.12179.
  • Can Karaca, A., N. H. Low, and M. T. Nickerson. 2015. Potential use of plant proteins in the microencapsulation of lipophilic materials in foods. Trends in Food Science and Technology 42 (1): 5–12. doi: 10.1016/j.tifs.2014.11.002.
  • Can Karaca, A., N. Low, and M. Nickerson. 2013. Encapsulation of flaxseed oil using a benchtop spray dryer for legume protein-maltodextrin microcapsule preparation. Journal of Agricultural and Food Chemistry 61 (21):5148–55. doi: 10.1021/jf400787j.
  • Chang, C., and M. T. Nickerson. 2018. Encapsulation of omega 3-6-9 fatty acids-rich oils using protein-based emulsions with spray drying. Journal of Food Science and Technology 55 (8): 2850–61. doi: 10.1007/s13197-018-3257-0.
  • Chang, C.,. N. Varankovich, and M. T. Nickerson. 2016. Microencapsulation of canola oil by lentil protein isolate-based wall materials. Food Chemistry 212:264–73. doi: 10.1016/j.foodchem.2016.05.136.
  • Chen, F.-P., L. Ling-Ling, and T. Chuan-He. 2020. Spray-drying microencapsulation of curcumin nanocomplexes with soy protein isolate: Encapsulation, water dispersion, bioaccessibility and bioactivities of curcumin. Food Hydrocolloids 105 (August):105821. doi: 10.1016/j.foodhyd.2020.105821.
  • Cheng, Y., Y. L. Xiong, and J. Chen. 2010. Antioxidant and emulsifying properties of potato protein hydrolysate in soybean oil-in-water emulsions. Food Chemistry 120 (1):101–8. doi: 10.1016/j.foodchem.2009.09.077.
  • Cheung, L., J. Wanasundara, and M. T. Nickerson. 2015. The effect of PH and NaCl levels on the physicochemical and emulsifying properties of a cruciferin protein isolate. Food Biophysics 10 (1):30–8. doi1007/s11483-013-9323-2. doi: 10.1007/s11483-014-9350-7.
  • Creusot, N., P. A. Wierenga, M. C. Laus, M. L. F. Giuseppin, and H. Gruppen. 2011. Rheological properties of patatin gels compared with β-lactoglobulin, ovalbumin, and glycinin. Journal of the Science of Food and Agriculture 91 (2):253–61. doi: 10.1002/jsfa.4178.
  • Dakhili, S., L. Abdolalizadeh, S. M. Hosseini, S. Shojaee-Aliabadi, and L. Mirmoghtadaie. 2019. Quinoa protein: composition, structure and functional properties. Food Chemistry 299:125161 doi: 10.1016/j.foodchem.2019.125161.
  • David, S., and Y. D. Livney. 2016. Potato protein based nanovehicles for health promoting hydrophobic bioactives in clear beverages. Food Hydrocolloids 57:229–35. Elsevier Ltd. doi: 10.1016/j.foodhyd.2016.01.027.
  • Delahaije, R. J. B. M., P. A. Wierenga, M. L. F. Giuseppin, and H. Gruppen. 2014. Improved emulsion stability by succinylation of patatin is caused by partial unfolding rather than charge effects. Journal of Colloid and Interface Science 430:69–77. doi: 10.1016/j.jcis.2014.05.019.
  • Donadelli, R. A., C. G. Aldrich, C. K. Jones, and R. S. Beyer. 2019. The amino acid composition and protein quality of various egg, poultry meal by-products, and vegetable proteins used in the production of dog and cat diets. Poultry Science 98 (3):1371–8. doi: 10.3382/ps/pey462.
  • Drusch, S., Y. Serfert, F. Tamm, H. Kastner, and K. Schwarz. 2016. Interfacial engineering for the microencapsulation of lipophilic ingredients by spray-drying. In Process-spray: Functional particles produced in spray processes. 53–87. Cham: Springer International Publishing. doi: 10.1007/978-3-319-32370-1_2.
  • Edelman, R., S. Engelberg, L. Fahoum, E. G. Meyron-Holtz, and Y. D. Livney. 2019. Potato protein- based carriers for enhancing bioavailability of astaxanthin. Food Hydrocolloids 96:72–80. doi: 10.1016/j.foodhyd.2019.04.058.
  • Famuwagun, A. A., A. M. Alashi, S. O. Gbadamosi, K. A. Taiwo, D. J. Oyedele, O. C. Adebooye, and R. E. Aluko. 2020. Comparative study of the structural and functional properties of protein isolates prepared from edible vegetable leaves. International Journal of Food Properties 23 (1):955–70. doi: 10.1080/10942912.2020.1772285.
  • FAO, Food and Agriculture Organization of the United Nations. 2019. “Statistic Data on Potato Production.” http://www.fao.org/faostat/en/#data/QC/visualize.
  • Francisco, C. R. L., F. D. Oliveira, G. Marin, I. D. Alvim, and M. D. Hubinger. 2020. Plant proteins at low concentrations as natural emulsifiers for an effective orange essential oil microencapsulation by spray drying. Colloids and Surfaces A: Physicochemical and Engineering Aspects 607:125470. doi: 10.1016/j.colsurfa.2020.125470.
  • Fu, Y., W. ‐N. Liu, and O. P. Soladoye. 2020. Towards potato protein utilisation: insights into separation, functionality and bioactivity of patatin. International Journal of Food Science & Technology 55 (6). John Wiley & Sons, Ltd.:2314–2322. doi: 10.1111/ijfs.14343.
  • Furtado, G. F., A. G. S. Carvalho, and M. D. Hubinger. 2021. Model infant formulas: influence of types of whey proteins and oil composition on emulsion and powder properties. Journal of Food Engineering 292:110256. doi: 10.1016/j.jfoodeng.2020.110256.
  • Galves, C., G. Galli, C. G. Miranda, and L. E. Kurozawa. 2021. Improving the emulsifying property of potato protein by hydrolysis: an application as encapsulating agent with maltodextrin. Innovative Food Science & Emerging Technologies 70:102696. doi: 10.1016/j.ifset.2021.102696.
  • Galves, C., A. K. Stone, J. Szarko, S. Liu, K. Shafer, J. Hargreaves, S. Michael, and M. T. Nickerson. 2019. Effect of PH and defatting on the functional attributes of safflower, sunflower, canola, and hemp protein concentrates. Cereal Chemistry 96 (6):1036–47. doi: 10.1002/cche.10209.
  • Gambuti, A., A. Rinaldi, R. Romano, N. Manzo, and L. Moio. 2016. Performance of a protein extracted from potatoes for fining of white musts. Food Chemistry 190:237–43. doi: 10.1016/j.foodchem.2015.05.067.
  • García-Moreno, P. J., C. Jacobsen, P. Marcatili, S. Gregersen, M. T. Overgaard, M. L. Andersen, A. Dorit, M. Sørensen, and E. B. Hansen. 2020. Emulsifying peptides from potato protein predicted by bioinformatics: stabilization of fish oil-in-water emulsions. Food Hydrocolloids doi: 10.1016/j.foodhyd.2019.105529.
  • Glusac, J., S. Isaschar-Ovdat, B. Kukavica, and A. Fishman. 2017. Oil-in-water emulsions stabilized by tyrosinase-crosslinked potato protein. Food Research International (Ottawa, Ont.) 100:407–15. doi: 10.1016/j.foodres.2017.07.034.
  • Gomes, M. H. G., and L. E. Kurozawa. 2020. Improvement of the functional and antioxidant properties of rice protein by enzymatic hydrolysis for the microencapsulation of linseed oil. Journal of Food Engineering 267:109761. doi: 10.1016/j.jfoodeng.2019.109761.
  • He, R.,A. T. Girgih,S. A. Malomo,X. Ju, andR. E. Aluko. 2013. Antioxidant activities of enzymatic rapeseed protein hydrolysates and the membrane ultrafiltration fractions. Journal of Functional Foods 5 (1):219–27. doi:10.1016/j.jff.2012.10.008.
  • Hoehnel, A., C. Axel, J. Bez, E. K. Arendt, and E. Zannini. 2019. Comparative analysis of plant-based high-protein ingredients and their impact on quality of high-protein bread. Journal of Cereal Science 89:102816. doi: 10.1016/j.jcs.2019.102816.
  • Hu, C., Z. Xiong, H. Xiong, L. Chen, and Z. Zhang. 2021. Effects of dynamic high-pressure microfluidization treatment on the functional and structural properties of potato protein isolate and its complex with chitosan. Food Research International (Ottawa, Ont.) 140:109868. doi: 10.1016/j.foodres.2020.109868.
  • Jafari, S. M., E. Assadpoor, Y. He, and B. Bhandari. 2008. Encapsulation efficiency of food flavours and oils during spray drying. Drying Technology 26 (7):816–35. doi: 10.1080/07373930802135972.
  • Jiang, J.,. J. Chen, and Y. L. Xiong. 2009. Structural and emulsifying properties of soy protein isolate subjected to acid and alkaline PH-shifting processes. Journal of Agricultural and Food Chemistry 57 (16):7576–83. doi: 10.1021/jf901585n.
  • Johnston, S. P., M. T. Nickerson, and N. H. Low. 2015. The physicochemical properties of legume protein isolates and their ability to stabilize oil-in-water emulsions with and without genipin. Journal of Food Science and Technology 52 (7):4135–45. doi: 10.1007/s13197-014-1523-3.
  • Karaca, A. C., N. Low, and M. Nickerson. 2011. Emulsifying properties of canola and flaxseed protein isolates produced by isoelectric precipitation and salt extraction. Food Research International 44 (9):2991–8. doi: 10.1016/j.foodres.2011.07.009.
  • Knorr, D. 1977. Potato protein as partial replacement of wheat flour in bread. Journal of Food Science 42 (6):1425–7. (No doi: 10.1111/j.1365-2621.1977.tb08390.x.
  • Knorr, D., G. O. Kohler, and A. A. Betschart. 1977. Potato protein concentrates: The influence of various methods of recovery upon yield, compositional and functional characteristics. Journal of Food Processing and Preservation 1 (3):235–47. doi: 10.1111/j.1745-4549.1977.tb00326.x.
  • Kowalczewski, P. Ł., A. Olejnik, W. Białas, I. Rybicka, M. Zielińska-Dawidziak, A. Siger, P. Kubiak, and G. Lewandowicz. 2019. The nutritional value and biological activity of concentrated protein fraction of potato juice. Nutrients 11 (7):1523. doi: 10.3390/nu11071523.
  • Kudo, K.,. S. Onodera, Y. Takeda, N. Benkeblia, and N. Shiomi. 2009. Antioxidative activities of some peptides isolated from hydrolyzed potato protein extract. Journal of Functional Foods 1 (2):170–6. doi: 10.1016/j.jff.2009.01.006.
  • Lam, R. S. H., and M. T. Nickerson. 2013. Food proteins: a review on their emulsifying properties using a structure-function approach. Food Chemistry 141 (2):975–84. doi: 10.1016/j.foodchem.2013.04.038.
  • Lam, R. S. H., and M. T. Nickerson. 2014. The effect of PH and heat pre-treatments on the physicochemical and emulsifying properties of β-lactoglobulin. Food Biophysics 9 (1):20–8. doi: 10.1007/s11483-013-9313-4.
  • Le Priol, L.,. A. Dagmey, S. Morandat, K. Saleh, K. El Kirat, and A. Nesterenko. 2019. Comparative study of plant protein extracts as wall materials for the improvement of the oxidative stability of sunflower oil by microencapsulation. Food Hydrocolloids 95:105–15. doi: 10.1016/j.foodhyd.2019.04.026.
  • Leonel, M., E. L. do Carmo, A. M. Fernandes, R. P. Soratto, J. A. M. Ebúrneo, É. L. Garcia, and T. P. R. dos Santos. 2017. Chemical composition of potato tubers: The effect of cultivars and growth conditions. Journal of Food Science and Technology 54 (8):2372–8. doi: 10.1007/s13197-017-2677-6.
  • Li, M., C. Blecker, and S. Karboune. 2021. Molecular and air-water interfacial properties of potato protein upon modification via laccase-catalyzed cross-linking and conjugation with sugar beet pectin. Food Hydrocolloids 112:106236. ” Food Hydrocolloids Elsevier Ltd. doi: 10.1016/j.foodhyd.2020.106236.
  • Linke, A., J. Weiss, and R. Kohlus. 2020. Factors determining the surface oil concentration of encapsulated lipid particles: Impact of the emulsion oil droplet size. European Food Research and Technology 246 (10):1933–43. doi: 10.1007/s00217-020-03545-5.
  • Li, C., J. Yang, L. Yao, F. Qin, G. Hou, B. Chen, L. Jin, J. Deng, and Y. Shen. 2020. Characterisation, physicochemical and functional properties of protein isolates from amygdalus pedunculata pall seeds. Food Chemistry 311:125888. doi: 10.1016/j.foodchem.2019.125888.
  • Løkra, S., M. H. Helland, I. C. Claussen, K. O. Straetkvern, and B. Egelandsdal. 2008. Chemical characterization and functional properties of a potato protein concentrate prepared by large-scale expanded bed adsorption chromatography. LWT – Food Science and Technology 41 (6):1089–99. doi: 10.1016/j.lwt.2007.07.006.
  • Mahalakshmi, L., M. Maria Leena, J. A. Moses, and C. Anandharamakrishnan. 2020. Micro- and nano-encapsulation of β-carotene in zein protein: size-dependent release and absorption Behavior. Food and Function 11 (2):1647–1660. doi: 10.1039/c9fo02088h.
  • Mäkinen, S., T. Streng, L. Bach Larsen, A. Laine, and A. Pihlanto. 2016. Angiotensin I-converting enzyme inhibitory and antihypertensive properties of potato and rapeseed protein-derived peptides. Journal of Functional Foods 25:160–73. doi: 10.1016/j.jff.2016.05.016.
  • McClements, D. J. 2015. Food emulsions: principles, practices and techniques. 3rd ed. Boca Raton, FL: CRC Press. doi: 10.1201/b18868.
  • Mendes, A. C., E. Saldarini, and I. S. Chronakis. 2020. Electrohydrodynamic processing of potato protein into particles and fibers. Molecules 25 (24):5968. doi: 10.3390/molecules24.
  • Miedzianka, J., A. Pęksa, and M. Aniołowska. 2012. Properties of acetylated potato protein preparations. Food Chemistry 133 (4):1283–91. doi: 10.1016/j.foodchem.2011.08.080.
  • Miedzianka, J., A. Pęksa, M. Pokora, E. Rytel, A. Tajner-Czopek, and A. Kita. 2014. Improving the properties of fodder potato protein concentrate by enzymatic hydrolysis. Food Chemistry 159:512–8. doi: 10.1016/j.foodchem.2014.03.054.
  • Moser, P., S. Ferreira, and V. R. Nicoletti. 2019. Buriti oil microencapsulation in chickpea protein-pectin matrix as affected by spray drying parameters. Food and Bioproducts Processing 117:183–93. doi: 10.1016/j.fbp.2019.07.009.
  • Nesterenko, A., I. Alric, F. Silvestre, and V. Durrieu. 2012. Influence of soy protein’s structural modifications on their microencapsulation properties: α-tocopherol microparticle preparation. Food Research International 48 (2):387–96. doi: 10.1016/j.foodres.2012.04.023.
  • Nesterenko, A., I. Alric, F. Silvestre, and V. Durrieu. 2013. Vegetable proteins in microencapsulation: A review of recent interventions and their effectiveness. Industrial Crops and Products 42 (1):469–79. doi: 10.1016/j.indcrop.2012.06.035.
  • Nesterenko, A., I. Alric, F. Silvestre, and V. Durrieu. 2014. Comparative study of encapsulation of vitamins with native and modified soy protein. Food Hydrocolloids 38:172–9. doi: 10.1016/j.foodhyd.2013.12.011.
  • Nesterenko, A., I. Alric, F. Violleau, F. Silvestre, and V. Durrieu. 2013. A new way of valorizing biomaterials: The use of sunflower protein for α-tocopherol microencapsulation. Food Research International 53 (1):115–24. doi: 10.1016/j.foodres.2013.04.020.
  • Nesterenko, A., I. Alric, F. Violleau, F. Silvestre, and V. Durrieu. 2014. The effect of vegetable protein modifications on the microencapsulation process. Food Hydrocolloids 41:95–102. doi: 10.1016/j.foodhyd.2014.03.017.
  • Newson, W. R., F. Rasheed, R. Kuktaite, M. S. Hedenqvist, M. Gällstedt, T. S. Plivelic, and E. Johansson. 2015. Commercial potato protein concentrate as a novel source for thermoformed bio-based plastic films with unusual polymerisation and tensile properties. RSC Advances 5 (41):32217–26. doi: 10.1039/C5RA00662G.
  • Nieto, G., M. Castillo, Y. L. Xiong, D. Álvarez, F. A. Payne, and M. D. Garrido. 2009. Antioxidant and emulsifying properties of alcalase-hydrolyzed potato proteins in meat emulsions with different fat concentrations. Meat Science 83 (1):24–30. doi: 10.1016/j.meatsci.2009.03.005.
  • Paulo, F., and L. Santos. 2017. Design of Experiments for Microencapsulation Applications: A Review. Materials Science & Engineering: C 77:1327–40. doi: 10.1016/j.msec.2017.03.219.
  • Pihlanto, A., S. Akkanen, and H. J. Korhonen. 2008. ACE-inhibitory and antioxidant properties of potato (Solanum tuberosum). Food Chemistry 109 (1):104–12. doi: 10.1016/j.foodchem.2007.12.023.
  • Ré, M. I. 1998. Microencapsulation by spray drying. Drying Technology 16 (6):1195–236. doi: 10.1016/j.tifs.2013.04.001.
  • Sarmadi, B. H., and A. Ismail. 2010. Antioxidative peptides from food proteins: A Review. Peptides 31 (10):1949–56. doi: 10.1016/j.peptides.2010.06.020.
  • Schmidt, J. M., H. Damgaard, M. Greve-Poulsen, L. B. Larsen, and M. Hammershøj. 2018. Foam and emulsion properties of potato protein isolate and purified fractions. Food Hydrocolloids 74:367–78. doi: 10.1016/j.foodhyd.2017.07.032.
  • Schmidt, J. M., H. Damgaard, M. Greve-Poulsen, A. V. Sunds, L. B. Larsen, and M. Hammershøj. 2019. Gel properties of potato protein and the isolated fractions of patatins and protease inhibitors – impact of drying method, protein concentration, PH and ionic strength. Food Hydrocolloids 96:246–58. doi: 10.1016/j.foodhyd.2019.05.022.
  • Schmidt, J. M., L. B. Larsen, and M. Hammershøj. 2017. Appearance and textural properties of sheared low concentration potato protein gels—Impact of drying method, PH, and ionic strength. Journal of Food Science 82 (9):2056–61. doi: 10.1111/1750-3841.13818.
  • Sharif, H. R., P. A. Williams, M. K. Sharif, S. Abbas, H. Majeed, K. G. Masamba, W. Safdar, and F. Zhong. 2018. Current progress in the utilization of native and modified legume proteins as emulsifiers and encapsulants – A review. Food Hydrocolloids 76:2–16. doi: 10.1016/j.foodhyd.2017.01.002.
  • Silva, A. M., F. S. Almeida, and A. C. K. Sato. 2021. Functional characterization of commercial plant proteins and their application on stabilization of emulsions. Journal of Food Engineering 292:110277. doi: 10.1016/j.jfoodeng.2020.110277.
  • Silva, C. M., R. A. dos Santos da Fonseca, and C. Prentice. 2014. comparing the hydrolysis degree of industrialization byproducts of withemout croaker (Micropogonias furnieri) using microbial enzymes. International Food Research Journal 21 (5):1757–61. https://pdfs.semanticscholar.org/ad4e/2ae58b9f1f063f7c7d19c8286b39a1a0afa0.pdf.
  • Spelbrink, R. E. J., H. Lensing, M. R. Egmond, and M. L. F. Giuseppin. 2015. Potato patatin generates short-chain fatty acids from milk fat that contribute to flavour development in cheese ripening. Applied Biochemistry and Biotechnology 176 (1):231–43. doi: 10.1007/s12010-015-1569-3.
  • Stone, A. K., Y. Wang, M. Tulbek, and M. T. Nickerson. 2019. Plant Protein Ingredients. In Encyclopedia of food chemistry, ed. L. Melton, F. Shahidi, and P. Varelis, 1st ed., 229–34. Oxford, UK: Elsevier Applied Science Publishers. doi: https://doi.org/10.1016/B978-0-08-100596-5.21601-6.
  • Stounbjerg, L., B. Andreasen, and R. Ipsen. 2019. Microparticles formed by heating potato protein—polysaccharide electrostatic complexes. Journal of Food Engineering 263:79–86. doi: 10.1016/j.jfoodeng.2019.05.041.
  • Tambade, P. B., M. Sharma, A. K. Singh, and B. Surendranath. 2020. Flaxseed oil microcapsules prepared using soy protein isolate and modified starch: Process optimization, characterization and in vitro release behaviour. Agricultural Research 9 (4):652–62. doi: 10.1007/s40003-020-00461-8.
  • Tamm, F., C. Härter, A. Brodkorb, and S. Drusch. 2016. Functional and antioxidant properties of whey protein hydrolysate/pectin complexes in emulsions and spray-dried microcapsules. LWT 73:524–7. doi: 10.1016/j.lwt.2016.06.053.
  • Tamm, F., S. Herbst, A. Brodkorb, and S. Drusch. 2016. Functional properties of pea protein hydrolysates in emulsions and spray-dried microcapsules. Food Hydrocolloids 58:204–14. doi: 10.1016/j.foodhyd.2016.02.032.
  • Tang, C.-H., and X.-R. Li. 2013. Microencapsulation properties of soy protein isolate: influence of preheating and/or blending with lactose. Journal of Food Engineering 117 (3):281–90. doi: 10.1016/j.jfoodeng.2013.03.018.
  • Tavano, O. L. 2013. Protein hydrolysis using proteases: An important tool for food biotechnology. Journal of Molecular Catalysis B: Enzymatic 901–11. doi: 10.1016/j.molcatb.2013.01.011.
  • Udenigwe, C. C., M. C. Udechukwu, C. Yiridoe, A. Gibson, and M. Gong. 2016. Antioxidant mechanism of potato protein hydrolysates against in vitro oxidation of reduced glutathione. Journal of Functional Foods 20:195–203. doi: 10.1016/j.jff.2015.11.004.
  • Uniprot Database. 2019. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Research 47 (D1). Narnia: D506–D515. doi:10.1093/nar/gky1049.
  • Vikelouda, M., and V. Kiosseoglou. 2004. The use of carboxymethylcellulose to recover potato proteins and control their functional properties. Food Hydrocolloids 18 (1):21–7. doi: 10.1016/S0268-005X(03)00038-9.
  • Visvanathan, R., C. Jayathilake, B. Chaminda Jayawardana, and R. Liyanage. 2016. Health-beneficial properties of potato and compounds of interest. Journal of the Science of Food and Agriculture 96 (15):4850–60. doi: 10.1002/jsfa.7848.
  • Waglay, A., A. Achouri, S. Karboune, M. R. Zareifard, and L. L’Hocine. 2019. Pilot plant extraction of potato proteins and their structural and functional properties. LWT 113:108275. 108275. doi: 10.1016/j.lwt.2019.108275.
  • Waglay, A., and S. Karboune. 2016. Enzymatic generation of peptides from potato proteins by selected proteases and characterization of their structural properties. Biotechnology Progress 32 (2):420–9. doi: 10.1002/btpr.2245.
  • Waglay, A., S. Karboune, and I. Alli. 2014. Potato protein isolates: recovery and characterization of their Properties. Food Chemistry 142:373–82. doi: 10.1016/j.foodchem.2013.07.060.
  • Wang, C., T. Chang, D. Zhang, C. Ma, S. Chen, and H. Li. 2020. Preparation and characterization of potato protein-based microcapsules with an emphasis on the mechanism of interaction among the main components. Journal of the Science of Food and Agriculture 100 (7):2866–72. doi: 10.1002/jsfa.10277.
  • Wang, Z., X. Ju, R. He, J. Yuan, and L. Wang. 2015. The effect of rapeseed protein structural modification on microstructural properties of peptide microcapsules. Food and Bioprocess Technology 8 (6):1305–18. doi: 10.1007/s11947-015-1472-5.
  • Wang, L. L., and Y. L. Xiong. 2005. Inhibition of lipid oxidation in cooked beef patties by hydrolyzed potato protein is related to its reducing and radical scavenging ability. Journal of Agricultural and Food Chemistry 53 (23):9186–92. doi: 10.1021/jf051213g.
  • Witczak, T., L. Juszczak, R. Ziobro, and J. Korus. 2017. Rheology of gluten-free dough and physical characteristics of bread with potato protein. Journal of Food Process Engineering 40 (3):e12491. doi: 10.1111/jfpe.12491.
  • Yao, S., and C. C. Udenigwe. 2018. Peptidomics of potato protein hydrolysates: Implications of post-translational modifications in food peptide structure and behaviour. Royal Society Open Science 5 (7):172425. doi: 10.1098/rsos.172425.
  • Zeeb , B., M. Yavuz-Düzgun, J. Dreher, J. Evert, T. Stressler, L. Fischer, B. Özcelik, and J. Weiss. 2018. Modulation of the bitterness of pea and potato proteins by a complex coacervation method. Food and Function 9 (4): 2261–2269. doi: 10.1039/c7fo01849e.
  • Zhang, Q., L. Li, Q. Lan, M. Li, D. Wu, H. Chen, Y. Liu, D. Lin, W. Qin, Z. Zhang, et al. 2019. Protein glycosylation: A promising way to modify the functional properties and extend the application in food system. Critical Reviews in Food Science and Nutrition 59 (15):2506–33.,. doi: 10.1080/10408398.2018.1507995.
  • Zhang, M., and T. H. Mu. 2017. Identification and characterization of antioxidant peptides from sweet potato protein hydrolysates by alcalase under high hydrostatic pressure. Innovative Food Science & Emerging Technologies 43:92–101. doi: 10.1016/j.ifset.2017.08.001.
  • Zhang, D., T. Mu, and H. Sun. 2017. Calorimetric, rheological, and structural properties of potato protein and potato starch composites and gels. Starch – Stärke 69 (7–8):1600329. doi: 10.1002/star.201600329.
  • Zhang, D-q, T-h Mu, H-n Sun, J-w Chen, and M. Zhang. 2017. Comparative study of potato protein concentrates extracted using ammonium sulfate and isoelectric precipitation. International Journal of Food Properties 20 (9):2113–27. doi: 10.1080/10942912.2016.1230873.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.