2,003
Views
6
CrossRef citations to date
0
Altmetric
Review Articles

Bio-aerogels: Fabrication, properties and food applications

, , , , ORCID Icon, , & show all

References

  • Abaee, A., M. Mohammadian, and S. M. Jafari. 2017. Whey and soy protein-based hydrogels and nano-hydrogels as bioactive delivery systems. Trends in Food Science & Technology 70:69–81. doi: 10.1016/j.tifs.2017.10.011.
  • Abdullah, J. Weiss, T. Ahmad, C. Zhang, and H. Zhang. 2020. A review of recent progress on high internal-phase Pickering emulsions in food science. Trends in Food Science & Technology 106:91–103. doi: 10.1016/j.tifs.2020.10.016.
  • Abhari, N., A. Madadlou, and A. Dini. 2017. Structure of starch aerogel as affected by crosslinking and feasibility assessment of the aerogel for an anti-fungal volatile release. Food Chemistry 221:147–52. doi: 10.1016/j.foodchem.2016.10.072.
  • Agostinho, D. A. S., A. I. Paninho, T. Cordeiro, A. V. M. Nunes, I. M. Fonseca, C. Pereira, A. Matias, and M. G. Ventura. 2020. Properties of κ-carrageenan aerogels prepared by using different dissolution media and its application as drug delivery systems. Materials Chemistry and Physics 253:123290. doi: 10.1016/j.matchemphys.2020.123290.
  • Alhwaige, A. A., H. Ishida, and S. Qutubuddin. 2020. Chitosan/polybenzoxazine/clay mixed matrix composite aerogels: Preparation, physical properties, and water absorbency. Applied Clay Science 184:105403. doi: 10.1016/j.clay.2019.105403.
  • Alnaief, M., R. Obaidat, and H. Mashaqbeh. 2018. Effect of processing parameters on preparation of carrageenan aerogel microparticles. Carbohydrate Polymers 180:264–75. doi: 10.1016/j.carbpol.2017.10.038.
  • Alsbaiee, A., B. J. Smith, L. Xiao, Y. Ling, D. E. Helbling, and W. R. Dichtel. 2016. Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer. Nature 529 (7585):190–4. doi: 10.1038/nature16185.
  • Amaral-Labat, G., L. Grishechko, A. Szczurek, V. Fierro, A. Pizzi, B. Kuznetsov, and A. Celzard. 2012. Highly mesoporous organic aerogels derived from soy and tannin. Green Chemistry 14 (11):3099–106. doi: 10.1039/c2gc36263e.
  • Appendini, P., and J. H. Hotchkiss. 2002. Review of antimicrobial food packaging. Innovative Food Science & Emerging Technologies 3 (2):113–26. doi: 10.1016/S1466-8564(02)00012-7.
  • Arboleda, J. C., M. Hughes, L. A. Lucia, J. Laine, K. Ekman, and O. J. Rojas. 2013. Soy protein–nanocellulose composite aerogels. Cellulose 20 (5):2417–26. doi: 10.1007/s10570-013-9993-4.
  • Bakierska, M., A. Chojnacka, M. Świętosławski, P. Natkański, M. Gajewska, M. Rutkowska, and M. Molenda. 2017. Multifunctional carbon aerogels derived by sol-gel process of natural polysaccharides of different botanical origin. Materials 10 (11):1336. doi: 10.3390/ma10111336.
  • Betz, M., C. A. García-González, R. P. Subrahmanyam, I. Smirnova, and U. Kulozik. 2012. Preparation of novel whey protein-based aerogels as drug carriers for life science applications. The Journal of Supercritical Fluids 72:111–9. doi: 10.1016/j.supflu.2012.08.019.
  • Bhandari, J., H. Mishra, P. K. Mishra, R. Wimmer, F. J. Ahmad, and S. Talegaonkar. 2017. Cellulose nanofiber aerogel as a promising biomaterial for customized oral drug delivery. International Journal of Nanomedicine 12:2021–31. doi: 10.2147/ijn.s124318.
  • Bloor, J. M., R. D. Handy, S. A. Awan, and D. F. L. Jenkins. 2021. Graphene oxide biopolymer aerogels for the removal of lead from drinking water using a novel nano-enhanced ion exchange cascade. Ecotoxicology and Environmental Safety 208:111422. doi: 10.1016/j.ecoenv.2020.111422.
  • Brown, Z. K., P. J. Fryer, I. T. Norton, and R. H. Bridson. 2010. Drying of agar gels using supercritical carbon dioxide. The Journal of Supercritical Fluids 54 (1):89–95. doi: 10.1016/j.supflu.2010.03.008.
  • Bruder, V., T. Ludwig, S. Opitz, R. Christoffels, T. Fischer, and H. Maleki. 2021. Hierarchical assembly of surface modified silk fibroin biomass into micro-, and milli-metric hybrid aerogels with core-shell, Janus, and composite configurations for rapid removal of water pollutants. Advanced Materials Interfaces 8 (5):2001892. doi: 10.1002/admi.202001892.
  • Cai, J., S. Liu, J. Feng, S. Kimura, M. Wada, S. Kuga, and L. Zhang. 2012. Cellulose-silica nanocomposite aerogels by in situ formation of silica in cellulose gel. Angewandte Chemie (International ed. in English) 51 (9):2076–9. doi: 10.1002/anie.201105730.
  • Cardea, S., P. Pisanti, and E. Reverchon. 2010. Generation of chitosan nanoporous structures for tissue engineering applications using a supercritical fluid assisted process. The Journal of Supercritical Fluids 54 (3):290–5. doi: 10.1016/j.supflu.2010.05.014.
  • Carlsson, D. O., G. Nyström, Q. Zhou, L. A. Berglund, L. Nyholm, and M. Strømme. 2012. Electroactive nanofibrillated cellulose aerogel composites with tunable structural and electrochemical properties. Journal of Materials Chemistry 22 (36):19014–24. doi: 10.1039/c2jm33975g.
  • Chassary, P., T. Vincent, J. S. Marcano, L. E. Macaskie, and E. Guibal. 2005. Palladium and platinum recovery from bicomponent mixtures using chitosan derivatives. Hydrometallurgy 76 (1-2):131–47. doi: 10.1016/j.hydromet.2004.10.004.
  • Chen, K., and H. Zhang. 2019. Alginate/pectin aerogel microspheres for controlled release of proanthocyanidins. International Journal of Biological Macromolecules 136:936–43. doi: 10.1016/j.ijbiomac.2019.06.138.
  • Chen, K., and H. Zhang. 2020. Fabrication of oleogels via a facile method by oil absorption in the aerogel templates of protein-polysaccharide conjugates. ACS Appl Mater Interfaces 12 (6):7795–804. doi: 10.1021/acsami.9b21435.
  • Chen, S., Y. Chen, D. Li, Y. Xu, and F. Xu. 2021. Flexible and sensitivity-adjustable pressure sensors based on carbonized bacterial nanocellulose/wood-derived cellulose nanofibril composite aerogels. ACS Applied Materials & Interfaces 13 (7):8754–63. doi: 10.1021/acsami.0c21392.
  • De Marco, I., and E. Reverchon. 2017. Starch aerogel loaded with poorly water-soluble vitamins through supercritical CO2 adsorption. Chemical Engineering Research and Design 119:221–30. doi: 10.1016/j.cherd.2017.01.024.
  • de Oliveira, J. P., G. P. Bruni, S. L. M. El Halal, F. C. Bertoldi, A. R. G. Dias, and E. da Rosa Zavareze. 2019. Cellulose nanocrystals from rice and oat husks and their application in aerogels for food packaging. International Journal of Biological Macromolecules 124:175–84. doi: 10.1016/j.ijbiomac.2018.11.205.
  • Deuber, F., S. Mousavi, M. Hofer, and C. Adlhart. 2016. Tailoring pore structure of ultralight electrospun sponges by solid templating. ChemistrySelect 1 (18):5595–8. doi: 10.1002/slct.201601084.
  • Diaconu, A., L. E. Nita, A. P. Chiriac, and M. Butnaru. 2018. Investigation of the magnetic field effect upon interpolymeric complexes formation based on bovine serum albumin and poly(aspartic acid). International Journal of Biological Macromolecules 119:974–81. doi: 10.1016/j.ijbiomac.2018.08.033.
  • Diamond, L. W., and N. N. Akinfiev. 2003. Solubility of CO2 in water from -1.5 to 100 degrees C and from 0.1 to 100 MPa: Evaluation of literature data and thermodynamic modelling. Fluid Phase Equilibria 208 (1-2):265–90. doi: 10.1016/S0378-3812(03)00041-4.
  • Ding, B., D. Zhao, J. Song, H. Gao, D. Xu, M. Xu, X. Cao, L. Zhang, and J. Cai. 2016. Light weight, mechanically strong and biocompatible α-chitin aerogels from different aqueous alkali hydroxide/urea solutions. Science China Chemistry 59 (11):1405–14. doi: 10.1007/s11426-016-0205-5.
  • Dogenski, M., H. J. Navarro-Diaz, J. V. de Oliveira, and S. R. S. Ferreira. 2020. Properties of starch-based aerogels incorporated with agar or microcrystalline cellulose. Food Hydrocolloids 108:106033. doi: 10.1016/j.foodhyd.2020.106033.
  • dos Santos, P., J. Vigano, G. d. F. Furtado, R. L. Cunha, M. D. Hubinger, C. A. Rezende, and J. Martínez. 2020. Production of resveratrol loaded alginate aerogel: Characterization, mathematical modeling, and study of impregnation. The Journal of Supercritical Fluids 163:104882. doi: 10.1016/j.supflu.2020.104882.
  • Druel, L., R. Bardl, W. Vorwerg, and T. Budtova. 2017. Starch aerogels: A member of the family of thermal superinsulating materials. Biomacromolecules 18 (12):4232–9. doi: 10.1021/acs.biomac.7b01272.
  • Elazzouzi-Hafraoui S., Y. Nishiyama, J. L.Putaux, L. Heux, F. Dubreuil, and C. Rochas. 2008. The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9:57–65. doi: 10.1021/bm700769p.
  • Fitzpatrick, S. E., S. Deb-Choudhury, S. Ranford, and M. P. Staiger. 2020. Novel protein-based bio-aerogels derived from canola seed meal. Journal of Materials Science 55 (11):4848–63. doi: 10.1007/s10853-019-04330-w.
  • Fitzpatrick, S. E., M. P. Staiger, S. Deb-Choudhury, and S. Ranford. 2018. Protein-based aerogels: processing and morphology. In S. Thomas, L. A. Pothan, & R. Mavelil-Sam (Eds.), Biobased aerogels: Polysaccharide and protein-based materials (Vol. 58, pp. 67–102) UK: Royal Society of Chemistry. doi: 10.1039/9781782629979-00067.
  • Fonseca, L. M., F. T. d Silva, G. P. Bruni, C. D. Borges, E. d R. Zavareze, and A. R. G. Dias. 2021. Aerogels based on corn starch as carriers for pinhão coat extract (Araucaria angustifolia) rich in phenolic compounds for active packaging. International Journal of Biological Macromolecules 169:362–70. doi: 10.1016/j.ijbiomac.2020.12.110.
  • Franco, P., B. Aliakbarian, P. Perego, E. Reverchon, and I. De Marco. 2018. Supercritical adsorption of quercetin on aerogels for active packaging applications. Industrial & Engineering Chemistry Research 57 (44):15105–13. doi: 10.1021/acs.iecr.8b03666.
  • Freytag, A., S. Sánchez-Paradinas, S. Naskar, N. Wendt, M. Colombo, G. Pugliese, J. Poppe, C. Demirci, I. Kretschmer, D. W. Bahnemann, et al. 2016. Versatile aerogel fabrication by freezing and subsequent freeze-drying of colloidal nanoparticle solutions. Angewandte Chemie (International ed. in English) 55 (3):1200–3. doi: 10.1002/anie.201508972.
  • Ganesan, K., T. Budtova, L. Ratke, P. Gurikov, V. Baudron, I. Preibisch, P. Niemeyer, I. Smirnova, and B. Milow. 2018. Review on the production of polysaccharide aerogel particles. Materials 11 (11):2144–68. doi: 10.3390/ma11112144.
  • Ganesan, K., A. Dennstedt, A. Barowski, and L. Ratke. 2016. Design of aerogels, cryogels and xerogels of cellulose with hierarchical porous structures. Materials & Design 92:345–55. doi: 10.1016/j.matdes.2015.12.041.
  • Garcia-Gonzalez, C. A., M. C. Camino-Rey, M. Alnaief, C. Zetzl, and I. Smirnova. 2012. Supercritical drying of aerogels using CO2: Effect of extraction time on the end material textural properties. The Journal of Supercritical Fluids 66:297–306. doi: 10.1016/j.supflu.2012.02.026.
  • Garcia-Gonzalez, C. A., and I. Smirnova. 2013. Use of supercritical fluid technology for the production of tailor-made aerogel particles for delivery systems. The Journal of Supercritical Fluids 79:152–8. doi: 10.1016/j.supflu.2013.03.001.
  • Gesser, H. D., and P. C. Goswami. 1989. Aerogels and related porous materials. Chemical Reviews 89 (4):765–88. doi: 10.1021/cr00094a003.
  • Glenn, G. M., and D. W. Irving. 1995. Starch-based microcellular foams. Cereal Chemistry, 72, 155–161. https://www.cerealsgrains.org/publications/cc/backissues/1995/documents/72_155
  • Groult, S., S. Buwalda, and T. Budtova. 2021. Pectin hydrogels, aerogels, cryogels and xerogels: Influence of drying on structural and release properties. European Polymer Journal 149:110386. doi: 10.16/j.eurpolymj2021.110386.
  • Guibal, E. 2004. Interactions of metal ions with chitosan-based sorbents: A review. Separation and Purification Technology 38 (1):43–74. doi: 10.1016/j.seppur.2003.10.004.
  • Guibal, E., N. Von Offenberg Sweeney, T. Vincent, and J. M. Tobin. 2002. Sulfur derivatives of chitosan for palladium sorption. Reactive and Functional Polymers 50 (2):149–63. doi: 10.1016/S1381-5148(01)00110-9.
  • Han, S., N. U. H. Alvi, L. Granlöf, H. Granberg, M. Berggren, S. Fabiano, and X. Crispin. 2019. A multiparameter pressure-temperature-humidity sensor based on mixed ionic-electronic cellulose aerogels. Advanced Science 6 (8):1802128. doi: 10.1002/advs.201802128.
  • Hao, Z.-Z., X.-Q. Peng, and C.-H. Tang. 2020. Edible pickering high internal phase emulsions stabilized by soy glycinin: Improvement of emulsification performance and pickering stabilization by glycation with soy polysaccharide. Food Hydrocolloids 103:105672. doi: 10.1016/j.foodhyd.2020.105672.
  • Hayase, G., K. Kanamori, K. Abe, H. Yano, A. Maeno, H. Kaji, and K. Nakanishi. 2014. Polymethylsilsesquioxane-cellulose nanofiber biocomposite aerogels with high thermal insulation, bendability, and superhydrophobicity. ACS Applied Materials & Interfaces 6 (12):9466–71. doi: 10.1021/am501822y.
  • Herman, P., I. Fabian, and J. Kalmar. 2020. Mesoporous silica–gelatin aerogels for the selective adsorption of aqueous Hg(II). ACS Applied Nano Materials 3 (1):195–206. doi: 10.1021/acsanm.9b01903.
  • Hettiarachchy, N. S., K. Sato, M. R. Marshall, and N. S. Hettiarachchy. 2012. Food proteins and peptides: Chemistry, functionality, interactions, and commercialization. Boca Raton: CRC Press.
  • Hoover, R., T. Vasanthan, N. J. Senanayake, and A. M. Martin. 1994. The effects of defatting and heat-moisture treatment on the retrogradation of starch gels from wheat, oat, potato, and lentil. Carbohydrate Research 261 (1):13–24. doi: 10.1016/0008-6215(94)80002-2.
  • Horvat, G., M. Pantic, Z. Knez, and Z. Novak. 2018. Encapsulation and drug release of poorly water soluble nifedipine from bio-carriers. Journal of Non-Crystalline Solids 481:486–93. doi: 10.1016/j.jnoncrysol.2017.11.037.
  • Huang, J., D. Li, M. Zhao, H. Ke, A. Mensah, P. Lv, X. Tian, and Q. Wei. 2019. Flexible electrically conductive biomass-based aerogels for piezoresistive pressure/strain sensors. Chemical Engineering Journal 373:1357–66. doi: 10.1016/j.cej.2019.05.136.
  • Ismail, H., M. Irani, and Z. Ahmad. 2013. Starch-based hydrogels: Present status and applications. International Journal of Polymeric Materials 62 (7):411–20. doi: 10.1080/00914037.2012.719141.
  • Jiang, S., M. Zhang, W. Jiang, Q. Xu, J. Yu, L. Liu, and L. Liu. 2020. Multiscale nanocelluloses hybrid aerogels for thermal insulation: The study on mechanical and thermal properties. Carbohydrate Polymers 247:116701. doi: 10.1016/j.carbpol.2020.116701.
  • Jin, H., Y. Nishiyama, M. Wada, and S. Kuga. 2004. Nanofibrillar cellulose aerogels. Colloids and Surfaces A: Physicochemical and Engineering Aspects 240 (1-3):63–7. doi: 10.1016/j.colsurfa.2004.03.007.
  • Keri M., A. Forgacs, V. Papp, I. Banyai, P. Veres, A. Len, Z. Dudas, I. Fabian, and J. Kalmar. 2020. Gelatin content governs hydration induced structural changes in silica-gelatin hybrid aerogels: Implications in drug delivery. Acta Biomaterialia 15:131–45. doi: 10.1016/j.actbio.2020.01.016.
  • Kéri, M., A. Forgács, V. Papp, I. Bányai, P. Veres, A. Len, Z. Dudás, I. Fábián, and J. Kalmár. 2020. Gelatin content governs hydration induced structural changes in silica-gelatin hybrid aerogels—Implications in drug delivery. Acta Biomater 105:131–45. doi: 10.1016/j.actbio.2020.01.016.
  • Kistler, S. S. 1931. Coherent expanded aerogels and jellies. Nature 127 (3211):741. doi: 10.1038/127741a0.
  • Kleemann, C., R. Schuster, E. Rosenecker, I. Selmer, I. Smirnova, and U. Kulozik. 2020. In-vitro-digestion and swelling kinetics of whey protein, egg white protein and sodium caseinate aerogels. Food Hydrocolloids 101:105534. doi: 10.1016/j.foodhyd.2019.105534.
  • Koebel, M., A. Rigacci, and P. Achard. 2012. Aerogel-based thermal superinsulation: An overview. Journal of Sol-Gel Science and Technology 63 (3):315–339. doi: 10.1007/s10971-012-2792-9.
  • Lavoine, N., and L. Bergstrom. 2017. Nanocellulose-based foams and aerogels: Processing, properties, and applications. Journal of Materials Chemistry A 5 (31):16105–16117. doi: 10.1039/C7TA02807E.
  • Lázár, I., A. Forgács, A. Horváth, G. Király, G. Nagy, A. Len, Z. Dudás, V. Papp, Z. Balogh, K. Moldován, et al. 2020. Mechanism of hydration of biocompatible silica-casein aerogels probed by NMR and SANS reveal backbone rigidity. Applied Surface Science 531:147232. doi: 10.1016/j.apsusc.2020.147232.
  • Liebner, F., E. Haimer, A. Potthast, D. Loidl, S. Tschegg, M.-A. Neouze, M. Wendland, and T. Rosenau. 2009. Cellulosic aerogels as ultra-lightweight materials. Part 2: Synthesis and properties 2nd ICC 2007, Tokyo, Japan, October 25–29. 2007. Holzforschung 63 (1):3–11. doi: 10.1515/hf.2009.002.
  • Lin, B., Z. Wang, Q.-j. Zhu, W. N. Binti Hamzah, Z. Yao, and K. Cao. 2020. Aerogels for the separation of asphalt-containing oil–water mixtures and the effect of asphalt stabilizer. RSC Advances 10 (42):24840–24846. doi: 10.1039/D0RA00544D.
  • Liu, F., C. Ma, Y. Gao, and D. J. McClements. 2017. Food-grade covalent complexes and their application as nutraceutical delivery systems: A review. Comprehensive Reviews in Food Science and Food Safety 16 (1):76–95. doi: 10.1111/1541-4337.12229[PMC].[. 33371544
  • Lopes, J. M., A. N. Mustapa, M. Pantić, M. D. Bermejo, Á. Martín, Z. Novak, Ž. Knez, and M. J. Cocero. 2017. Preparation of cellulose aerogels from ionic liquid solutions for supercritical impregnation of phytol. The Journal of Supercritical Fluids 130:17–22. doi: 10.1016/j.supflu.2017.07.018.
  • Mahaninia, M. H., and L. D. Wilson. 2016. Cross-linked chitosan beads for phosphate removal from aqueous solution. Journal of Applied Polymer Science 133 (5):42949. doi: 10.1002/app.42949.
  • Mallepally, R. R., M. A. Marin, V. Surampudi, B. Subia, R. R. Rao, S. C. Kundu, and M. A. McHugh. 2015. Silk fibroin aerogels: Potential scaffolds for tissue engineering applications. Biomedical Materials 10 (3):035002. doi: 10.1088/1748-6041/10/3/035002.
  • Manzocco, L., F. Valoppi, S. Calligaris, F. Andreatta, S. Spilimbergo, and M. C. Nicoli. 2017. Exploitation of κ-carrageenan aerogels as template for edible oleogel preparation. Food Hydrocolloids 71:68–75. doi: 10.1016/j.foodhyd.2017.04.021.
  • Marin, M. A., R. R. Mallepally, and M. A. McHugh. 2014. Silk fibroin aerogels for drug delivery applications. The Journal of Supercritical Fluids 91:84–89. doi: 10.1016/j.supflu.2014.04.014.
  • Mehling, T., I. Smirnova, U. Guenther, and R. H. H. Neubert. 2009. Polysaccharide-based aerogels as drug carriers. Journal of Non-Crystalline Solids 355 (50-51):2472–2479. doi: 10.1016/j.jnoncrysol.2009.08.038.
  • Miao, Z., K. Ding, T. Wu, Z. Liu, B. Han, G. An, S. Miao, and G. Yang. 2008. Fabrication of 3D-networks of native starch and their application to produce porous inorganic oxide networks through a supercritical route. Microporous and Mesoporous Materials 111 (1-3):104–109. doi: 10.1016/j.micromeso.2007.07.018.
  • Mohammadi, A., and J. Moghaddas. 2020. Mesoporous tablet-shaped potato starch aerogels for loading and release of the poorly water-soluble drug celecoxib. Chinese Journal of Chemical Engineering 28 (7):1778–1787. doi: 10.1016/j.cjche.2020.03.040.
  • Mustapa, A. N., A. Martin, and M. J. Cocero. 2018. Alginate aerogels dried by supercritical CO2 as herbal delivery carrier. Malaysian Journal of Analytical Sciences 22:522–531. doi: 10.17576/mjas-2018-2203-21.
  • Mustapa, A. N., A. Martin, L. M. Sanz-Moral, M. J. Rueda, and M. J. Cocero. 2016. Impregnation of medicinal plant phytochemical compounds into silica and alginate aerogels. The Journal of Supercritical Fluids 116:251–263. doi: 10.1016/j.supflu.2016.06.002.
  • Nair K. G., and A. Dufresne. 2003. Crab shell chitin whisker reinforced natural rubber nanocomposites. 1. Processing and swelling behavior. Biomacromolecules 4:657–65. doi: 10.1021/bm020127b.
  • Nita, L. E., A. P. Chiriac, M. Bercea, M. Asandulesa, and B. A. Wolf. 2017. Self-assembling of poly(aspartic acid) with bovine serum albumin in aqueous solutions. International Journal of Biological Macromolecules 95:412–420. doi: 10.1016/j.ijbiomac.2016.11.080
  • Nita, L. E., A. Ghilan, A. G. Rusu, I. Neamtu, and A. P. Chiriac. 2020. New trends in bio-based aerogels. Pharmaceutics 12:449. doi: 10.3390/pharmaceutics12050449.
  • Oshima, T., T. Sakamoto, K. Ohe, and Y. Baba. 2014. Cellulose aerogel regenerated from ionic liquid solution for immobilized metal affinity adsorption. Carbohydrate Polymers 103:62–69. doi: 10.1016/j.carbpol.2013.12.021.
  • Paques, J. P., E. van der Linden, C. J. M. van Rijn, and L. M. C. Sagis. 2014. Preparation methods of alginate nanoparticles. Advances in Colloid and Interface Science 209:163–171. doi: 10.1016/j.cis.2014.03.009.
  • Parvathy Rao, A., and A. Venkateswara Rao. 2008. Microstructural and physical properties of the ambient pressure dried hydrophobic silica aerogels with various solvent mixtures. Journal of Non-Crystalline Solids 354:10–18. doi: 10.1016/j.jnoncrysol.2007.07.021.
  • Patni, N., N. Tripathi, and S. Bosmia. 2013. Biodegradable polymer: A casein aerogel composite; casein extraction from various milk samples and its role as a viable substitute for conventional plastics. International Journal of Applied Engineering and Research 8:10–13.
  • Plazzotta, S., S. Calligaris, and L. Manzocco. 2019. Structure of oleogels from κ-carrageenan templates as affected by supercritical-CO2-drying, freeze-drying and lettuce-filler addition. Food Hydrocolloids 96:1–10. doi: 10.1016/j.foodhyd.2019.05.008.
  • Plazzotta, S., S. Calligaris, and L. Manzocco. 2020. Structural characterization of oleogels from whey protein aerogel particles. Food Research International 132:109099. doi: 10.1016/j.foodres.2020.109099.
  • Pour, G., C. Beauger, A. Rigacci, and T. Budtova. 2015. Xerocellulose: Lightweight, porous and hydrophobic cellulose prepared via ambient drying. Journal of Materials Science 50 (13):4526–4535. doi: 10.1007/s10853-015-9002-4.
  • Lu, Y., S. Qingfeng, Y. Dongjiang, et al. 2012. Fabrication of mesoporous lignocellulose aerogels from wood via cyclic liquid nitrogen freezing–thawing in ionic liquid solution. Journal of Materials Chemistry 22:13548–57. doi: 10.1039/C2JM31310.
  • Ramos, O., R. Pereira, L. Simoes, D. Madalena, R. M. Rodrigues, J. Teixeira, and A. Vicente. 2019. Nanostructures of whey proteins for encapsulation of food ingredients. Biopolymer Nanostructures for Food Encapsulation Purposes 1:69–91. doi: 10.1016/B978-0-12-815663-6.00003-3.
  • Rodríguez-Dorado, R., C. Lopez-Iglesias, C. García-Gonzalez, G. Auriemma, R. Aquino, and P. Del Gaudio. 2019. Design of aerogels, cryogels and xerogels of alginate: Effect of molecular weight, gelation conditions and drying method on particles’ micromeritics. Molecules 24 (6):1049. doi: 10.3390/molecules24061049.
  • Rong, N., Z. Xu, S. Zhai, L. Zhou, and J. Li. 2021. Directional, super-hydrophobic cellulose nanofiber/polyvinyl alcohol/montmorillonite aerogels as green absorbents for oil/water separation. IET Nanobiotechnology 15 (1):135–146. doi: 10.1049/nbt2.12008.
  • Ruiz, M., A. M. Sastre, and E. Guibal. 2000. Palladium sorption on glutaraldehyde-crosslinked chitosan. Reactive and Functional Polymers 45 (3):155–173. doi: 10.1016/S1381-5148(00)00019-5.
  • Salam, A., R. A. Venditti, J. J. Pawlak, and K. El-Tahlawy. 2011. Crosslinked hemicellulose citrate-chitosan aerogel foams. Carbohydrate Polymers 84 (4):1221–1229. doi: 10.1016/j.carbpol.2011.01.008.
  • Selmer, I., J. Karnetzke, C. Kleemann, M. Lehtonen, K. S. Mikkonen, U. Kulozik, and I. Smirnova. 2019. Encapsulation of fish oil in protein aerogel micro-particles. Journal of Food Engineering 260:1–11. doi: 10.1016/j.jfoodeng.2019.04.016.
  • Selmer, I., C. Kleemann, U. Kulozik, S. Heinrich, and I. Smirnova. 2015. Development of egg white protein aerogels as new matrix material for microencapsulation in food. The Journal of Supercritical Fluids 106:42–49. doi: 10.1016/j.supflu.2015.05.023.
  • Si, Y., X. Wang, C. Yan, L. Yang, J. Yu, and B. Ding. 2016. Ultralight biomass-derived carbonaceous nanofibrous aerogels with superelasticity and high pressure-sensitivity. Advanced Materials 28 (43):9512–9520. doi: 10.1002/adma.201603143.
  • Sicupira, D., K. Campos, T. Vincent, V. Leao, and E. Guibal. 2010. Palladium and platinum sorption using chitosan-based hydrogels. Adsorption 16 (3):127–139. doi: 10.1007/s10450-010-9210-9.
  • Silva, S. S., A. R. Duarte, A. P. Carvalho, J. F. Mano, and R. L. Reis. 2011. Green processing of porous chitin structures for biomedical applications combining ionic liquids and supercritical fluid technology. Acta Biomaterialia 7 (3):1166–1172. doi: 10.1016/j.actbio.2010.09.041.
  • Stanford, E. C. C. 1883. On algin: A new substance obtained from some of the commoner species of marine algae. Chemical News 47:254–267.
  • Stephen, A. M., G. O. Phillips, and P. A. Williams. 2006. Food polysaccharides and their applications, 2nd ed. CRC.
  • Stievano, M., and N. Elvassore. 2005. High-pressure density and vapor-liquid equilibrium for the binary systems carbon dioxide-ethanol, carbon dioxide-acetone and carbon dioxide-dichloromethane. The Journal of Supercritical Fluids 33 (1):7–14. doi: 10.1016/j.supflu.2004.04.003.
  • Takeshita, S., A. Konishi, Y. Takebayashi, S. Yoda, and K. Otake. 2017. Aldehyde approach to hydrophobic modification of chitosan aerogels. Biomacromolecules 18 (7):2172–2178. doi: 10.1021/acs.biomac.7b00562.
  • Thomas, S., L. A. Pothan, and R. Mavelil-Sam. 2018. Biobased aerogels: Polysaccharide and protein-based materials, 1–330. doi: 10.1039/9781782629979.
  • Tsioptsias, C., C. Michailof, G. Stauropoulos, and C. Panayiotou. 2009. Chitin and carbon aerogels from chitin alcogels. Carbohydrate Polymers 76 (4):535–540. doi: 10.1016/j.carbpol.2008.11.018.
  • Ubeyitogullari, A., R. Moreau, D. J. Rose, J. Zhang, and O. N. Ciftci. 2019. Enhancing the bioaccessibility of phytosterols using nanoporous corn and wheat starch bioaerogels. European Journal of Lipid Science and Technology 121:17000229. doi: 10.1002/ejlt.201700229.
  • Ubeyitogullari, A., and O. N. Ciftci. 2017. Generating phytosterol nanoparticles in nanoporous bioaerogels via supercritical carbon dioxide impregnation: Effect of impregnation conditions. Journal of Food Engineering 207:99–107. doi: 10.1016/j.jfoodeng.2017.03.022.
  • Valentin, R., B. Bonelli, E. Garrone, F. Di Renzo, and F. Quignard. 2007. Accessibility of the functional groups of chitosan aerogel probed by FT-IR-monitored deuteration. Biomacromolecules 8 (11):3646–3650. doi: 10.1021/bm070391a.
  • Varma, A. J., S. V. Deshpande, and J. F. Kennedy. 2004. Metal complexation by chitosan and its derivatives: A review. Carbohydrate Polymers 55 (1):77–93. doi: 10.1016/j.carbpol.2003.08.005.
  • Veronovski, A., Z. Knez, and Z. Novak. 2013. Preparation of multi-membrane alginate aerogels used for drug delivery. The Journal of Supercritical Fluids 79:209–215. doi: 10.1016/j.supflu.2013.01.025.
  • Veronovski, A., G. Tkalec, Z. Knez, and Z. Novak. 2014. Characterisation of biodegradable pectin aerogels and their potential use as drug carriers. Carbohydrate Polymers 113:272–278. doi: 10.1016/j.carbpol.2014.06.054[PMC][. 25256485
  • Viganó, J., A. A. D. Meirelles, G. Náthia-Neves, A. M. Baseggio, R. L. Cunha, M. R. Maróstica Junior, M. A. A. Meireles, P. Gurikov, I. Smirnova, and J. Martínez. 2020. Impregnation of passion fruit bagasse extract in alginate aerogel microparticles. International Journal of Biological Macromolecules 155:1060–1068. doi: 10.1016/j.ijbiomac.2019.11.070.
  • Villegas, M., A. L. Oliveira, R. C. Bazito, and P. Vidinha. 2019. Development of an integrated one-pot process for the production and impregnation of starch aerogels in supercritical carbon dioxide. The Journal of Supercritical Fluids 154:104592. doi: 10.1016/j.supflu.2019.104592.
  • Wang, H., M. Cao, H.-B. Zhao, J.-X. Liu, C.-Z. Geng, and Y.-Z. Wang. 2020. Double-cross-linked aerogels towards ultrahigh mechanical properties and thermal insulation at extreme environment. Chemical Engineering Journal 399:125698. doi: 10.1016/j.cej.2020.125698.
  • Wang, J., D. Zhao, K. Shang, Y.-T. Wang, D.-D. Ye, A.-H. Kang, W. Liao, and Y.-Z. Wang. 2016. Ultrasoft gelatin aerogels for oil contaminant removal. Journal of Materials Chemistry A 4 (24):9381–9389. doi: 10.1039/C6TA03146C.
  • Wang, W., Y. Fang, X. Ni, K. Wu, Y. Wang, F. Jiang, and S. B. Riffat. 2019. Fabrication and characterization of a novel konjac glucomannan-based air filtration aerogels strengthened by wheat straw and okara. Carbohydrate Polymers 224:115129. doi: 10.1016/j.carbpol.2019.115129.
  • Wang, Y., X. Chen, Y. Kuang, M. Xiao, Y. Su, and F. Jiang. 2019. Microstructure and filtration performance of konjac glucomannan-based aerogels strengthened by wheat straw. International Journal of Low-Carbon Technologies 14 (3):335–43. doi: 10.1093/ijlct/ctx021.
  • Wang, Y., K. Wu, M. Xiao, S. B. Riffat, Y. Su, and F. Jiang. 2018. Thermal conductivity, structure and mechanical properties of konjac glucomannan/starch based aerogel strengthened by wheat straw. Carbohydrate Polymers 197:284–291. doi: 10.1016/j.carbpol.2018.06.009.
  • White, R. J., N. Yoshizawa, M. Antonietti, and M.-M. Titirici. 2011. A sustainable synthesis of nitrogen-doped carbon aerogels. Green Chemistry. 13:2428–34. doi: 10.1039/C1GC15349.
  • Xu, X., Q. Zhang, Y. Yu, W. Chen, H. Hu, and H. Li. 2016. Naturally dried graphene aerogels with superelasticity and tunable poisson’s ratio. Advanced Materials 28:9223–30. doi: 10.1002/adma.201603079.
  • Xu, H., L. Shen, L. Xu, and Y. Yang. 2015. Controlled delivery of hollow corn protein nanoparticles via non-toxic crosslinking: In vivo and drug loading study. Biomedical Microdevices 17 (1):115–129. doi: 10.1007/s10544-014-9926-5.
  • Xu, W., Y. Li, H. Wang, Q. Du, M. Li, Y. Sun, M. Cui, and L. Li. 2021. Study on the adsorption performance of casein/graphene oxide aerogel for methylene blue. ACS Omega 6 (43):29243–29253. doi: 10.1021/acsomega.1c04938.
  • Yang, J., Y. Li, Y. Zheng, Y. Xu, Z. Zheng, X. Chen, and W. Liu. 2019. Versatile aerogels for sensors. Small 15 (41):1902826.1902826. doi: 10.1002/smll.20.
  • Zamora-Sequeira, R., C. A. Garcı́a-González, I. Ardao, and R. Starbird. 2018. Conductive nanostructured materials based on poly-(3,4-ethylenedioxythiophene) (PEDOT) and starch/κ-carrageenan for biomedical applications. Carbohydrate Polymers 189:304–12. doi: 10.1016/j.carbpol.2018.02.040.
  • Zhang, H., J. Wang, G. Xu, Y. Xu, F. Wang, and H. Shen. 2021. Ultralight, hydrophobic, sustainable, cost-effective and floating kapok/microfibrillated cellulose aerogels as speedy and recyclable oil superabsorbents. Journal of Hazardous Materials 406:124758. doi: 10.1016/j.jhazmat.2020.124758.
  • Zhang, Y., J. Zhu, H. Ren, Y. Bi, X. Shi, B. Wang, and L. Zhang. 2017. A novel starch-enhanced melamine-formaldehyde aerogel with low volume shrinkage and high toughness. Journal of Porous Materials 24 (5):1303–1307. doi: 10.1007/s10934-017-0371-8.
  • Zhang, Z., G. Sèbe, D. Rentsch, T. Zimmermann, and P. Tingaut. 2014. Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Chemistry of Materials 26 (8):2659–2668. doi: 10.1021/cm5004164.
  • Zhao, S., W. J. Malfait, N. Guerrero-Alburquerque, M. M. Koebel, and G. Nyström. 2018. Biopolymer aerogels and foams: Chemistry, properties, and applications. Angewandte Chemie (International ed. in English) 57 (26):7580–7608. doi: 10.1002/anie.201709014.
  • Zheng, Q., Y. Tian, F. Ye, Y. Zhou, and G. Zhao. 2020. Fabrication and application of starch-based aerogel: Technical strategies. Trends in Food Science & Technology 99:608–620. doi: 10.1016/j.tifs.2020.03.038.
  • Zhu, F. 2019. Starch based aerogels: Production, properties and applications. Trends in Food Science & Technology 89:1–10. doi: 10.1016/j.tifs.2019.05.001.
  • Zhuo, H., Y. Hu, X. Tong, Z. Chen, L. Zhong, H. Lai, L. Liu, S. Jing, Q. Liu, C. Liu, et al. 2018. A supercompressible, elastic, and bendable carbon aerogel with ultrasensitive detection limits for compression strain, pressure, and bending angle. Advanced Materials 30 (18):e1706705. https://. doi: 10.1002/adma.201706705.
  • Zou, F., and T. Budtova. 2021. Tailoring the morphology and properties of starch aerogels and cryogels via starch source and process parameter. Carbohydrate Polymers 255:117344–344. doi: 10.1016/j.carbpol.2020.117344.
  • Zuo, L., Y. Zhang, L. Zhang, Y.-E. Miao, W. Fan, and T. Liu. 2015. Polymer/carbon-based hybrid aerogels: Preparation, properties and applications. Materials 8 (10):6806–6848. doi: 10.3390/ma8105343.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.