2,338
Views
9
CrossRef citations to date
0
Altmetric
Review Articles

The chemistry, processing, and preclinical anti-hyperuricemia potential of tea: a comprehensive review

, ORCID Icon, , ORCID Icon & ORCID Icon

References

  • Ahmad, A. F., L. Rich, H. Koch, K. D. Croft, M. G. Ferruzzi, C. D. Kay, J. M. Hodgson, and N. C. Ward. 2018. Effect of adding milk to black tea on vascular function in healthy men and women: A randomised controlled crossover trial. Food & Function 9 (12):6307–15. doi: 10.1039/C8FO01019F.
  • Aihemaitijiang, S., Y. Zhang, L. Zhang, J. Yang, C. Ye, M. Halimulati, W. Zhang, and Z. Zhang. 2020. The association between purine-rich food intake and hyperuricemia: A cross-sectional study in Chinese adult residents. Nutrients 12 (12):3835. doi: 10.3390/nu12123835.
  • Alcazar, A.,. O. Ballesteros, J. M. Jurado, F. Pablos, M. J. Martin, J. L. Vilches, and A. Navalon. 2007. Differentiation of green, white, black, oolong, and Pu-erh teas according to their free amino acids content. Journal of Agricultural and Food Chemistry 55 (15):5960–5. doi: 10.1021/jf070601a.
  • Alderman, M. H. 2002. Uric acid and cardiovascular risk. Current Opinion in Pharmacology 2 (2):126–30. doi: 10.1016/S1471-4892(02)00143-1.
  • An, R., L. L. Sun, L. M. Xiang, W. J. Zhang, Q. H. Li, X. F. Lai, S. Wen, M. G. Huo, D. L. Li, and S. L. Sun. 2019. Effect of yellowing time on bioactive compounds in yellow tea and their antiproliferative capacity in HepG2 cells. Food Science & Nutrition 7 (5):1838–47. doi: 10.1002/fsn3.1036.
  • Babwah, T. J., C. Ramcharan, C. Ramgoolam, N. Sookoo, W. Creese, M. Pamassar, P. Kassie, and R. Ramdin. 2018. Most major side effects of caffeine experienced by young adults are acute effects and are related to their weekly dosage ingested. Journal of Caffeine and Adenosine Research 8 (1):18–26. doi: 10.1089/caff.2017.0008.
  • Bae, J., P. S. Park, B. Y. Chun, B. Y. Choi, M. K. Kim, M. H. Shin, Y. H. Lee, D. H. Shin, and S. K. Kim. 2015. The effect of coffee, tea, and caffeine consumption on serum uric acid and the risk of hyperuricemia in Korean Multi-Rural Communities Cohort. Rheumatology International 35 (2):327–36. doi: 10.1007/s00296-014-3061-8.
  • Bahorun, T., A. Luximon-Ramma, T. K. Gunness, D. Sookar, S. Bhoyroo, R. Jugessur, D. Reebye, K. Googoolye, A. Crozier, and O. I. Aruoma. 2010. Black tea reduces uric acid and C-reactive protein levels in humans susceptible to cardiovascular diseases. Toxicology 278 (1):68–74. doi: 10.1016/j.tox.2009.11.024.
  • Barghouthy, Y., M. Corrales, S. Doizi, B. K. Somani, and O. Traxer. 2021. Tea and coffee consumption and pathophysiology related to kidney stone formation: A systematic review. World Journal of Urology 39 (7):2417–26. doi: 10.1007/s00345-020-03466-8.
  • Basu, A., K. Sanchez, M. J. Leyva, M. Y. Wu, N. M. Betts, C. E. Aston, and T. J. Lyons. 2010. Green tea supplementation affects body weight, lipids, and lipid peroxidation in obese subjects with metabolic syndrome. Journal of the American College of Nutrition 29 (1):31–40. doi: 10.1080/07315724.2010.10719814.
  • Becker, M. A., H. R. Schumacher, R. L. Wortmann, P. A. MacDonald, D. Eustace, W. A. Palo, J. Streit, and N. Joseph-Ridge. 2005. Febuxostat compared with allopurinol in patients with hyperuricemia and gout. New England Journal of Medicine 353 (23):2450–61. doi: 10.1056/NEJMoa050373.
  • Beresniak, A., G. Duru, G. Berger, and D. Bremond-Gignac. 2012. Relationships between black tea consumption and key health indicators in the world: An ecological study. BMJ Open 2 (6):e000648. doi: 10.1136/bmjopen-2011-000648.
  • Bleyer, A. J., and T. C. Hart. 2006. Genetic factors associated with gout and hyperuricemia. Advances in Chronic Kidney Disease 13 (2):124–30. doi: 10.1053/j.ackd.2006.01.008.
  • Boros, K., N. Jedlinszki, and D. Csupor. 2016. Theanine and Caffeine Content of Infusions Prepared from Commercial Tea Samples. Pharmacognosy Magazine 12 (45):75–9. doi: 10.4103/0973-1296.176061.
  • Cao, Q. Q., Y. Q. Fu, J. Q. Wang, L. Zhang, F. Wang, J. F. Yin, and Y. Q. Xu. 2021. Sensory and chemical characteristics of Tieguanyin oolong tea after roasting. Food Chemistry: X 12:100178. doi: 10.1016/j.fochx.2021.100178.
  • Cao, S. Y., B. Y. Li, R. Y. Gan, Q. Q. Mao, Y. F. Wang, A. Shang, J. M. Meng, X. Y. Xu, X. L. Wei, and H. B. Li. 2020. The in vivo antioxidant and hepatoprotective actions of selected Chinese teas. Foods 9 (3):262. doi: 10.3390/foods9030262.
  • Cao, T., Li, X. Y., Mao, T., Liu, H., Zhao, Q. X., Ding, X. L., Li, C. G., Zhang, L. J., & Tian, Z. B. (2017). Probiotic therapy alleviates hyperuricemia in C57BL/6 mouse model. Biomedical Research-India 28(5), 2244–2249.
  • Chatterjee, T. N., R. B. Roy, B. Tudu, P. Pramanik, H. Deka, P. Tamuly, and R. Bandyopadhyay. 2017. Detection of theaflavins in black tea using a molecular imprinted polyacrylamide-graphite nanocomposite electrode. Sensors and Actuators B: Chemical 246:840–7. doi: 10.1016/j.snb.2017.02.139.
  • Chen-Xu, M., C. Yokose, S. K. Rai, M. H. Pillinger, and H. K. Choi. 2019. Contemporary prevalence of gout and hyperuricemia in the United States and decadal trends: The National Health and Nutrition Examination Survey, 2007-2016. Arthritis & Rheumatology (Hoboken, N.J.) 71 (6):991–9. doi: 10.1002/art.40807.
  • Chen, C. J., C. C. Tseng, J. H. Yen, J. G. Chang, W. C. Chou, H. W. Chu, S. J. Chang, and W. T. Liao. 2018a. ABCG2 contributes to the development of gout and hyperuricemia in a genome-wide association study. Scientific Reports 8:3137. doi: 10.1038/s41598-018-21425-7.
  • Chen, D. D., Dong, X. X., Yang, X. J., Sun, H. P., Liang, G., Chen, X., & Pan, C. W. (2021). Tea consumption and serum uric acid levels among older adults in three large-scale population-based studies in China. BMC Geriatrics 21(1):267. doi: 10.1186/s12877-021-02216-8.
  • Chen, G., and M-l Tan. 2017. Effect of green tea polyphenols on uric acid level in potassium oxonate-induced hyperuricemic mice and mechanism. Chinese Pharmacological Bulletin 33 (2):218–22. doi: 10.3969/j.issn.1001-1978.2017.02.015.
  • Chen, G., M. L. Tan, K. K. Li, P. C. Leung, and C. H. Ko. 2015a. Green tea polyphenols decreases uric acid level through xanthine oxidase and renal urate transporters in hyperuricemic mice. Journal of Ethnopharmacology 175:14–20. doi: 10.1016/j.jep.2015.08.043.
  • Chen, G., M. L. Tan, K. K. Li, P. C. Leung, and C. H. Ko. 2015b. Green tea polyphenols decreases uric acid level through xanthine oxidase and renal urate transporters in hyperuricemic mice. Journal of Ethnopharmacology 175:14–20. doi: 10.1016/j.jep.2015.08.043.
  • Chen, G., Q. Yuan, M. Saeeduddin, S. Ou, X. Zeng, and H. Ye. 2016. Recent advances in tea polysaccharides: Extraction, purification, physicochemical characterization and bioactivities. Carbohydrate Polymers 153:663–78. doi: 10.1016/j.carbpol.2016.08.022.
  • Chen, H. Y., J. S. Wu, Y. F. Chang, Z. J. Sun, C. J. Chang, F. H. Lu, and Y. C. Yang. 2019. Increased amount and duration of tea consumption may be associated with decreased risk of renal stone disease. World Journal of Urology 37 (2):379–84. doi: 10.1007/s00345-018-2394-4.
  • Chen, I. J., C. Y. Liu, J. P. Chiu, and C. H. Hsu. 2016. Therapeutic effect of high-dose green tea extract on weight reduction: A randomized, double-blind, placebo-controlled clinical trial. Clinical Nutrition (Edinburgh, Scotland) 35 (3):592–9. doi: 10.1016/j.clnu.2015.05.003.
  • Chen, J., Q. Li, Y. Ye, M. Ran, Z. Ruan, and N. Jin. 2020. Inhibition of xanthine oxidase by theaflavin: Possible mechanism for anti-hyperuricaemia effect in mice. Process Biochemistry 97:8–11. doi: 10.1016/j.procbio.2020.06.024.
  • Chen, J. L., L. F. Du, J. J. Li, and H. P. Song. 2016. Epigallocatechin-3-gallate attenuates cadmium-induced chronic renal injury and fibrosis. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 96:8–70. doi: 10.1016/j.fct.2016.07.030.
  • Chen, L. L., & Xu, Y. (2018). Epigallocatechin gallate attenuates uric acid-induced injury in rat renal interstitial fibroblasts NRK-49F by up-regulation of miR-9. European Review for Medical and Pharmacological Sciences, 22(21), 7458–7469. <Go to ISI>://WOS:000451033900045
  • Chen, Y., L. Zeng, Y. Liao, J. Li, B. Zhou, Z. Yang, and J. Tang. 2020. Enzymatic reaction-related protein degradation and proteinaceous amino acid metabolism during the black tea (Camellia sinensis) manufacturing process. Foods 9 (1):66. doi: 10.3390/foods9010066.
  • Chen, Y. L., J. Duan, Y. M. Jiang, J. Shi, L. T. Peng, S. P. Xue, and Y. Kakuda. 2010. Production, quality, and biological effects of Oolong tea (Camellia sinensis). Food Reviews International 27 (1):1–15. doi: 10.1080/87559129.2010.518294.
  • Chen, Z. M., and Z. Lin. 2015. Tea and human health: Biomedical functions of tea active components and current issues. Journal of Zhejiang University. Science. B 16 (2):87–102. doi: 10.1631/jzus.B1500001.
  • Cheng, S. H., X. M. Fu, Y. Y. Liao, X. L. Xu, L. T. Zeng, J. C. Tang, J. L. Li, J. H. Lai, and Z. Y. Yang. 2019. Differential accumulation of specialized metabolite L-theanine in green and albino-induced yellow tea (Camellia sinensis) leaves. Food Chemistry 276:93–100. doi: 10.1016/j.foodchem.2018.10.010.
  • Chi, K., X. D. Geng, C. Liu, Y. Zhang, J. Cui, G. Y. Cai, X. M. Chen, F. F. Wang, and Q. Hong. 2021. LncRNA-HOTAIR promotes endothelial cell pyroptosis by regulating the miR-22/NLRP3 axis in hyperuricaemia. Journal of Cellular and Molecular Medicine 25 (17):8504–21. doi: 10.1111/jcmm.16812.
  • Childs, L., and C. Dow. 2012. Allopurinol-induced hepatomegaly. BMJ Case Reports 2012 (Oct):bcr2012007283–bcr2012007283. doi: 10.1136/bcr-2012-007283.
  • Choi, H. K., K. Atkinson, E. W. Karlson, W. Willett, and G. Curhan. 2004. Purine-rich foods, dairy and protein intake, and the risk of gout in men. New England Journal of Medicine 350 (11):1093–103. doi: 10.1056/NEJMoa035700.
  • Choi, H. K., and G. Curhan. 2007. Coffee, tea, and caffeine consumption and serum uric acid level: The third national health and nutrition examination survey. Arthritis & Rheumatism 57 (5):816–21. doi: 10.1002/art.22762.
  • Choi, H. K., and G. Curhan. 2010. Coffee consumption and risk of incident gout in women: The Nurses’ Health Study. The American Journal of Clinical Nutrition 92 (4):922–7. doi: 10.3945/ajcn.2010.29565.
  • Choi, H. K., D. B. Mount, and A. M. Reginato. 2005. Pathogenesis of gout. Annals of Internal Medicine 143 (7):499–516. doi: 10.7326/0003-4819-143-7-200510040-00009.
  • Choi, H. K., W. Willett, and G. Curhan. 2007. Coffee consumption and risk of incident gout in men - A prospective study. Arthritis & Rheumatism 56 (6):2049–55. doi: 10.1002/art.22712.
  • Chou, Y.-T., C.-H. Li, W.-C. Shen, Y.-C. Yang, F.-H. Lu, J.-S. Wu, and C.-J. Chang. 2020. Association of sleep quality and sleep duration with serum uric acid levels in adults. Plos One 15 (9):e0239185. doi: 10.1371/journal.pone.0239185.
  • Coe, S., A. Fraser, and L. Ryan. 2013. Polyphenol bioaccessibility and sugar reducing capacity of black, green, and white teas. International Journal of Food Science 2013:1–238216. doi: 10.1155/2013/238216.
  • da Silva Pinto, M. 2013. Tea: A new perspective on health benefits. Food Research International 53 (2):558–67. doi: 10.1016/j.foodres.2013.01.038.
  • Dai, W., Xie, D., Lu, M., Li, P., Lv, H., Yang, C., Peng, Q., Zhu, Y., Guo, L., Zhang, Y., Tan, J., & Lin, Z. (2017). Characterization of white tea metabolome: Comparison against green and black tea by a nontargeted metabolomics approach. Food Research International 96, 40–45. doi: 10.1016/j.foodres.2017.03.028
  • Dalbeth, N., T. R. Merriman, and L. K. Stamp. 2016. Gout. The Lancet 388 (10055):2039–52. doi: 10.1016/S0140-6736(16)00346-9.
  • Dong, X. K., H. L. Zhang, F. Wang, X. T. Liu, K. L. Yang, R. Q. Tu, M. Wei, L. Wang, Z. X. Mao, G. Y. Zhang, et al. 2020. Epidemiology and prevalence of hyperuricemia among men and women in Chinese rural population: The Henan Rural Cohort Study. Modern Rheumatology 30 (5):910–20. doi: 10.1080/14397595.2019.1660048.
  • Donlao, N., and Y. Ogawa. 2019. The influence of processing conditions on catechin, caffeine and chlorophyll contents of green tea (Camelia sinensis) leaves and infusions. LWT 116:108567. doi: 10.1016/j.lwt.2019.108567.
  • Fang, J., A. Sureda, A. S. Silva, F. Khan, S. Xu, and S. M. Nabavi. 2019. Trends of tea in cardiovascular health and disease: A critical review. Trends in Food Science & Technology 88:385–96. doi: 10.1016/j.tifs.2019.04.001.
  • Fang, Z. T., C. J. Song, H. R. Xu, and J. H. Ye. 2019. Dynamic changes in flavonol glycosides during production of green, yellow, white, oolong and black teas from Camellia sinensis L. (cv. Fudingdabaicha). International Journal of Food Science & Technology 54 (2):490–8. doi: 10.1111/ijfs.13961.
  • Gan, R. Y., H. B. Li, Z. Q. Sui, and H. Corke. 2018. Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): An updated review. Critical Reviews in Food Science and Nutrition 58 (6):924–41. doi: 10.1080/10408398.2016.1231168.
  • George, J., and A. D. Struthers. 2009. Role of urate, xanthine oxidase and the effects of allopurinol in vascular oxidative stress. Vascular Health and Risk Management 5 (1):265–72. doi: 10.2147/vhrm.s4265.
  • Ghei, M., M. Mihailescu, and D. Levinson. 2002. Pathogenesis of hyperuricemia: Recent advances. Current Rheumatology Reports 4 (3):270–4.
  • Gibbs, B. F., I. G. Silva, A. Prokhorov, M. Abooali, I. M. Yasinska, M. A. Casely-Hayford, S. M. Berger, E. Fasler-Kan, and V. V. Sumbayev. 2015. Caffeine affects the biological responses of human hematopoietic cells of myeloid lineage via downregulation of the mTOR pathway and xanthine oxidase activity. Oncotarget 6 (30):28678–92. doi: 10.18632/oncotarget.5212.
  • Gibson, T. 2012. Hyperuricemia, gout and the kidney. Current Opinion in Rheumatology 24 (2):127–31. doi: 10.1097/BOR.0b013e32834f049f.
  • Giordano, L., S. M. Mihaila, H. Eslami Amirabadi, and R. Masereeuw. 2021. Microphysiological systems to recapitulate the gut-kidney axis. Trends in Biotechnology 39 (8):811–23. doi: 10.1016/j.tibtech.2020.12.001.
  • Guo, H., M. X. Fu, D. T. Wu, Y. X. Zhao, H. Li, H. B. Li, and R. Y. Gan. 2021. Structural characteristics of crude polysaccharides from 12 Selected Chinese teas, and their antioxidant and anti-diabetic activities. Antioxidants 10 (10):1562. doi: 10.3390/antiox10101562.
  • Guo, Q., L. Y. Zhao, Y. H. Zhu, J. Wu, C. T. Hao, S. Song, and W. Shi. 2021. Optimization of culture medium for Sanghuangporus vaninii and a study on its therapeutic effects on gout. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 135:111194. doi: 10.1016/j.biopha.2020.111194.
  • Guo, X., C.-T. Ho, X. Wan, H. Zhu, Q. Liu, and Z. Wen. 2021. Changes of volatile compounds and odor profiles in Wuyi rock tea during processing. Food Chemistry 341 (Pt 1):128230. doi: 10.1016/j.foodchem.2020.128230.
  • Han, M. M., G. S. Zhao, Y. J. Wang, D. X. Wang, F. Sun, J. M. Ning, X. C. Wan, and J. S. Zhang. 2016. Safety and anti-hyperglycemic efficacy of various tea types in mice. Scientific reports 6:31703. Article . doi: 10.1038/srep31703.
  • Han, Q.-X., D. Zhang, Y.-L. Zhao, L. Liu, J. Li, F. Zhang, F.-X. Luan, D.-W. Liu, Z.-S. Liu, G.-Y. Cai, et al. 2019. Risk factors for hyperuricemia in Chinese centenarians and near-centenarians. Clinical Interventions in Aging Volume 14:2239–47. doi: 10.2147/CIA.S223048.
  • Heckman, M. A., Weil, J., & de Mejia, E. G. (2010). Caffeine (1, 3, 7-trimethylxanthine) in foods: A comprehensive review on consumption, functionality, safety, and regulatory matters. Journal of Food Science 75(3), R77–R87. doi: 10.1111/j.1750-3841.2010.01561.x.
  • Hilal, Y., and U. Engelhardt. 2007. Characterisation of white tea – Comparison to green and black tea. Journal für Verbraucherschutz und Lebensmittelsicherheit 2 (4):414–21. doi: 10.1007/s00003-007-0250-3.
  • Ho, C.-T., X. Zheng, and S. Li. 2015. Tea aroma formation. Food Science and Human Wellness 4 (1):9–27. doi: 10.1016/j.fshw.2015.04.001.
  • Hong, F., A. Zheng, P. Xu, J. Wang, T. Xue, S. Dai, S. Pan, Y. Guo, X. Xie, L. Li, et al. 2020. High-protein diet induces hyperuricemia in a new animal model for studying human gout. International Journal of Molecular Sciences 21 (6):2147. doi: 10.3390/ijms21062147.
  • Hsieh, C. Y., H. J. Lin, C. H. Chen, E. C. C. Lai, and Y. H. K. Yang. 2014. Chronic kidney disease and stroke. The Lancet Neurology 13 (11):1071. doi: 10.1016/S1474-4422(14)70199-1.
  • Hu, Q. H., C. A. Wang, J. M. Li, D. M. Zhang, and L. D. Kong. 2009. Allopurinol, rutin, and quercetin attenuate hyperuricemia and renal dysfunction in rats induced by fructose intake: Renal organic ion transporter involvement. American Journal of Physiology. Renal Physiology 297 (4):F1080–F1091. doi: 10.1152/ajprenal.90767.2008.
  • Hu, S., S. Li, Y. Liu, K. Sun, L. Luo, and L. Zeng. 2021. Aged ripe Pu-erh tea reduced oxidative stress-mediated inflammation in dextran sulfate sodium-induced colitis mice by regulating intestinal microbes. Journal of Agricultural and Food Chemistry 69 (36):10592–605. doi: 10.1021/acs.jafc.1c04032.
  • Huang, J., Ma, Z. F., Zhang, Y., Wan, Z., Li, Y., Zhou, H., Chu, A., & Lee, Y. Y. (2020). Geographical distribution of hyperuricemia in mainland China: A comprehensive systematic review and meta-analysis. Global Health Research and Policy, 5(1), 52. doi: 10.1186/s41256-020-00178-9.
  • Huang, Y., K. Xing, L. Qiu, Q. Wu, and H. Wei. 2021. Therapeutic implications of functional tea ingredients for ameliorating inflammatory bowel disease: A focused review. Critical Reviews in Food Science and Nutrition :1–15. doi: 10.1080/10408398.2021.1884532.
  • Huang, Y. N., Q. Yang, X. Mi, L. Qiu, X. Y. Tao, Z. H. Zhang, J. Xia, Q. L. Wu, and H. Wei. 2021. Ripened Pu-erh tea extract promotes gut microbiota resilience against dextran sulfate sodium induced colitis. Journal of Agricultural and Food Chemistry 69 (7):2190–203. doi: 10.1021/acs.jafc.0c07537.
  • Hughes, D. A. 2005. Plant polyphenols: Modifiers of immune function and risk of cardiovascular disease. Nutrition (Burbank, Los Angeles County, Calif.) 21 (3):422–3. doi: 10.1016/j.nut.2004.11.003.
  • Jatuworapruk, K., S. Srichairatanakool, S. Ounjaijean, N. Kasitanon, S. Wangkaew, and W. Louthrenoo. 2014. Effects of green tea extract on serum uric acid and urate clearance in healthy individuals. Journal of Clinical Rheumatology 20 (6):310–3. doi: 10.1097/rhu.0000000000000148.
  • Jhang, J. J., C. C. Lu, and G. C. Yen. 2016. Epigallocatechin gallate inhibits urate crystals-induced peritoneal inflammation in C57BL/6 mice. Molecular Nutrition & Food Research 60 (10):2297–303. doi: 10.1002/mnfr.201600106.
  • Jiang, H., F. Yu, L. Qin, N. Zhang, Q. Cao, W. Schwab, D. X. Li, and C. K. Song. 2019. Dynamic change in amino acids, catechins, alkaloids, and gallic acid in six types of tea processed from the same batch of fresh tea (Camellia sinensis L.) leaves. Journal of Food Composition and Analysis 77:28–38. doi: 10.1016/j.jfca.2019.01.005.
  • Jiang, H., M. Zhang, D. Wang, F. Yu, N. Zhang, C. Song, and D. Granato. 2020. Analytical strategy coupled to chemometrics to differentiate Camellia sinensis tea types based on phenolic composition, alkaloids, and amino acids. Journal of Food Science 85 (10):3253–63. doi: 10.1111/1750-3841.15390.
  • Jiang, L.-L., X. Gong, M.-Y. Ji, C.-C. Wang, J.-H. Wang, and M.-H. Li. 2020. Bioactive compounds from plant-based functional foods: A promising choice for the prevention and management of hyperuricemia. Foods (Basel, Switzerland ), 9 (8):973. doi: 10.3390/foods9080973.
  • Jin, Y.-N., Z.-J. Lin, B. Zhang, and Y.-F. Bai. 2018. Effects of chicory on serum uric acid, renal function, and GLUT9 expression in hyperuricaemic rats with renal injury and in vitro verification with cells. Evidence-Based Complementary and Alternative Medicine: eCAM 2018:1764212. doi: 10.1155/2018/1764212.
  • Juneja, L. R., D.-C. Chu, T. Okubo, Y. Nagato, and H. Yokogoshi. 1999. L-theanine—A unique amino acid of green tea and its relaxation effect in humans. Trends in Food Science & Technology 10 (6-7):199–204. doi: 10.1016/S0924-2244(99)00044-8.
  • Jung, M. H., P. N. Seong, M. H. Kim, N. H. Myong, and M. J. Chang. 2013. Effect of green tea extract microencapsulation on hypertriglyceridemia and cardiovascular tissues in high fructose-fed rats. Nutrition Research and Practice 7 (5):366–72. doi: 10.4162/nrp.2013.7.5.366.
  • Kanakis, C. D., I. Hasni, P. Bourassa, P. A. Tarantilis, M. G. Polissiou, and H. A. Tajmir-Riahi. 2011. Milk β-lactoglobulin complexes with tea polyphenols . Food Chemistry 127 (3):1046–55. doi: 10.1016/j.foodchem.2011.01.079.
  • Kaneko, K.,. Y. Aoyagi, T. Fukuuchi, K. Inazawa, and N. Yamaoka. 2014. Total purine and purine base content of common foodstuffs for facilitating nutritional therapy for gout and hyperuricemia. Biological & Pharmaceutical Bulletin 37 (5):709–21. doi: 10.1248/bpb.b13-00967.
  • Kanellis, J., S. Watanabe, J. H. Li, D. H. Kang, P. Li, T. Nakagawa, A. Wamsley, D. Sheikh-Hamad, H. Y. Lan, L. Feng, et al. 2003. Uric acid stimulates monocyte chemoattractant protein-1 production in vascular smooth muscle cells via mitogen-activated protein kinase and cyclooxygenase-2. Hypertension (Dallas, Tex. : 1979) 41 (6):1287–93. doi: 10.1161/01.HYP.0000072820.07472.3B.
  • Kang, D. H., T. Nakagawa, L. Feng, S. Watanabe, L. Han, M. Mazzali, L. Truong, R. Harris, and R. J. Johnson. 2002. A role for uric acid in the progression of renal disease. Journal of the American Society of Nephrology 13 (12):2888–97. doi: 10.1097/01.ASN.0000034910.58454.FD.
  • Kang, D. H., S. K. Park, I. K. Lee, and R. J. Johnson. 2005. Uric acid-induced C-reactive protein expression: Implication on cell proliferation and nitric oxide production of human vascular cells. Journal of the American Society of Nephrology: JASN 16 (12):3553–62. doi: 10.1681/ASN.2005050572.
  • Kanlaya, R., S. Khamchun, C. Kapincharanon, and V. Thongboonkerd. 2016. Protective effect of epigallocatechin-3-gallate (EGCG) via Nrf2 pathway against oxalate-induced epithelial mesenchymal transition (EMT) of renal tubular cells. Scientific Reports 6:30233. doi: 10.1038/srep30233.
  • Kanlaya, R., P. Peerapen, A. Nilnumkhum, S. Plumworasawat, K. Sueksakit, and V. Thongboonkerd. 2020. Epigallocatechin-3-gallate prevents TGF-β1-induced epithelial-mesenchymal transition and fibrotic changes of renal cells via GSK-3β/β-catenin/Snail1 and Nrf2 pathways . The Journal of Nutritional Biochemistry 76:108266. doi: 10.1016/j.jnutbio.2019.108266.
  • Kaufmann, P., M. Torok, A. Hanni, P. Roberts, R. Gasser, and S. Krahenbuhl. 2005. Mechanisms of benzarone and benzbromarone-induced hepatic toxicity. Hepatology 41 (4):925–35. doi: 10.1002/hep.20634.
  • Kaur, A., S. Farooq, and A. Sehgal. 2019. A comparative study of antioxidant potential and phenolic content in white (silver needle), green and black tea. Current Nutrition & Food Science 15 (4):415–20. doi: 10.2174/1573401313666171016162310.
  • Kazimierczak, R., E. Hallmann, A. Rusaczonek, and E. Rembiałkowska. 2015. Polyphenols, tannins and caffeine content and antioxidant activity of green teas coming from organic and non-organic production. Renewable Agriculture and Food Systems 30 (3):263–9. doi: 10.1017/S1742170513000513.
  • Kela, U., R. Vijayvargiya, and C. P. Trivedi. 1980. Inhibitory effects of methylxanthines on the activity of xanthine oxidase. Life Sciences 27 (22):2109–19. doi: 10.1016/0024-3205(80)90492-0.
  • Khosla, U. M., S. Zharikov, J. L. Finch, T. Nakagawa, C. Roncal, W. Mu, K. Krotova, E. R. Block, S. Prabhakar, and R. J. Johnson. 2005. Hyperuricemia induces endothelial dysfunction. Kidney International 67 (5):1739–42. doi: 10.1111/j.1523-1755.2005.00273.x.
  • Kim, I. Y., D. W. Lee, S. B. Lee, and I. S. Kwak. 2014. The role of uric acid in kidney fibrosis: Experimental evidences for the causal relationship. BioMed Research International 2014:9. doi: 10.1155/2014/638732.
  • Kim, M.-J., S.-S. Kim, and S.-I. Lee. 2012. Quality characteristics and content of polysaccharides in green tea fermented by Monascus pilosus. Preventive Nutrition and Food Science 17 (4):293–8. doi: 10.3746/pnf.2012.17.4.293.
  • Koo, B. S., H.-J. Jeong, C.-N. Son, S.-H. Kim, H. J. Kim, G.-H. Kim, and J.-B. Jun. 2021. Distribution of serum uric acid levels and prevalence of hyper- and hypouricemia in a Korean general population of 172,970. The Korean Journal of Internal Medicine 36 (Suppl 1):S264–S272. doi: 10.3904/kjim.2020.116.
  • Lambert, J. D., M. J. Kennett, S. Sang, K. R. Reuhl, J. Ju, and C. S. Yang. 2010. Hepatotoxicity of high oral dose (-)-epigallocatechin-3-gallate in mice. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 48 (1):409–16. doi: 10.1016/j.fct.2009.10.030.
  • Lee, H. E., G. Yang, Y. B. Park, H. C. Kang, Y. Y. Cho, H. S. Lee, and J. Y. Lee. 2019. Epigallocatechin-3-gallate prevents acute gout by suppressing NLRP3 inflammasome activation and mitochondrial DNA synthesis. Molecules 24 (11):11, Article 2138. doi: 10.3390/molecules24112138.
  • Lee, V. S. Y., J. Dou, R. J. Y. Chen, R.-S. Lin, M.-R. Lee, and J. T. C. Tzen. 2008. Massive accumulation of gallic acid and unique occurrence of myricetin, quercetin, and kaempferol in preparing old oolong tea. Journal of Agricultural and Food Chemistry 56 (17):7950–6. doi: 10.1021/jf801688b.
  • Li, D. T., P. Wang, P. P. Wang, X. S. Hu, and F. Chen. 2016. The gut microbiota: A treasure for human health. Biotechnology Advances 34 (7):1210–24. doi: 10.1016/j.biotechadv.2016.08.003.
  • Li, F., Y. Liu, Y. Xie, Z. Liu, and G. Zou. 2020. Epigallocatechin gallate reduces uric acid levels by regulating xanthine oxidase activity and uric acid excretion in vitro and in vivo. Annals of Palliative Medicine 9 (2):331–8. http://apm.amegroups.com/article/view/33495. doi: 10.21037/apm.2019.11.28.
  • Li, H., H. Guo, Q. Luo, D. T. Wu, L. Zou, Y. Liu, H. B. Li, and R. Y. Gan. 2021. Current extraction, purification, and identification techniques of tea polyphenols: An updated review. Critical Reviews in Food Science and Nutrition :1–19. doi: 10.1080/10408398.2021.1995843.
  • Li, J., Y. F. Yao, J. Q. Wang, J. J. Hua, J. J. Wang, Y. Q. Yang, C. W. Dong, Q. H. Zhou, Y. W. Jiang, Y. L. Deng, et al. 2019. Rutin, gamma-aminobutyric acid, gallic acid, and caffeine negatively affect the sweet-mellow taste of congou black tea infusions. Molecules 24 (23):4221. Article . doi: 10.3390/molecules24234221.
  • Li, Q., Y. Jin, R. Jiang, Y. Xu, Y. Zhang, Y. Luo, J. Huang, K. Wang, and Z. Liu. 2021. Dynamic changes in the metabolite profile and taste characteristics of Fu brick tea during the manufacturing process. Food Chemistry 344:128576. doi: 10.1016/j.foodchem.2020.128576.
  • Li, X., P. Song, J. Li, P. Wang, and G. Li. 2015. Relationship between hyperuricemia and dietary risk factors in Chinese adults: A cross-sectional study. Rheumatology International 35 (12):2079–89. doi: 10.1007/s00296-015-3315-0.
  • Li, X., P. G. Song, J. P. Li, P. Y. Wang, and G. W. Li. 2015. Relationship between hyperuricemia and dietary risk factors in Chinese adults: A cross-sectional study. Rheumatology iInternational 35 (12):2079–89. doi: 10.1007/s00296-015-3315-0.
  • Lichan, C., H. Yanchun, X. Kongying, S. Lihong, and R. Weichao. 2012. Effect of dietary and exercise intervention on unhealthy lifestyle of hyperuricemia patients. Modern Clinical Nursing.
  • Liebman, S. E., J. G. Taylor, and D. A. Bushinsky. 2007. Uric acid nephrolithiasis. Current Rheumatology Reports 9 (3):251–7. doi: 10.1007/s11926-007-0040-z.
  • Lim, H. S., J. Y. Hwang, J. C. Choi, and M. Kim. 2015. Assessment of caffeine intake in the Korean population. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 32 (11):1786–98. doi: 10.1080/19440049.2015.1077396.
  • Lin, F. J., X. L. Wei, H. Y. Liu, H. Li, Y. Xia, D. T. Wu, P. Z. Zhang, G. R. Gandhi, H. B. Li, and R. Y. Gan. 2021. State-of-the-art review of dark tea: From chemistry to health benefits. Trends in Food Science & Technology 109:126–38. doi: 10.1016/j.tifs.2021.01.030.
  • Lin, X., and D.-W. Sun. 2020. Recent developments in vibrational spectroscopic techniques for tea quality and safety analyses. Trends in Food Science & Technology 104:163–76. doi: 10.1016/j.tifs.2020.06.009.
  • Liu, C., X. R. Zhou, M. Y. Ye, X. Q. Xu, Y. W. Zhang, H. Liu, and X. Z. Huang. 2021. RBP4 Is associated with insulin resistance in hyperuricemia-induced rats and patients with hyperuricemia. Frontiers in Endocrinology 12:653819. doi: 10.3389/fendo.2021.653819.
  • Liu, G., X. Chen, X. Lu, J. Zhao, and X. Li. 2020. Sunflower head enzymatic hydrolysate relives hyperuricemia by inhibiting crucial proteins (xanthine oxidase, adenosine deaminase, uric acid transporter1) and restoring gut microbiota in mice. Journal of Functional Foods 72:104055. doi: 10.1016/j.jff.2020.104055.
  • Liu, L.,. Y. C. Ju, J. Wang, and R. M. Zhou. 2017. Epigallocatechin-3-gallate promotes apoptosis and reversal of multidrug resistance in esophageal cancer cells. Pathology - Research and Practice 213 (10):1242–50. doi: 10.1016/j.prp.2017.09.006.
  • Liu, L.,. S. Lou, K. Xu, Z. Meng, Q. Zhang, and K. Song. 2013. Relationship between lifestyle choices and hyperuricemia in Chinese men and women. Clinical Rheumatology 32 (2):233–9. doi: 10.1007/s10067-012-2108-z.
  • Liu, Y., L. Y. Luo, Y. K. Luo, J. Zhang, X. H. Wang, K. Sun, and L. Zeng. 2020. Prebiotic properties of green and dark tea contribute to protective effects in chemical-induced colitis in mice: A fecal microbiota transplantation study. Journal of Agricultural and Food Chemistry 68 (23):6368–80. doi: 10.1021/acs.jafc.0c02336.
  • Liu, Y., Y. K. Luo, X. H. Wang, L. Y. Luo, K. Sun, and L. Zeng. 2020. Gut microbiome and metabolome response of Pu-erh tea on metabolism disorder induced by chronic alcohol consumption. Journal of Agricultural and Food Chemistry 68 (24):6615–27. doi: 10.1021/acs.jafc.0c01947.
  • Liu, Y., Z. Lurong, W. Liangyu, L. Jing, X. Ping, and L. Jinke. 2019. Effect of theaflavins and theabrownine on the uric acid content in a new mouse model of chronic hyperuricemia. Science and Technology of Food Industry, v 41 (02):318–22. No.442 + 335.
  • Liu, Y., X. H. Wang, Q. B. Chen, L. Y. Luo, M. J. Ma, B. Xiao, and L. Zeng. 2020. Camellia sinensis and Litsea coreana ameliorate intestinal inflammation and modulate gut microbiota in dextran sulfate sodium-induced colitis mice. Molecular Nutrition & Food Research 64 (6):1900943. Article . doi: 10.1002/mnfr.201900943.
  • Liu, Z. B., M. E. Bruins, L. Ni, and J. P. Vincken. 2018. Green and black tea phenolics: bioavailability, transformation by colonic microbiota, and modulation of colonic microbiota. Journal of Agricultural and Food Chemistry 66 (32):8469–77. doi: 10.1021/acs.jafc.8b02233.
  • Lohsoonthorn, V., B. Dhanamun, and M. A. Williams. 2006. Prevalence of hyperuricemia and its relationship with metabolic syndrome in Thai adults receiving annual health exams. Archives of Medical Research 37 (7):883–9. doi: 10.1016/j.arcmed.2006.03.008.
  • Lv, H.-P., W.-D. Dai, J.-F. Tan, L. Guo, Y. Zhu, and Z. Lin. 2015. Identification of the anthocyanins from the purple leaf coloured tea cultivar Zijuan (Camellia sinensis var. assamica) and characterization of their antioxidant activities. Journal of Functional Foods 17:449–58. doi: 10.1016/j.jff.2015.05.043.
  • Maclachlan, M. J., and G. P. Rodnan. 1967. Effects of food, fast and alcohol on serum uric acid and acute attacks of gout. The American Journal of Medicine 42 (1):38–57. doi: 10.1016/0002-9343(67)90005-8.
  • Maiuolo, J., F. Oppedisano, S. Gratteri, C. Muscoli, and V. Mollace. 2016. Regulation of uric acid metabolism and excretion. International Journal of Cardiology 213:8–14. doi: 10.1016/j.ijcard.2015.08.109.
  • Major, T. J., N. Dalbeth, E. A. Stahl, and T. R. Merriman. 2018. An update on the genetics of hyperuricaemia and gout. Nature Reviews. Rheumatology 14 (6):341–53. doi: 10.1038/s41584-018-0004-x.
  • Maksimov, S. A., S. A. Shalnova, Y. A. Balanova, A. D. Deyev, S. E. Evstifeyeva, A. E. Imayeva, A. V. Kapustina, N. S. Karamnova, G. A. Muromtseva, O. P. Rotar, et al. 2020. Hyperuricemia versus lifestyle in men and women of the Russian Federation population. Russian Open Medical Journal 9 (2):10. doi: 10.15275/rusomj.2020.0214.
  • Mandal, A. K., and D. B. Mount. 2015. The molecular physiology of uric acid homeostasis. Annual Review of Physiology 77:323–45. doi: 10.1146/annurev-physiol-021113-170343.
  • Mao, A. J., H. Su, S. M. Fang, X. Chen, J. M. Ning, C. T. Ho, and X. C. Wan. 2018. Effects of roasting treatment on non-volatile compounds and taste of green tea. International Journal of Food Science & Technology 53 (11):2586–94. doi: 10.1111/ijfs.13853.
  • Matsuo, H., A. Nakayama, M. Sakiyama, T. Chiba, S. Shimizu, Y. Kawamura, H. Nakashima, T. Nakamura, Y. Takada, Y. Oikawa, et al. 2014. ABCG2 dysfunction causes hyperuricemia due to both renal urate underexcretion and renal urate overload. Scientific Reports 4:3755. doi: 10.1038/srep03755.
  • Mehmood, A., L. Zhao, M. Ishaq, W. Xin, L. Zhao, C. T. Wang, I. Hossen, H. M. Zhang, Y. H. Lian, and M. L. Xu. 2020. Anti-hyperuricemic potential of stevia (Stevia rebaudiana Bertoni) residue extract in hyperuricemic mice. Food & Function 11 (7):6387–406. doi: 10.1039/C9FO02246E.
  • Mehmood, A., L. Zhao, C. T. Wang, I. Hossen, R. N. Raka, and H. M. Zhang. 2020. Correction: Stevia residue extract increases intestinal uric acid excretion via interactions with intestinal urate transporters in hyperuricemic mice). Food & Function 11 (3):2764. doi: 10.1039/d0fo90011g.
  • Mena-Sanchez, G., N. Babio, N. Becerra-Tomas, M. A. Martinez-Gonzalez, A. Diaz-Lopez, D. Corella, M. D. Zomeno, D. Romaguera, J. Vioque, A. M. Alonso-Gomez, et al. 2020. Association between dairy product consumption and hyperuricemia in an elderly population with metabolic syndrome. Nutrition Metabolism and Cardiovascular Diseases 30 (2):214–222. doi: 10.1016/j.numecd.2019.09.023.
  • Mereles, D., and W. Hunstein. 2011. Epigallocatechin-3-gallate (EGCG) for clinical trials: More pitfalls than promises? International Journal of Molecular Sciences 12 (9):5592–5603. doi: 10.3390/ijms12095592.
  • Merriman, T. R. 2015. An update on the genetic architecture of hyperuricemia and gout. Arthritis Research & Therapy 17:98. doi: 10.1186/s13075-015-0609-2.
  • Miao, Z., C. Li, Y. Chen, S. Zhao, Y. Wang, Z. Wang, X. Chen, F. Xu, F. Wang, R. Sun, et al. 2008. Dietary and lifestyle changes associated with high prevalence of hyperuricemia and gout in the Shandong coastal cities of Eastern China. The Journal of Rheumatology 35 (9):1859–1864.
  • Miklavcic Visnjevec, A., and M. Schwarzkopf. 2020. Phenolic compounds in poorly represented mediterranean plants in Istria: Health impacts and food authentication. Molecules 25 (16):3645. doi: 10.3390/molecules25163645.
  • Muthumani, T., and R. S. S. Kumar. 2007. Influence of fermentation time on the development of compounds responsible for quality in black tea. Food Chemistry 101 (1):98–102. doi: 10.1016/j.foodchem.2006.01.008.
  • Nakayama, A., H. Matsuo, H. Nakaoka, T. Nakamura, H. Nakashima, Y. Takada, Y. Oikawa, T. Takada, M. Sakiyama, S. Shimizu, et al. 2014. Common dysfunctional variants of ABCG2 have stronger impact on hyperuricemia progression than typical environmental risk factors. Scientific Reports 4:5227. doi: 10.1038/srep05227.
  • Narukawa, M., Y. Toda, T. Nakagita, Y. Hayashi, and T. Misaka. 2014. l-Theanine elicits umami taste via the T1R1 + T1R3 umami taste receptor. Amino Acids 46 (6):1583–1587. doi: 10.1007/s00726-014-1713-3.
  • Nieuwdorp, M., P. W. Gilijamse, N. Pai, and L. M. Kaplan. 2014. Role of the Microbiome in Energy Regulation and Metabolism. Gastroenterology 146 (6):1525–1533. doi: 10.1053/j.gastro.2014.02.008.
  • Osakabe, N., C. Sanbongi, M. Yamagishi, T. Takizawa, and T. Osawa. 1998. Effects of polyphenol substances derived from Theobroma cacao on gastric mucosal lesion induced by ethanol. Bioscience, Biotechnology, and Biochemistry 62 (8):1535–1538. doi: 10.1271/bbb.62.1535.
  • Pan, Y., and L. D. Kong. 2016. Urate transporter URAT1 inhibitors: A patent review (2012 - 2015). ).Expert Opinion on Therapeutic Patents 26 (10):1129–1138. doi: 10.1080/13543776.2016.1213243.
  • Pavelcova, K., J. Bohata, M. Pavlikova, E. Bubenikova, K. Pavelka, and B. Stiburkova. 2020. Evaluation of the influence of genetic variants of SLC2A9 (GLUT9) and SLC22A12(URAT1) on the development of hyperuricemia and gout. Journal of Clinical Medicine 9 (8):2510. doi: 10.3390/jcm9082510.
  • Peluso, I., A. Teichner, H. Manafikhi, and M. Palmery. 2017. Camellia sinensis in asymptomatic hyperuricemia: A meta-analysis of tea or tea extract effects on uric acid levels. Critical Reviews in Food Science and Nutrition 57 (2):391–398. doi: 10.1080/10408398.2014.889653.
  • Peng, A., L. Lin, M. Zhao, and B. Sun. 2019. Identifying mechanisms underlying the amelioration effect of Chrysanthemum morifolium Ramat. ‘Boju’ extract on hyperuricemia using biochemical characterization and UPLC-ESI-QTOF/MS-based metabolomics . Food & Function 10 (12):8042–8055. ]. doi: 10.1039/c9fo01821b.
  • Perovic, J., V. T. Saponjac, J. Kojic, J. Krulj, D. A. Moreno, C. Garcia-Viguera, M. Bodroza-Solarov, and N. Ilic. 2021. Chicory (Cichorium intybus L.) as a food ingredient - Nutritional composition, bioactivity, safety, and health claims: A review. Food Chemistry 336:336. doi: 10.1016/j.foodchem.2020.127676.
  • Ponticelli, C., M. A. Podesta, and G. Moroni. 2020. Hyperuricemia as a trigger of immune response in hypertension and chronic kidney disease. Kidney International 98 (5):1149–1159. doi: 10.1016/j.kint.2020.05.056.
  • Qin, H., L. Huang, J. Teng, B. Wei, N. Xia, and Y. Ye. 2021. Purification, characterization, and bioactivity of Liupao tea polysaccharides before and after fermentation. Food Chemistry 353:129419. doi: 10.1016/j.foodchem.2021.129419.
  • Qiu, S., H. Sun, A.-H. Zhang, H.-Y. Xu, G.-L. Yan, Y. Han, and X.-J. Wang. 2014. Natural alkaloids: Basic aspects, biological roles, and future perspectives. Chinese Journal of Natural Medicines 12 (6):401–406. doi: 10.1016/S1875-5364(14)60063-7.
  • Qu, F. F., X. J. Zhu, Z. Y. Ai, Y. J. Ai, F. F. Qiu, and D. J. Ni. 2019. Effect of different drying methods on the sensory quality and chemical components of black tea. LWT 99:112–118. doi: 10.1016/j.lwt.2018.09.036.
  • Rabovsky, A., J. Cuomo, and N. Eich. 2006. Measurement of plasma antioxidant reserve after supplementation with various antioxidants in healthy subjects. Clinica Chimica Acta 371 (1-2):55–60. doi: 10.1016/j.cca.2006.02.020.
  • Ragab, G., M. Elshahaly, and T. Bardin. 2017. Gout: An old disease in new perspective - A review. Journal of Advanced Research 8 (5):495–511. doi: 10.1016/j.jare.2017.04.008.
  • Ren, Q., L. Cheng, F. Guo, S. B. Tao, C. L. Zhang, L. Ma, and P. Fu. 2021. Fisetin improves hyperuricemia-induced chronic kidney disease via regulating gut microbiota-mediated tryptophan metabolism and aryl hydrocarbon receptor activation. Journal of Agricultural and Food Chemistry 69 (37):10932–10942. doi: 10.1021/acs.jafc.1c03449.
  • Richette, P., and T. Bardin. 2010. Gout. The Lancet 375 (9711):318–328. doi: 10.1016/S0140-6736(09)60883-7.
  • Riese, R. J., and K. Sakhaee. 1992. Uric acid nephrolithiasis: Pathogenesis and treatment. The Journal of Urology 148 (3):765–771. doi: 10.1016/S0022-5347(17)36715-0.
  • Ristic, B., M. O. F. Sikder, Y. D. Bhutia, and V. Ganapathy. 2020. Pharmacologic inducers of the uric acid exporter ABCG2 as potential drugs for treatment of gouty arthritis. Asian Journal of Pharmaceutical Sciences 15 (2):173–180. doi: 10.1016/j.ajps.2019.10.002.
  • Rivera-Paredez, B., L. Macias-Kauffer, J. C. Fernandez-Lopez, M. Villalobos-Comparan, M. M. Martinez-Aguilar, A. de la Cruz-Montoya, E. G. Ramirez-Salazar, H. Villamil-Ramirez, M. Quiterio, P. Ramirez-Palacios, et al. 2019. Influence of genetic and non-genetic risk factors for serum uric acid levels and hyperuricemia in Mexicans. Nutrients 11 (6):1336. Article . doi: 10.3390/nu11061336.
  • Roddy, E. 2008. Hyperuricemia, gout, and lifestyle factors. Journal of Rheumatology 35 (9):1689–1691.
  • Sánchez-Lozada, L. G., V. Soto, E. Tapia, C. Avila-Casado, Y. Y. Sautin, T. Nakagawa, M. Franco, B. Rodríguez-Iturbe, and R. J. Johnson. 2008. Role of oxidative stress in the renal abnormalities induced by experimental hyperuricemia. American Journal of Physiology. Renal Physiology 295 (4):F1134–1141. doi: 10.1152/ajprenal.00104.2008.
  • Sanlier, N., I. Atik, and A. Atik. 2018. A minireview of effects of white tea consumption on diseases. Trends in Food Science & Technology 82:82–88. doi: 10.1016/j.tifs.2018.10.004.
  • Sanlier, N., B. B. Gokcen, and M. Altuğ. 2018. Tea consumption and disease correlations. Trends in Food Science & Technology 78:95–106. doi: 10.1016/j.tifs.2018.05.026.
  • Saric, S.,. M. Notay, and R. K. Sivamani. 2016. Green tea and other tea polyphenols: Effects on sebum production and acne vulgaris. Antioxidants 6 (1):2. Article . doi: 10.3390/antiox6010002.
  • Sayehmiri, K., I. Ahmadi, and E. Anvari. 2020. Fructose feeding and hyperuricemia: A systematic review and meta-analysis. Clinical Nutrition Research 9 (2):122–133. doi: 10.7762/cnr.2020.9.2.122.
  • Scharbert, S.,. N. Holzmann, and T. Hofmann. 2004. Identification of the astringent taste compounds in black tea infusions by combining instrumental analysis and human bioresponse. Journal of Agricultural and Food Chemistry 52 (11):3498–3508. doi: 10.1021/jf049802u.
  • Schuster, J., and E. S. Mitchell. 2019. More than just caffeine: Psychopharmacology of methylxanthine interactions with plant-derived phytochemicals. Progress in Neuro-Psychopharmacology & Biological Psychiatry 89:263–274. doi: 10.1016/j.pnpbp.2018.09.005.
  • Seo, D. B., H. W. Jeong, D. Cho, B. J. Lee, J. H. Lee, J. Y. Choi, I. H. Bae, and S. J. Lee. 2015. Fermented green tea extract alleviates obesity and related complications and alters gut microbiota composition in diet-induced obese mice. Journal of Medicinal Food 18 (5):549–556. doi: 10.1089/jmf.2014.3265.
  • Shao, T. J., L. Shao, H. C. Li, Z. J. Xie, Z. X. He, and C. P. Wen. 2017. Combined signature of the fecal microbiome and metabolome in patients with gout. Frontiers in Microbiology 8:268. doi: 10.3389/fmicb.2017.00268.
  • Sharma, R., and Y. Padwad. 2020. Perspectives of the potential implications of polyphenols in influencing the interrelationship between oxi-inflammatory stress, cellular senescence and immunosenescence during aging. Trends in Food Science & Technology 98:41–52. doi: 10.1016/j.tifs.2020.02.004.
  • Shen, X., C. Wang, N. Liang, Z. Liu, X. Li, Z.-J. Zhu, T. R. Merriman, N. Dalbeth, R. Terkeltaub, C. Li, et al. 2021. Serum metabolomics identifies dysregulated pathways and potential metabolic biomarkers for hyperuricemia and gout. Arthritis & Rheumatology (Hoboken, N.J.) 73 (9):1738–1748. doi: 10.1002/art.41733.
  • Shevchuk, A., R. Megias-Perez, Y. Zemedie, and N. Kuhnert. 2020. Evaluation of carbohydrates and quality parameters in six types of commercial teas by targeted statistical analysis. Food Research International (Ottawa, Ont.) 133:109122. doi: 10.1016/j.foodres.2020.109122.
  • Shi, J., W. Ma, C. Wang, W. Wu, J. Tian, Y. Zhang, Y. Shi, J. Wang, Q. Peng, Z. Lin, et al. 2021. Impact of various microbial-fermented methods on the chemical profile of dark tea using a single raw tea material. Journal of Agricultural and Food Chemistry 69 (14):4210–4222. doi: 10.1021/acs.jafc.1c00598.
  • Shi, M., F. Guo, D. Liao, R. Huang, Y. Feng, X. Zeng, L. Ma, and P. Fu. 2020. Pharmacological inhibition of fatty acid-binding protein 4 alleviated kidney inflammation and fibrosis in hyperuricemic nephropathy. European Journal of Pharmacology 887:173570. doi: 10.1016/j.ejphar.2020.173570.
  • Shi, Y., and G. Williamson. 2016. Quercetin lowers plasma uric acid in pre-hyperuricaemic males: A randomised, double-blinded, placebo-controlled, cross-over trial. The British journal of nutrition 115 (5):800–806. doi: 10.1017/S0007114515005310.
  • Shukor, N. A. A., A. Ablat, N. A. Muhamad, and J. Mohamad. 2018. In vitro antioxidant and invivo xanthine oxidase inhibitory activities of Pandanus amaryllifolius in potassium oxonate-induced hyperuricemic rats. International Journal of Food Science & Technology 53 (6):1476–1485. doi: 10.1111/ijfs.13728.
  • Siqueira, J. H., J. G. Mill, G. Velasquez-Melendez, A. D. Moreira, S. M. Barreto, I. M. Bensenor, and M. D. B. Molina. 2018. Sugar-sweetened soft drinks and fructose consumption are associated with hyperuricemia: Cross-sectional analysis from the brazilian longitudinal study of adult health (ELSA-Brasil). Nutrients 10 (8):15, Article 981. doi: 10.3390/nu10080981.
  • Sofue, T., N. Nakagawa, E. Kanda, H. Nagasu, K. Matsushita, M. Nangaku, S. Maruyama, T. Wada, Y. Terada, K. Yamagata, et al. 2020. Prevalences of hyperuricemia and electrolyte abnormalities in patients with chronic kidney disease in Japan: A nationwide, cross-sectional cohort study using data from the Japan Chronic Kidney Disease Database (J-CKD-DB). Plos One 15 (10):e0240402. doi: 10.1371/journal.pone.0240402.
  • Tai, L. L., Z. H. Liu, M. H. Sun, Q. J. Xie, X. Q. Cai, Y. Wang, X. Dong, and Y. Xu. 2020a. Anti-hyperuricemic effects of three theaflavins isolated from black tea in hyperuricemic mice. Journal of Functional Foods 66:103803. doi: 10.1016/j.jff.2020.103803.
  • Tai, L. L., Z. H. Liu, M. H. Sun, Q. J. Xie, X. Q. Cai, Y. Wang, X. Dong, and Y. Xu. 2020b. Anti-hyperuricemic effects of three theaflavins isolated from black tea in hyperuricemic mice. Journal of Functional Foods 66:103803. doi: 10.1016/j.jff.2020.103803.
  • Tai, Y., C. Ling, H. Wang, L. Yang, G. She, C. Wang, S. Yu, W. Chen, C. Liu, and X. Wan. 2019. Comparative transcriptomic analysis reveals regulatory mechanisms of theanine synthesis in tea (Camellia sinensis) and oil tea (Camellia oleifera) plants. Journal of Agricultural and Food Chemistry 67 (36):10235–10244. doi: 10.1021/acs.jafc.9b02295.
  • Takemoto, M., and H. Takemoto. 2018. Synthesis of Theaflavins and Their Functions. Molecules 23 (4):918. doi: 10.3390/molecules23040918.
  • Tang, G.-Y., X. Meng, R.-Y. Gan, C.-N. Zhao, Q. Liu, Y.-B. Feng, S. Li, X.-L. Wei, A. G. Atanasov, H. Corke, et al. 2019. Health functions and related molecular mechanisms of tea components: An update review. International Journal of Molecular Sciences 20 (24):6196. doi: 10.3390/ijms20246196.
  • Tang, L. M., D. H. Yang, Y. H. Wang, X. Yang, K. Chen, X. Y. Luo, J. Xu, Y. J. Liu, Z. Tang, Q. Q. Zhang, et al. 2021. 5 ‘-Nucleotidase plays a key role in uric acid metabolism of bombyx mori. Cells 10 (9):2243. doi: 10.3390/cells10092243.
  • Tenore, G. C., P. Campiglia, D. Giannetti, and E. Novellino. 2015. Simulated gastrointestinal digestion, intestinal permeation and plasma protein interaction of white, green, and black tea polyphenols. Food Chemistry 169:320–326. doi: 10.1016/j.foodchem.2014.08.006.
  • Terkeltaub, R., D. A. Bushinsky, and M. A. Becker. 2006. Recent developments in our understanding of the renal basis of hyperuricemia and the development of novel antihyperuricemic therapeutics. Arthritis Research & Therapy 8 Suppl 1:S4. doi: 10.1186/ar1909.
  • Tomata, Y., M. Kakizaki, N. Nakaya, T. Tsuboya, T. Sone, S. Kuriyama, A. Hozawa, and I. Tsuji. 2012. Green tea consumption and the risk of incident functional disability in elderly Japanese: The Ohsaki Cohort 2006 Study. The American Journal of Clinical Nutrition 95 (3):732–739. doi: 10.3945/ajcn.111.023200.
  • Towiwat, P., Tangsumranjit, A., Ingkaninan, K., Jampachaisri, K., Chaichamnong, N., Buttham, B., & Louthrenoo, W. (2021). Effect of caffeinated and decaffeinated coffee on serum uric acid and uric acid clearance, a randomised within-subject experimental study. Clinical and Experimental Rheumatology, 39(5), 1003–1010. :000691845800009
  • Vieira, A. T., L. Macia, I. Galvao, F. S. Martins, M. C. C. Canesso, F. A. Amaral, C. C. Garcia, K. M. Maslowski, E. De Leon, D. Shim, et al. 2015. A role for gut microbiota and the metabolite-sensing receptor GPR43 in a murine model of gout. Arthritis Rheumatol 67 (6):1646–1656. doi: 10.1002/art.39107.
  • Villegas, R., Y. B. Xiang, T. Elasy, W. H. Xu, H. Cai, Q. Cai, M. F. Linton, S. Fazio, W. Zheng, and X. O. Shu. 2012. Purine-rich foods, protein intake, and the prevalence of hyperuricemia: The Shanghai Men’s Health Study. Nutrition, Metabolism, and Cardiovascular Diseases: NMCD 22 (5):409–416. doi: 10.1016/j.numecd.2010.07.012.
  • Vuong, Q. V. 2014. Epidemiological evidence linking tea consumption to human health: A review. Critical Reviews in Food Science and Nutrition 54 (4):523–536. doi: 10.1080/10408398.2011.594184.
  • Vuong, Q. V., M. C. Bowyer, and P. D. Roach. 2011. L-Theanine: Properties, synthesis and isolation from tea. Journal of the Science of Food and Agriculture 91 (11):1931–1939. doi: 10.1002/jsfa.4373.
  • Wan, J., M. Y. Feng, W. J. Pan, X. Zheng, X. Y. Xie, B. Z. Hu, C. Q. Teng, Y. Z. Wang, Z. H. Liu, J. H. Wu, et al. 2021. Inhibitory effects of six types of tea on aging and high-fat diet-related amyloid formation activities. Antioxidants 10 (10):1513. Article . doi: 10.3390/antiox10101513.
  • Wang, J., Y. Chen, H. Zhong, F. Chen, J. Regenstein, X. S. Hu, L. Y. Cai, and F. Q. Feng. 2021. The gut microbiota as a target to control hyperuricemia pathogenesis: Potential mechanisms and therapeutic strategies; Early Access. Critical Reviews in Food Science and Nutrition 11:1–11. ]. doi: 10.1080/10408398.2021.1874287.
  • Wang, K., Q. Chen, Y. Lin, S. Li, H. Lin, J. Huang, and L. Zhonghua. 2014. Comparison of phenolic compounds and taste of Chinese black tea. Food Science and Technology Research 20 (3):639–646. doi: 10.3136/fstr.20.639.
  • Wang, K. B., F. Liu, Z. H. Liu, J. A. Huang, Z. X. Xu, Y. H. Li, J. H. Chen, Y. S. Gong, and X. H. Yang. 2011. Comparison of catechins and volatile compounds among different types of tea using high performance liquid chromatograph and gas chromatograph mass spectrometer. International Journal of Food Science & Technology 46 (7):1406–1412. doi: 10.1111/j.1365-2621.2011.02629.x.
  • Wang, Y., Z. Kan, H. J. Thompson, T. Ling, C.-T. Ho, D. Li, and X. Wan. 2019. Impact of six typical processing methods on the chemical composition of tea leaves using a single Camellia sinensis Cultivar, Longjing 43. Journal of Agricultural and Food Chemistry 67 (19):5423–5436. doi: 10.1021/acs.jafc.8b05140.
  • Wang, Y., Z. Lin, B. Zhang, A. Nie, and M. Bian. 2017. Cichorium intybus L. promotes intestinal uric acid excretion by modulating ABCG2 in experimental hyperuricemia. Nutrition & Metabolism 14 (1):38. doi: 10.1186/s12986-017-0190-6.
  • Wang, Y. F., S. H. Shao, P. Xu, H. Chen, S. Y. Lin-Shiau, Y. T. Deng, and J. K. Lin. 2012. Fermentation process enhanced production and bioactivities of oolong tea polysaccharides. Food Research International 46 (1):158–166. doi: 10.1016/j.foodres.2011.11.027.
  • Wang, Z., M. Zeng, Z. Wang, F. Qin, J. Chen, and Z. He. 2021. Dietary polyphenols to combat nonalcoholic fatty liver disease via the gut-brain-liver axis: A review of possible mechanisms. Journal of Agricultural and Food Chemistry 69 (12):3585–3600. doi: 10.1021/acs.jafc.1c00751.
  • Wei, Y., T. Li, S. Xu, T. Ni, W.-W. Deng, and J. Ning. 2021. The profile of dynamic changes in yellow tea quality and chemical composition during yellowing process. LWT 139:110792. doi: 10.1016/j.lwt.2020.110792.
  • Wu, B. W., J. M. Roseland, D. B. Haytowitz, P. R. Pehrsson, and A. G. Ershow. 2019. Availability and quality of published data on the purine content of foods, alcoholic beverages, and dietary supplements. Journal of Food Composition and Analysis 84:8, Article 103281. doi: 10.1016/j.jfca.2019.103281.
  • Wu, J. W., Z. H. Wei, P. Cheng, C. Qian, F. M. Xu, Y. Yang, A. Y. Wang, W. X. Chen, Z. G. Sun, and Y. Lu. 2020. Rhein modulates host purine metabolism in intestine through gut microbiota and ameliorates experimental colitis. Theranostics 10 (23):10665–10679. doi: 10.7150/thno.43528.
  • Wu, Z., Huang, S., Li, T., Li, N., Han, D., Zhang, B., Xu, Z. Z., Zhang, S., Pang, J., Wang, S., Zhang, G., Zhao, J., & Wang, J. (2021). Gut microbiota from green tea polyphenol-dosed mice improves intestinal epithelial homeostasis and ameliorates experimental colitis. Microbiome, 9(1), 184. doi: 10.1186/s40168-021-01115-9
  • Xi, Y., H. Xu, X. Liu, H. Yin, X. Liu, Q. Wang, and Q. Wang. 2019. Alleviating effect of tieguanyin tea aqueous extract on hyperuricemia in mice. Current Biotechnology 10 (3):256–264. doi: 10.19586/j.2095-2341.2019.0084.
  • Xiao, Y. X., C. X. Zhang, X. L. Zeng, and Z. C. Yuan. 2020. Microecological treatment of hyperuricemia using Lactobacillus from pickles. BMC Microbiology 20 (1):9. doi: 10.1186/s12866-020-01874-9.
  • Xie, G., M. Ye, Y. Wang, Y. Ni, M. Su, H. Huang, M. Qiu, A. Zhao, X. Zheng, T. Chen, et al. 2009. Characterization of Pu-erh Tea Using Chemical and Metabolic Profiling Approaches. Journal of Agricultural and Food Chemistry 57 (8):3046–3054. doi: 10.1021/jf804000y.
  • Xie, H., J. Sun, Y. Chen, M. Zong, D. Xu, and Y. Wang. 2019. (-)-Epigallocatechin-3-gallate protects against uric acid-induced endothelial dysfunction in human umbilical vein endothelial cells. Pharmacognosy Magazine 15 (63):487. doi: 10.4103/pm.pm_659_18.
  • Xing, L., H. Zhang, R. Qi, R. Tsao, and Y. Mine. 2019. Recent advances in the understanding of the health benefits and molecular mechanisms associated with green tea polyphenols. Journal of Agricultural and Food Chemistry 67 (4):1029–1043. doi: 10.1021/acs.jafc.8b06146.
  • Xu, J. Y., M. Wang, J. P. Zhao, Y. H. Wang, Q. Tang, and I. A. Khan. 2018. Yellow tea (Camellia sinensis L.), a promising Chinese tea: Processing, chemical constituents and health benefits. Food Research International (Ottawa, Ont.) 107:567–577. doi: 10.1016/j.foodres.2018.01.063.
  • Xu, X. X., C. H. Li, P. Zhou, and T. L. Jiang. 2016. Uric acid transporters hiding in the intestine. Pharmaceutical Biology 54 (12):3151–3155. doi: 10.1080/13880209.2016.1195847.
  • Xu, X. Y., C. N. Zhao, S. Y. Cao, G. Y. Tang, R. Y. Gan, and H. B. Li. 2020. Effects and mechanisms of tea for the prevention and management of cancers: An updated review. Critical Reviews in Food Science and Nutrition 60 (10):1693–1705. doi: 10.1080/10408398.2019.1588223.
  • Xu, X. Y., C. N. Zhao, B. Y. Li, G. Y. Tang, A. Shang, R. Y. Gan, Y. B. Feng, and H. B. Li. 2021. Effects and mechanisms of tea on obesity. Critical Reviews in Food Science and Nutrition :1–18. doi: 10.1080/10408398.2021.1992748.
  • Yamada, N., C. Iwamoto, H. Kano, N. Yamaoka, T. Fukuuchi, K. Kaneko, and Y. Asami. 2016. Evaluation of purine utilization by Lactobacillus gasseri strains with potential to decrease the absorption of food-derived purines in the human intestine. Nucleosides, Nucleotides & Nucleic Acids 35 (10-12):670–676. doi: 10.1080/15257770.2015.1125000.
  • Yang, H., Y.-C. Wei, W.-C. Li, H.-Y. Chen, H.-Y. Lin, C.-P. Chiang, and H.-M. Chen. 2020. Natural compounds modulate drug transporter mediated oral cancer treatment. Biomolecules 10 (9):1335. doi: 10.3390/biom10091335.
  • Yang, Q., C. Y. Guo, L. A. Cupples, D. Levy, P. W. Wilson, and C. S. Fox. 2005. Genome-wide search for genes affecting serum uric acid levels: The Framingham Heart Study. Metabolism: clinical and Experimental 54 (11):1435–1441. doi: 10.1016/j.metabol.2005.05.007.
  • Yang, Y.,. J-l Zhang, and Q. Zhou. 2020. Targets and mechanisms of dietary anthocyanins to combat hyperglycemia and hyperuricemia: A comprehensive review. Critical Reviews in Food Science and Nutrition :1–25. doi: 10.1080/10408398.2020.1835819.
  • Yi, T., L. Zhu, W.-L. Peng, X.-C. He, H.-L. Chen, J. Li, T. Yu, Z.-T. Liang, Z.-Z. Zhao, and H.-B. Chen. 2015. Comparison of ten major constituents in seven types of processed tea using HPLC-DAD-MS followed by principal component and hierarchical cluster analysis. LWT - Food Science and Technology 62 (1):194–201. doi: 10.1016/j.lwt.2015.01.003.
  • Younes, M., P. Aggett, F. Aguilar, R. Crebelli, B. Dusemund, M. Filipic, M. J. Frutos, P. Galtier, D. Gott, U. Gundert-Remy, et al. 2018. Scientific opinion on the safety of green tea catechins. EFSA Journal 16 (4):5239. doi: 10.2903/j.efsa.2018.5239.
  • Yu, P., A. S.-L. Yeo, M.-Y. Low, and W. Zhou. 2014. Identifying key non-volatile compounds in ready-to-drink green tea and their impact on taste profile. Food Chemistry 155:9–16. doi: 10.1016/j.foodchem.2014.01.046.
  • Yu, Z. M., and Z. Y. Yang. 2020. Understanding different regulatory mechanisms of proteinaceous and non-proteinaceous amino acid formation in tea (Camellia sinensis) provides new insights into the safe and effective alteration of tea flavor and function. Critical Reviews in Food Science and Nutrition 60 (5):844–858. doi: 10.1080/10408398.2018.1552245.
  • Zhang, H., R. Qi, and Y. Mine. 2019. The impact of oolong and black tea polyphenols on human health. Food Bioscience 29:55–61. doi: 10.1016/j.fbio.2019.03.009.
  • Zhang, N., T. T. Jing, M. Y. Zhao, J. Y. Jin, M. J. Xu, Y. X. Chen, S. R. Zhang, X. C. Wan, W. Schwab, and C. K. Song. 2019. Untargeted metabolomics coupled with chemometrics analysis reveals potential non-volatile markers during oolong tea shaking. Food Research International (Ottawa, Ont.) 123:125–134. doi: 10.1016/j.foodres.2019.04.053.
  • Zhang, X. Y., Y. H. Yu, H. Y. Lei, Y. F. Cai, J. Shen, P. Zhu, Q. N. He, and M. Y. Zhao. 2020. The Nrf-2/HO-1 signaling axis: A ray of hope in cardiovascular diseases. Cardiology Research and Practice 2020:5695723. doi: 10.1155/2020/5695723.
  • Zhao, C. N., G. Y. Tang, S. Y. Cao, X. Y. Xu, R. Y. Gan, Q. Liu, Q. Q. Mao, A. Shang, and H. B. Li. 2019a. Phenolic profiles and antioxidant activities of 30 tea infusions from green, black, oolong, white, yellow and dark teas. Antioxidants 8 (7):215. Article . doi: 10.3390/antiox8070215.
  • Zhao, C. N., G. Y. Tang, S. Y. Cao, X. Y. Xu, R. Y. Gan, Q. Liu, Q. Q. Mao, A. Shang, and H. B. Li. 2019b. Phenolic Profiles and Antioxidant Activities of 30 Tea Infusions from Green, Black, Oolong, White, Yellow and Dark Teas. Antioxidants 8 (7):14, Article 215. doi: 10.3390/antiox8070215.
  • Zhao, R., D. Chen, and H. Wu. 2017a. Effects of Pu-erh ripened tea on hyperuricemic mice studied by serum metabolomics. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 1068-1069:149–156. doi: 10.1016/j.jchromb.2017.10.002.
  • Zhao, R., D. Chen, and H. Wu. 2017b. Pu-erh ripened tea resists to hyperuricemia through xanthine oxidase and renal urate transporters in hyperuricemic mice. Journal of Functional Foods 29:201–207. doi: 10.1016/j.jff.2016.12.020.
  • Zheng, W.-J., X.-C. Wan, and G.-H. Bao. 2015. Brick dark tea: A review of the manufacture, chemical constituents and bioconversion of the major chemical components during fermentation. Phytochemistry Reviews 14 (3):499–523. doi: 10.1007/s11101-015-9402-8.
  • Zhou, J., C. T. Ho, P. Long, Q. Meng, L. Zhang, and X. Wan. 2019. Preventive efficiency of green tea and its components on nonalcoholic fatty liver disease. Journal of Agricultural and Food Chemistry 67 (19):5306–5317. doi: 10.1021/acs.jafc.8b05032.
  • Zhou, Q. M., X. Y. Zhao, H. H. Wang, H. H. Yang, J. K. Song, J. H. Wang, and G. H. Du. 2018. Mechanism and uric acid reducing effects of theaflavin on potassium oxonate- induced hyperuricemia in mice. Chinese Journal of New Drugs, v 27 (14):1631–1638.
  • Zhu, C., L. L. Tai, X. C. Wan, D. X. Li, Y. Q. Zhao, and Y. Xu. 2017a. Comparative effects of green and black tea extracts on lowering serum uric acid in hyperuricemic mice. Pharmaceutical Biology 55 (1):2123–2128. doi: 10.1080/13880209.2017.1377736.
  • Zhu, C., L. L. Tai, X. C. Wan, D. X. Li, Y. Q. Zhao, and Y. Xu. 2017b. Comparative effects of green and black tea extracts on lowering serum uric acid in hyperuricemic mice. Pharmaceutical Biology 55 (1):2123–2128. doi: 10.1080/13880209.2017.1377736.
  • Zhu, C., Y. Xu, Z. H. Liu, X. C. Wan, D. X. Li, and L. L. Tai. 2018. The anti-hyperuricemic effect of epigallocatechin-3-gallate (EGCG) on hyperuricemic mice. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 97:168–173. doi: 10.1016/j.biopha.2017.10.013.
  • Zhu, M. Z., N. Li, F. Zhou, J. Ouyang, D. M. Lu, W. Xu, J. Li, H. Y. Lin, Z. Zhang, J. B. Xiao, et al. 2020. Microbial bioconversion of the chemical components in dark tea. Food Chemistry 312:126043. doi: 10.1016/j.foodchem.2019.126043.
  • Zhu, Y., B. J. Pandya, and H. K. Choi. 2011. Prevalence of gout and hyperuricemia in the US general population: The National Health and Nutrition Examination Survey 2007-2008. Arthritis Rheum 63 (10):3136–3141. doi: 10.1002/art.30520.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.