974
Views
6
CrossRef citations to date
0
Altmetric
Review Articles

A review on enzymatic acylation as a promising opportunity to stabilizing anthocyanins

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Alam, M. A., P. Islam, N. Subhan, M. M. Rahman, F. Khan, G. E. Burrows, L. Nahar, and S. D. Sarker. 2021. Potential health benefits of anthocyanins in oxidative stress related disorders. Phytochemistry Reviews 20 (4):705–49. Springer Netherlands. doi: 10.1007/s11101-021-09757-1.
  • Alder, C. M., J. D. Hayler, R. K. Henderson, A. M. Redman, L. Shukla, L. E. Shuster, and H. F. Sneddon. 2016. Updating and further expanding GSK’s solvent sustainability guide. Green Chemistry 18 (13):3879–90. Royal Society of Chemistry: doi: 10.1039/C6GC00611F.
  • Araújo, M. E. M. B., Y. E. M. Franco, M. C. F. Messias, G. B. Longato, J. A. Pamphile, and P. D. O. Carvalho. 2017. Biocatalytic synthesis of flavonoid esters by lipases and their biological benefits. Planta Medica 83 (1–02):7–22. doi: 10.1055/s-0042-118883.
  • Arruda, H. S., E. K. Silva, N. M. Peixoto Araujo, G. A. Pereira, G. M. Pastore, and M. R. Marostica Junior. 2021. Anthocyanins recovered from agri-food by-products using innovative processes: Trends, challenges, and perspectives for their application in food systems. Molecules 26 (9):2632. doi: 10.3390/molecules26092632.
  • Basso, A., and S. Serban. 2019. Industrial applications of immobilized enzymes—A review. Molecular Catalysis 479:110607. Elsevier. doi: 10.1016/j.mcat.2019.110607.
  • Bubalo, M. C., K. Radošević, I. R. Redovniković, J. Halambek, and V. G. Srček. 2014. A brief overview of the potential environmental hazards of ionic liquids. Ecotoxicology and Environmental Safety 99:1–12. doi: 10.1016/j.ecoenv.2013.10.019.
  • Cai, D., X. Li, J. Chen, X. Jiang, X. Ma, J. Sun, L. Tian, S. K. Vidyarthi, J. Xu, Z. Pan, et al. 2022. A comprehensive review on innovative and advanced stabilization approaches of anthocyanin by modifying structure and controlling environmental factors. Food Chemistry 366:130611. Elsevier Ltd:doi: 10.1016/j.foodchem.2021.130611.
  • Carvalho, T., Iasnaia Maria, T. Y. K. Nogueira, M. A. Mauro, S. Gómez-Alonso, E. Gomes, R. Da-Silva, I. Hermosín-Gutiérrez, and E. S. Lago-Vanzela. 2017. Dehydration of Jambolan [Syzygium cumini (L.)] Juice during foam mat drying: quantitative and qualitative changes of the phenolic compounds. Food Research International (Ottawa, Ont.) 102:32–42. Elsevier:doi: 10.1016/j.foodres.2017.09.068.
  • Castañeda-Ovando, A., M. d L. Pacheco-Hernández, M. E. Páez-Hernández, J. A. Rodríguez, and C. A. Galán-Vidal. 2009. Chemical studies of anthocyanins: A review. Food Chemistry 113 (4):859–71. Elsevier Ltd: doi: 10.1016/j.foodchem.2008.09.001.
  • Castro, V. C., P. H. A. Silva, E. B. Oliveira, S. Desobry, and C. Humeau. 2014. Extraction, Identification and enzymatic synthesis of acylated derivatives of anthocyanins from jaboticaba (Myrciaria Cauliflora) Fruits. International Journal of Food Science & Technology 49 (1):196–204. doi: 10.1111/ijfs.12298.
  • Chatham, L. A., M. Paulsmeyer, and J. A. Juvik. 2019. Prospects for economical natural colorants: insights from maize. Theoretical and Applied Genetics 132 (11):2927–46. Springer Berlin Heidelberg: doi: 10.1007/s00122-019-03414-0.
  • Cruz, L., M. Benohoud, C. M. Rayner, N. Mateus, V. de Freitas, and R. S. Blackburn. 2018. Selective enzymatic lipophilization of anthocyanin glucosides from blackcurrant (Ribes nigrum L.) skin extract and characterization of esterified anthocyanins. Food Chemistry 266:415–9. Elsevier:doi: 10.1016/j.foodchem.2018.06.024.
  • Cruz, L., V. C. Fernandes, P. Araújo, N. Mateus, and V. De Freitas. 2015. Synthesis, characterisation and antioxidant features of procyanidin B4 and malvidin-3-glucoside stearic acid derivatives. Food Chemistry 174:480–6. Elsevier Ltd:doi: 10.1016/j.foodchem.2014.11.062.
  • Cruz, L., M. Guimarães, P. Araújo, A. Évora, V. De Freitas, and N. Mateus. 2017. Malvidin 3-glucoside-fatty acid conjugates: from hydrophilic toward novel lipophilic derivatives. Journal of Agricultural and Food Chemistry 65 (31):6513–8. doi: 10.1021/acs.jafc.6b05461.
  • Dyrby, M., N. Westergaard, and H. Stapelfeldt. 2001. Light and heat sensitivity of red cabbage extract in soft drink model systems. Food Chemistry 72 (4):431–7. doi: 10.1016/S0308-8146(00)00251-X.
  • Escribano, B., Celestino. M. T., and S.- Buelga. 2012. Anthocyanin copigmentation: Evaluation, mechanisms and implications for the colour of red wines. Current Organic Chemistry 16 (6):715–23. doi: 10.2174/138527212799957977.
  • Fan, L., Y. Wang, P. Xie, L. Zhang, Y. Li, and J. Zhou. 2019. Copigmentation effects of phenolics on color enhancement and stability of blackberry wine residue anthocyanins: Chromaticity, kinetics and structural simulation. Food Chemistry 275:299–308. Elsevier:doi: 10.1016/j.foodchem.2018.09.103.
  • Farooq, S., M. A. Shah, M. W. Siddiqui, B. N. Dar, S. A. Mir, and A. Ali. 2020. Recent trends in extraction techniques of anthocyanins from plant materials. Journal of Food Measurement and Characterization 14 (6):3508–19. Springer US: doi: 10.1007/s11694-020-00598-8.
  • Fei, P., F. Zeng, S. Zheng, Q. Chen, Y. Hu, and J. Cai. 2021. Acylation of blueberry anthocyanins with maleic acid: improvement of the stability and its application potential in intelligent color indicator packing materials. Dyes and Pigments 184:108852. Elsevier Ltd: doi: 10.1016/j.dyepig.2020.108852.
  • Fenger, J.-A., M. Moloney, R. J. Robbins, T. M. Collins, and O. Dangles. 2019. The influence of acylation, metal binding and natural antioxidants on the thermal stability of red cabbage anthocyanins in neutral solution. Food & Function 10 (10):6740–51. Royal Society of Chemistry: doi: 10.1039/C9FO01884K.
  • Fernandes, Ana, J., Oliveira, N. Teixeira, N. Mateus, and V. D. Freitas. 2017. A review of the current knowledge of red wine colour. Journal International Des Sciences de La Vigne et Du Vin 51 (1):1–21. doi: 10.20870/oeno-one.2017.51.1.1604.
  • Fernandez-Aulis, F.,. A. Torres, E. Sanchez-Mendoza, L. Cruz, and A. Navarro-Ocana. 2020. New acylated cyanidin glycosides extracted from underutilized potential sources: Enzymatic synthesis, antioxidant activity and thermostability. Food Chemistry 309:125796. Elsevier:doi: 10.1016/j.foodchem.2019.125796.
  • Food and Drugs Administration. 2017. “Q3C — Tables and List Guidance for Industry.” https://www.fda.gov/media/71737/download.
  • Food and Drugs Administration. 2020. “Recommendations for the Permitted Daily Exposures for Three Solvents -2- Methyltetrahydrofuran, Cyclopentyl Methyl Ether, and Tert-Butyl Alcohol.” https://www.fda.gov/media/138334/download.
  • Gamage, G. C., Vidana, Y. Y. Lim, and W. S. Choo. 2022. Sources and relative stabilities of acylated and nonacylated anthocyanins in beverage systems. Journal of Food Science and Technology 59 (3):831–45. Springer India. doi: 10.1007/s13197-021-05054-z.
  • Gonçalves, A. C., A. R. Nunes, A. Falcão, G. Alves, and L. R. Silva. 2021. Dietary effects of anthocyanins in human health: A comprehensive review. Pharmaceuticals 14 (7):690–34. doi: 10.3390/ph14070690.
  • Grajeda-Iglesias, C., E. Salas, N. Barouh, B. Baréa, and M. C. Figueroa-Espinoza. 2017. Lipophilization and MS characterization of the main anthocyanins purified from hibiscus flowers. Food Chemistry 230:189–94. doi: 10.1016/j.foodchem.2017.02.140.
  • Gras, C. C., K. Bause, S. Leptihn, R. Carle, and R. M. Schweiggert. 2018. Effect of chlorogenic acid on spectral properties and stability of acylated and non-acylated cyanidin-3-O-glycosides. Food Chemistry 240:940–50. Elsevier:doi: 10.1016/j.foodchem.2017.07.137.
  • Guimarães, M., N. Mateus, V. De Freitas, L. C. Branco, and L. Cruz. 2020. Microwave-assisted synthesis and ionic liquids: Green and sustainable alternatives toward enzymatic lipophilization of anthocyanin monoglucosides. Journal of Agricultural and Food Chemistry 68 (28):7387–92. doi: 10.1021/acs.jafc.0c02599.
  • Guimarães, M., N. Mateus, V. De Freitas, and L. Cruz. 2018. Improvement of the color stability of cyanidin-3-glucoside by fatty acid enzymatic acylation. Journal of Agricultural and Food Chemistry 66 (38):10003–10. doi: 10.1021/acs.jafc.8b03536.
  • Hair, R., J. R. Sakaki, and O. K. Chun. 2021. Anthocyanins, microbiome and health benefits in aging. Molecules 26 (3).537. doi: 10.3390/molecules26030:.
  • Hardinasinta, G., Mursalim Mursalim, J. Muhidong, Salengke. and S. 2021. Degradation kinetics of anthocyanin, flavonoid, and total phenol in bignay (Antidesma Bunius) fruit juice during ohmic heating. Food Science and Technology 2061:1–11. doi: 10.1590/fst.64020.
  • Hou, Z., P. Qin, Y. Zhang, S. Cui, and G. Ren. 2013. Identification of anthocyanins isolated from black rice (Oryza sativa L.) and their degradation kinetics. Food Research International 50 (2):691–7. Elsevier Ltd: doi: 10.1016/j.foodres.2011.07.037.
  • Houghton, A., I. Appelhagen, and C. Martin. 2021. Natural blues: Structure meets function in anthocyanins. Plants 10 (4):726–2. doi: 10.3390/plants10040726.
  • Huang, Y., S. Zhou, G. Zhao, and F. Ye. 2021. Destabilisation and Stabilisation of anthocyanins in purple-fleshed sweet potatoes: A review. Trends in Food Science & Technology 116:1141–54. Elsevier Ltd: doi: 10.1016/j.tifs.2021.09.013.
  • Ismail, A. R., and K. H. Baek. 2020. Lipase immobilization with support materials, preparation techniques, and applications: Present and future aspects. International Journal of Biological Macromolecules 163:1624–39. Elsevier B.V.:doi: 10.1016/j.ijbiomac.2020.09.021.
  • Jokioja, J., B. Yang, and K. M. Linderborg. 2021. Acylated anthocyanins: A review on their bioavailability and effects on postprandial carbohydrate metabolism and inflammation. Comprehensive Reviews in Food Science and Food Safety 20 (6):5570–615. doi:10.1111/1541-4337.12836.
  • Júnior, L., Marangoni, G. De Bastiani, R. P. Vieira, and C. A. R. Anjos. 2020. Thermal degradation kinetics of total anthocyanins in Açaí Pulp and transient processing simulations. SN Applied Sciences 2 (4). Springer International Publishing: :1–8. doi: 10.1007/s42452-020-2340-0.
  • Kanha, N., S. Surawang, P. Pitchakarn, J. M. Regenstein, and T. Laokuldilok. 2019. Copigmentation of cyanidin 3-O-glucoside with phenolics: Thermodynamic data and thermal stability. Food Bioscience 30:100419. Elsevier Ltd: doi: 10.1016/j.fbio.2019.100419.
  • Kempińska, D., T. Chmiel, A. Kot-Wasik, A. Mróz, Z. Mazerska, and J. Namieśnik. 2019. State of the art and prospects of methods for determination of lipophilicity of chemical compounds. TrAC Trends in Analytical Chemistry 113:54–73. doi: 10.1016/j.trac.2019.01.011.
  • Koop, B. L., M. A. Knapp, M. Di Luccio, V. Z. Pinto, L. Tormen, G. A. Valencia, and A. R. Monteiro. 2021. Bioactive compounds from Jambolan (Syzygium cumini (L.)) extract concentrated by ultra- and nanofiltration: A potential natural antioxidant for food. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 76 (1):90–7. Plant Foods for Human Nutrition:doi: 10.1007/s11130-021-00878-8.
  • Liang, Z., H. Liang, Y. Guo, and D. Yang. 2021. “Cyanidin 3‐o‐galactoside: A natural compound with multiple health benefits. International Journal of Molecular Sciences 22 (5):2261–23. doi: 10.3390/ijms22052261.
  • Liu, D.-M., J. Chen, and Y.-P. Shi. 2018. Advances on methods and easy separated support materials for enzymes immobilization. TrAC Trends in Analytical Chemistry 102:332–42. Elsevier Ltd: doi: 10.1016/j.trac.2018.03.011.
  • Liu, J., R.-T. Ma, and Y.-P. Shi. 2020. "Recent advances on support materials for lipase immobilization and applicability as biocatalysts in inhibitors screening methods": A review. Analytica Chimica Acta 1101:9–22. Elsevier Ltd:doi: 10.1016/j.aca.2019.11.073.
  • Liu, J., Y. Zhuang, Y. Hu, S. Xue, H. Li, L. Chen, and P. Fei. 2020. Improving the color stability and antioxidation activity of blueberry anthocyanins by enzymatic acylation with p-coumaric acid and caffeic acid. Lwt 130:109673. Elsevier: doi: 10.1016/j.lwt.2020.109673.
  • Luo, S. Z., S. S. Chen, L. H. Pan, X. S. Qin, Z. Zheng, Y. Y. Zhao, M. Pang, and S. T. Jiang. 2017. Antioxidative capacity of crude camellia seed oil: Impact of lipophilization products of blueberry anthocyanin. International Journal of Food Properties 20 (2):1–1636. Taylor & Francis: doi: 10.1080/10942912.2017.1350974.
  • Luo, X. P., L. H. Du, F. He, and C. H. Zhou. 2013. Controllable regioselective acylation of flavonoids catalyzed by lipase in microreactors. Journal of Carbohydrate Chemistry 32 (7):450–62. doi: 10.1080/07328303.2013.843095.
  • Luzardo-Ocampo, I., A. K. Ramírez-Jiménez, J. Yañez, L. Mojica, and D. A. Luna-Vital. 2021. Technological applications of natural colorants in food systems: A review. Foods 10 (3)1–34.634. doi: 10.3390/foods10030:.
  • Marathe, S. J., N. N. Shah, S. R. Bajaj, and R. S. Singhal. 2021. Esterification of anthocyanins isolated from floral waste: Characterization of the esters and their application in various food systems. Food Bioscience 40:100852 Elsevier Ltd: doi: 10.1016/j.fbio.2020.100852.
  • Marquez-Rodriguez, A. S., M. Guimarães, N. Mateus, V. de Freitas, M. L. Ballinas-Casarrubias, M. E. Fuentes-Montero, E. Salas, and L. Cruz. 2021. Disaccharide anthocyanin delphinidin 3-O-sambubioside from Hibiscus sabdariffa L.: Candida antarctica lipase B-Catalyzed fatty acid acylation and study of its color properties. Food Chemistry 344:128603. doi: 10.1016/j.foodchem.2020.128603.
  • Meticulous Research 2020. “Natural Food Colors Market.” https://www.meticulousresearch.com/product/natural-food-colors-market-5088#:∼:text=The global natural food colors market projected to reach %243.2,8.4%25 during the forecast period.
  • Mohammadalinejhad, S., and M. A. Kurek. 2021. Microencapsulation of anthocyanins: Critical review of techniques and wall materials. Applied Sciences 11 (9):3936. doi: 10.3390/app11093936.
  • Munteanu, I. G., and C. Apetrei. 2021. Analytical methods used in determining antioxidant activity: A review. International Journal of Molecular Sciences 22 (7):3380. doi: 10.3390/ijms22073380.
  • Ortiz, C., M. L. Ferreira, O. Barbosa, J. C. S. dos Santos, R. C. Rodrigues, Á. Berenguer-Murcia, L. E. Briand, and R. Fernandez-Lafuente. 2019. Novozym 435: The ‘Perfect’ lipase immobilized biocatalyst?”. Catalysis Science & Technology 9 (10):2380–420. Royal Society of Chemistry: doi: 10.1039/C9CY00415G.
  • Passicos, E., X. Santarelli, and D. Coulon. 2004. Regioselective acylation of flavonoids catalyzed by immobilized candida antarctica lipase under reduced pressure. Biotechnology Letters 26 (13):1073–6. doi: 10.1023/b:bile.0000032967.23282.15.
  • Patras, A. 2019. Stability and colour evaluation of red cabbage waste hydroethanolic extract in presence of different food additives or ingredients. Food Chemistry 275:539–48. Elsevier:doi: 10.1016/j.foodchem.2018.09.100.
  • Patras, A., N. P. Brunton, C. O’Donnell, and B. K. Tiwari. 2010. Effect of thermal processing on anthocyanin stability in foods; Mechanisms and kinetics of degradation. Trends in Food Science & Technology 21 (1):3–11. Elsevier Ltd: doi: 10.1016/j.tifs.2009.07.004.
  • Peron, D. V., S. Fraga, and F. Antelo. 2017. Thermal degradation kinetics of anthocyanins extracted from juçara (euterpe edulis martius) and "italia" grapes (vitis vinifera l.), and the effect of heating on the antioxidant capacity. Food Chemistry 232:836–40. Elsevier Ltd:doi: 10.1016/j.foodchem.2017.04.088.
  • Plaza, M., T. Pozzo, J. Liu, K. Zubaida Gulshan Ara, C. Turner, and E. Nordberg Karlsson. 2014. Substituent effects on in vitro antioxidizing properties, stability, and solubility in flavonoids. Journal of Agricultural and Food Chemistry 62 (15):3321–33. doi: 10.1021/jf405570u.
  • Prietto, L., T. C. Mirapalhete, V. Z. Pinto, J. F. Hoffmann, N. L. Vanier, L.-T. Lim, A. R. Guerra Dias, and E. da Rosa Zavareze. 2017. PH-sensitive films containing anthocyanins extracted from black bean seed coat and red cabbage. LWT - Food Science and Technology 80:492–500. doi: 10.1016/j.lwt.2017.03.006.
  • Remini, University of Bejaia, H., F. Dahmoune, Y. Sahraoui, K. Madani, V. N. Kapranov, and E. F. Kiselev. 2018. Recent advances on stability of anthocyanins. RUDN Journal of Agronomy and Animal Industries 13 (4):257–86. doi: 10.22363/2312-797X-2018-13-4-257-286.
  • Sari, P., A. Setiawan, and T. A. Siswoyo. 2015. Stability and antioxidant activity of acylated jambolan (Syzygium cumini) Anthocyanins synthesized by lipase-catalyzed transesterification. International Food Research Journal 22 (2):671–6.
  • Souza, S. P., R. A. D. Almeida, G. G. Garcia, R. A. C. Leão, J. Bassut, R. O. M. A. de Souza, and I. Itabaiana. 2018. Immobilization of lipase B from candida antarctica on epoxy-functionalized silica: Characterization and improving biocatalytic parameters. Journal of Chemical Technology & Biotechnology 93 (1):105–11. doi: 10.1002/jctb.5327.
  • Talbert, J. N., L.-S. Wang, B. Duncan, Y. Jeong, S. M. Andler, V. M. Rotello, and J. M. Goddard. 2014. Immobilization and stabilization of lipase (CaLB) through hierarchical interfacial assembly. Biomacromolecules 15 (11):3915–22. doi: 10.1021/bm500970b.
  • Tan, C., Y. Dadmohammadi, M. C. Lee, and A. Abbaspourrad. 2021. Combination of copigmentation and encapsulation strategies for the synergistic stabilization of anthocyanins. Comprehensive Reviews in Food Science and Food Safety 20 (4):3164–91. doi: 10.1111/1541-4337.12772.
  • Tarone, A. G., C. B. B. Cazarin, and M. R. Marostica Junior. 2020. Anthocyanins: new techniques and challenges in microencapsulation. Food Research International (Ottawa, Ont.) 133 (February):109092. doi: 10.1016/j.foodres.2020.109092.
  • Tavares, I. M. d C., E. S. Lago-Vanzela, L. P. G. Rebello, A. M. Ramos, S. Gómez-Alonso, E. García-Romero, R. Da-Silva, and I. Hermosín-Gutiérrez. 2016. Comprehensive study of the phenolic composition of the edible parts of jambolan fruit (Syzygium cumini (L.) Skeels). Food Research International 82:1–13. Elsevier Ltd: doi: 10.1016/j.foodres.2016.01.014.
  • Tena, N., J. Martín, and A. G. Asuero. 2020. State of the art of anthocyanins: Antioxidant activity, sources, bioavailability, and therapeutic effect in human health. Antioxidants 9 (5):451. doi: 10.3390/antiox9050451.
  • Trouillas, P., J. C. Sancho-García, V. De Freitas, J. Gierschner, M. Otyepka, and O. Dangles. 2016. Stabilizing and modulating color by copigmentation: insights from theory and experiment. Chemical Reviews 116 (9):4937–82. doi: 10.1021/acs.chemrev.5b00507.
  • Tu, C., S. Tang, F. Azi, W. Hu, and M. Dong. 2019. Use of kombucha consortium to transform soy whey into a novel functional beverage. Journal of Functional Foods 52 (July 2018):81–9. Elsevier: doi: 10.1016/j.jff.2018.10.024.
  • Wu, H.-Y., K.-M. Yang, and P.-Y. Chiang. 2018. Roselle anthocyanins: Antioxidant properties and stability to heat and PH. Molecules 23 (6):1357. doi: 10.3390/molecules2306.
  • Xu, J., X. Su, S. Lim, J. Griffin, E. Carey, B. Katz, J. Tomich, J. S. Smith, and W. Wang. 2015. Characterisation and stability of anthocyanins in purple-fleshed sweet potato P40. Food Chemistry 186:90–6. Elsevier Ltd:doi: 10.1016/j.foodchem.2014.08.123.
  • Yan, Z., C. Li, L. Zhang, Q. Liu, S. Ou, and X. Zeng. 2016. Enzymatic acylation of anthocyanin isolated from black rice with methyl aromatic acid ester as donor: Stability of the acylated derivatives. Journal of Agricultural and Food Chemistry 64 (5):1137–43. doi: 10.1021/acs.jafc.5b05031.
  • Yang, W., M. Kortesniemi, X. Ma, J. Zheng, and B. Yang. 2019. Enzymatic acylation of blackcurrant (Ribes nigrum) anthocyanins and evaluation of lipophilic properties and antioxidant capacity of derivatives. Food Chemistry 281:189–96. Elsevier:doi: 10.1016/j.foodchem.2018.12.111.
  • Yang, W., M. Kortesniemi, B. Yang, and J. Zheng. 2018. Enzymatic acylation of anthocyanins isolated from alpine bearberry (Arctostaphylos alpina) and lipophilic properties, thermostability, and antioxidant capacity of the derivatives. Journal of Agricultural and Food Chemistry 66 (11):2909–16. doi: 10.1021/acs.jafc.7b05924.
  • Yang, X., H. Sun, L. Tu, Y. Jin, M. Wang, S. Liu, Z. Zhang, and S. He. 2020. Investigation of acute, subacute and subchronic toxicities of anthocyanin derived acylation reaction products and evaluation of their antioxidant activities in vitro. Food & Function 11 (12):10954–67. Royal Society of Chemistry:doi: 10.1039/d0fo01478h.
  • Yashin, A., Y. Yashin, X. Xia, and B. Nemzer. 2017. Antioxidant activity of spices and their impact on human health: A review. Antioxidants 6 (3)1–18.70. doi: 10.3390/antiox60300:.
  • Zhang, P., S. Liu, Z. Zhao, L. You, M. D. Harrison, and Z. Zhang. 2021. Enzymatic acylation of cyanidin-3-glucoside with fatty acid methyl esters improves stability and antioxidant activity. Food Chemistry 343:128482. Elsevier Ltd: doi: 10.1016/j.foodchem.2020.128482.
  • Zhao, L. Y., Chen, J. Z. Q. Wang, R. M. Shen, N. Cui, A. D. Sun. 2016. Direct acylation of cyanidin-3-glucoside with lauric acid in blueberry and its stability analysis. International Journal of Food Properties 19 (1):1–12. Taylor & Francis: doi: 10.1080/10942912.2015.1016577.
  • Zhao, C.-L., Y.-Q. Yu, Z.-J. Chen, G.-S. Wen, F.-G. Wei, Q. Zheng, C.-D. Wang, and X.-L. Xiao. 2017. Stability-increasing effects of anthocyanin glycosyl acylation. Food Chemistry 214:119–28. doi: 10.1016/j.foodchem.2016.07.073.
  • Zhou, J., H. Sui, Z. Jia, Z. Yang, L. He, and X. Li. 2018. Recovery and purification of ionic liquids from solutions: A review. RSC Advances 8 (57):32832–64. Royal Society of Chemistry: doi: 10.1039/C8RA06384B.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.