660
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

Recent development in fabrication and evaluation of phenolic-dietary fiber composites for potential treatment of colonic diseases

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Agüero, L., D. Zaldivar-Silva, L. Peña, and M. L. Dias. 2017. Alginate microparticles as oral colon drug delivery device: A review. Carbohydrate Polymers 168:32–43. doi: 10.1016/j.carbpol.2017.03.033.
  • Aherne, S. A., and N. M. O’Brien. 2002. Dietary flavonols: Chemistry, food content, and metabolism. Nutrition (Burbank, Los Angeles County, Calif.) 18 (1):75–81.
  • Akbarbaglu, Z., S. H. Peighambardoust, K. Sarabandi, and S. M. Jafari. 2021. Spray drying encapsulation of bioactive compounds within protein-based carriers; different options and applications. Food Chemistry 359:129965. doi: 10.1016/j.foodchem.2021.129965.
  • Amidon, S., J. E. Brown, and V. S. Dave. 2015. Colon-targeted oral drug delivery systems: Design trends and approaches. AAPS PharmSciTech 16 (4):731–41. doi: 10.1208/s12249-015-0350-9.
  • Anderson, J. W., P. Baird, R. H. Davis, S. Ferreri, M. Knudtson, A. Koraym, V. Waters, and C. L. Williams. 2009. Health benefits of dietary fiber. Nutrition Reviews 67 (4):188–205. doi: 10.1111/j.1753-4887.2009.00189.x.
  • Andishmand, H., M. Tabibiazar, M. A. Mohammadifar, and H. Hamishehkar. 2017. Pectin-zinc-chitosan-polyethylene glycol colloidal nano-suspension as a food grade carrier for colon targeted delivery of resveratrol. International Journal of Biological Macromolecules 97:16–22. doi: 10.1016/j.ijbiomac.2016.12.087.
  • Araiza-Calahorra, A., and A. Sarkar. 2019. Designing biopolymer-coated Pickering emulsions to modulate in vitro gastric digestion: A static model study. Food & Function 10 (9):5498–509. doi: 10.1039/C9FO01080G.
  • Assadpour, E., and S. Mahdi Jafari. 2019. A systematic review on nanoencapsulation of food bioactive ingredients and nutraceuticals by various nanocarriers. Critical Reviews in Food Science and Nutrition 59 (19):3129–51. doi: 10.1080/10408398.2018.1484687.
  • Atay, E., M. J. Fabra, M. Martínez-Sanz, L. G. Gomez-Mascaraque, A. Altan, and A. Lopez-Rubio. 2018. Development and characterization of chitosan/gelatin electrosprayed microparticles as food grade delivery vehicles for anthocyanin extracts. Food Hydrocolloids. 77:699–710. doi: 10.1016/j.foodhyd.2017.11.011.
  • Bai, Y., X. Zhou, N. Li, J. Zhao, H. Ye, S. Zhang, H. Yang, Y. Pi, S. Tao, D. Han, et al. 2021. In vitro fermentation characteristics and fiber-degrading enzyme kinetics of cellulose. Arabinoxylan, β-Glucan and Glucomannan by Pig Fecal Microbiota. Microorganisms. 9.
  • Balanč, B.,. A. Kalušević, I. Drvenica, M. T. Coelho, V. Djordjević, V. D. Alves, I. Sousa, M. Moldão-Martins, V. Rakić, V. Nedović, et al. 2016. Calcium-alginate-inulin microbeads as carriers for aqueous Carqueja extract. Journal of Food Science 81 (1):E65–E75. doi: 10.1111/1750-3841.13167.
  • Barth, A. 2007. Infrared spectroscopy of proteins. Biochimica et Biophysica Acta 1767 (9):1073–101. doi: 10.1016/j.bbabio.2007.06.004.
  • Belščak-Cvitanović, A., A. Bušić, L. Barišić, D. Vrsaljko, S. Karlović, I. Špoljarić, A. Vojvodić, G. Mršić, and D. Komes. 2016. Emulsion templated microencapsulation of dandelion (Taraxacum officinale L.) polyphenols and β-carotene by ionotropic gelation of alginate and pectin. Food Hydrocolloids. 57:139–52. doi: 10.1016/j.foodhyd.2016.01.020.
  • Bermudez-Oria, A., G. Rodriguez-Gutierrez, A. Fernandez-Prior, H. Knicker, and J. Fernandez-Bolanos. 2020. Confirmation by solid-state NMR spectroscopy of a strong complex phenol-dietary fiber with retention of antioxidant activity in vitro. Food Hydrocolloids 102:105584. doi: 10.1016/j.foodhyd.2019.105584.
  • Biasi, F., M. Astegiano, M. Maina, G. Leonarduzzi, and G. Poli. 2011. Polyphenol supplementation as a complementary medicinal approach to treating inflammatory bowel disease. Current Medicinal Chemistry 18 (31):4851–65. doi: 10.2174/092986711797535263.
  • Bornet, F. R. 2001. Fructo-oligosaccharides and other fructans: Chemistry, structure and nutritional effects. Advanced dietary fibre technology. Blackwell Science, Oxford, England:480–93.
  • Brodkorb, A., L. Egger, A. Marie, P. Alvito, R. Assunção, S. Ballance, T. Bohn, C. Bourlieu, R. Boutrou, F. Carrière, et al. 2019. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature Protocols 14 (4):991–1014. doi: 10.1038/s41596-018-0119-1.
  • Brückner, M., S. Westphal, W. Domschke, T. Kucharzik, and A. Lügering. 2012. Green tea polyphenol epigallocatechin-3-gallate shows therapeutic antioxidative effects in a murine model of colitis. Journal of Crohn’s & Colitis 6 (2):226–35. doi: 10.1016/j.crohns.2011.08.012.
  • Bušić, A., A. Belščak-Cvitanović, A. Vojvodić Cebin, S. Karlović, V. Kovač, I. Špoljarić, G. Mršić, and D. Komes. 2018. Structuring new alginate network aimed for delivery of dandelion (Taraxacum officinale L.) polyphenols using ionic gelation and new filler materials. Food Research International (Ottawa, Ont.) 111:244–55. doi: 10.1016/j.foodres.2018.05.034.
  • Caddeo, C., A. Nácher, O. Díez-Sales, M. Merino-Sanjuán, A. M. Fadda, and M. Manconi. 2014. Chitosan-xanthan gum microparticle-based oral tablet for colon-targeted and sustained delivery of quercetin . Journal of Microencapsulation 31 (7):694–9. doi: 10.3109/02652048.2014.913726.
  • Caddeo, C., R. Pons, C. Carbone, X. Fernàndez-Busquets, M. C. Cardia, A. M. Maccioni, A. M. Fadda, and M. Manconi. 2017. Physico-chemical characterization of succinyl chitosan-stabilized liposomes for the oral co-delivery of quercetin and resveratrol. Carbohydrate Polymers 157:1853–61. doi: 10.1016/j.carbpol.2016.11.072.
  • Carrasco-Sandoval, J., M. Aranda-Bustos, K. Henríquez-Aedo, A. López-Rubio, and M. J. Fabra. 2021. Bioaccessibility of different types of phenolic compounds co-encapsulated in alginate/chitosan-coated zein nanoparticles. LWT 149:112024. doi: 10.1016/j.lwt.2021.112024.
  • Castro Coelho, S., B. Nogueiro Estevinho, and F. Rocha. 2021. Encapsulation in food industry with emerging electrohydrodynamic techniques: Electrospinning and electrospraying – A review. Food Chemistry 339:127850. doi: 10.1016/j.foodchem.2020.127850.
  • Cerqueira, M. A., A. C. Pinheiro, L. M. Pastrana, and A. A. Vicente. 2019. Amphiphilic modified galactomannan as a novel potential carrier for hydrophobic compounds. Frontiers in Sustainable Food Systems 3. doi: 10.3389/fsufs.2019.00017.
  • Chang, Y., Y. Yang, N. Xu, H. Mu, H. Zhang, and J. Duan. 2020. Improved viability of Akkermansia muciniphila by encapsulation in spray dried succinate-grafted alginate doped with epigallocatechin-3-gallate. International Journal of Biological Macromolecules 159:373–82. doi: 10.1016/j.ijbiomac.2020.05.055.
  • Charoenwongpaiboon, T., K. Wangpaiboon, P. Panpetch, R. A. Field, J. E. Barclay, R. Pichyangkura, and K. Kuttiyawong. 2019. Temperature-dependent inulin nanoparticles synthesized by Lactobacillus reuteri 121 inulosucrase and complex formation with flavonoids. Carbohydrate Polymers 223:115044. doi: 10.1016/j.carbpol.2019.115044.
  • Chen, L., M.-J. Lee, H. Li, and C. S. Yang. 1997. Absorption, distribution, and elimination of tea polyphenols in rats. Drug Metabolism and Disposition: The Biological Fate of Chemicals 25 (9):1045–50.
  • Chen, C., S. Zhu, T. Huang, S. Wang, and X. Yan. 2013. Analytical techniques for single-liposome characterization. Analytical Methods 5 (9):2150–7. doi: 10.1039/c3ay40219c.
  • Chuah, L. H., N. Billa, C. J. Roberts, J. C. Burley, and S. Manickam. 2013. Curcumin-containing chitosan nanoparticles as a potential mucoadhesive delivery system to the colon. Pharmaceutical Development and Technology 18 (3):591–9. doi:10.3109/10837450.2011.640688.
  • Coimbra, P. P. S., F. d S. N. Cardoso, and É. C. B. d A. Gonçalves. 2021. Spray-drying wall materials: Relationship with bioactive compounds. Critical Reviews in Food Science and Nutrition 61 (17):2809–18. doi: 10.1080/10408398.2020.1786354.
  • Connolly, M. L., J. A. Lovegrove, and K. M. Tuohy. 2010. Konjac glucomannan hydrolysate beneficially modulates bacterial composition and activity within the faecal microbiota. Journal of Functional Foods 2 (3):219–24. doi: 10.1016/j.jff.2010.05.001.
  • Copyright. 2015. The Author(s). Cham (CH).
  • Córdoba, A., M. Satué, M. Gómez-Florit, M. Hierro-Oliva, C. Petzold, S. P. Lyngstadaas, M. L. González-Martín, M. Monjo, and J. M. Ramis. 2015. Flavonoid-modified surfaces: Multifunctional bioactive biomaterials with osteopromotive, anti-inflammatory, and anti-fibrotic potential. Advanced Healthcare Materials 4 (4):540–9.
  • Ćujić, N., K. Trifković, B. Bugarski, S. Ibrić, D. Pljevljakušić, and K. Šavikin. 2016. Chokeberry (Aronia melanocarpa L.) extract loaded in alginate and alginate/inulin system. Industrial Crops and Products 86:120–31. doi: 10.1016/j.indcrop.2016.03.045.
  • Dag, D., S. Guner, and M. H. Oztop. 2019. Physicochemical mechanisms of different biopolymers’ (lysozyme, gum arabic, whey protein, chitosan) adsorption on green tea extract loaded liposomes. International Journal of Biological Macromolecules 138:473–82.
  • Dankyi, B. O., S. K. Amponsah, G. L. Allotey-Babington, I. Adams, N. A. Goode, and H. Nettey. 2020. Chitosan-coated hydroxypropylmethyl cellulose microparticles of levodopa (and carbidopa): In vitro and rat model kinetic characteristics. Current Therapeutic Research, Clinical and Experimental 93:100612. doi: 10.1016/j.curtheres.2020.100612.
  • d’Ayala, G. G., M. Malinconico, and P. Laurienzo. 2008. Marine derived polysaccharides for biomedical applications: Chemical modification approaches. Molecules (Basel, Switzerland) 13 (9):2069–106. doi: 10.3390/molecules13092069.
  • de Vos, P., M. M. Faas, M. Spasojevic, and J. Sikkema. 2010. Encapsulation for preservation of functionality and targeted delivery of bioactive food components. International Dairy Journal 20 (4):292–302. doi: 10.1016/j.idairyj.2009.11.008.
  • Debele, T. A., S. L. Mekuria, and H.-C. Tsai. 2016. Polysaccharide based nanogels in the drug delivery system: Application as the carrier of pharmaceutical agents. Materials Science & Engineering. C, Materials for Biological Applications 68:964–81. doi: 10.1016/j.msec.2016.05.121.
  • Devaraj, R. D., C. K. Reddy, and B. Xu. 2019. Health-promoting effects of konjac glucomannan and its practical applications: A critical review. International Journal of Biological Macromolecules 126:273–81. doi: 10.1016/j.ijbiomac.2018.12.203.
  • Divya, K., S. Vijayan, T. K. George, and M. S. Jisha. 2017. Antimicrobial properties of chitosan nanoparticles: Mode of action and factors affecting activity. Fibers and Polymers 18 (2):221–30. doi: 10.1007/s12221-017-6690-1.
  • Dong, Y., Q. Hou, J. Lei, P. G. Wolf, H. Ayansola, and B. Zhang. 2020. Quercetin alleviates intestinal oxidative damage induced by H2O2 via modulation of GSH: In vitro screening and in vivo evaluation in a colitis model of mice. ACS Omega 5 (14):8334–46. doi: 10.1021/acsomega.0c00804.
  • Du, Z., J. Liu, T. Zhang, Y. Yu, Y. Zhang, J. Zhai, H. Huang, S. Wei, L. Ding, and B. Liu. 2019. A study on the preparation of chitosan-tripolyphosphate nanoparticles and its entrapment mechanism for egg white derived peptides. Food Chemistry 286:530–6. doi: 10.1016/j.foodchem.2019.02.012.
  • Dube, A., K. Ng, J. A. Nicolazzo, and I. Larson. 2010. Effective use of reducing agents and nanoparticle encapsulation in stabilizing catechins in alkaline solution. Food Chemistry 122 (3):662–7. doi: 10.1016/j.foodchem.2010.03.027.
  • Dupont, D., M. Alric, S. Blanquet-Diot, G. Bornhorst, C. Cueva, A. Deglaire, S. Denis, M. Ferrua, R. Havenaar, J. Lelieveld, et al. 2019. Can dynamic in vitro digestion systems mimic the physiological reality? Critical Reviews in Food Science and Nutrition 59 (10):1546–62. doi: 10.1080/10408398.2017.1421900.
  • Edwards, C. A., J. Havlik, W. Cong, W. Mullen, T. Preston, D. J. Morrison, and E. Combet. 2017. Polyphenols and health: Interactions between fibre, plant polyphenols and the gut microbiota. Nutrition Bulletin 42 (4):356–60.
  • Endo, E. H., T. Ueda-Nakamura, C. V. Nakamura, and B. P. D. Filho. 2012. Activity of spray-dried microparticles containing pomegranate peel extract against Candida albicans. Molecules (Basel, Switzerland) 17 (9):10094–107. doi: 10.3390/molecules170910094.
  • Epstein, J., I. R. Sanderson, and T. T. MacDonald. 2010. Curcumin as a therapeutic agent: The evidence from in vitro, animal and human studies. British Journal of Nutrition 103 (11):1545–57. doi: 10.1017/S0007114509993667.
  • Fang, Z., and B. Bhandari. 2010. Encapsulation of polyphenols – A review. Trends in Food Science & Technology 21 (10):510–23. doi: 10.1016/j.tifs.2010.08.003.
  • Fan, Y., Y. Liu, Y. Wu, F. Dai, M. Yuan, F. Wang, Y. Bai, and H. Deng. 2021. Natural polysaccharides based self-assembled nanoparticles for biomedical applications – A review. International Journal of Biological Macromolecules 192:1240–55. doi: 10.1016/j.ijbiomac.2021.10.074.
  • Fan, X., M. Zhu, F. Qiu, W. Li, M. Wang, Y. Guo, X. Xi, and B. Du. 2020. Curcumin may be a potential adjuvant treatment drug for colon cancer by targeting CD44. International Immunopharmacology 88:106991. doi: 10.1016/j.intimp.2020.106991.
  • Fares, M. M., and M. t S. Salem. 2015. Dissolution enhancement of curcumin via curcumin-prebiotic inulin nanoparticles. Drug Development and Industrial Pharmacy 41 (11):1785–92. doi: 10.3109/03639045.2015.1004184.
  • Farshbaf, M., S. Davaran, A. Zarebkohan, N. Annabi, A. Akbarzadeh, and R. Salehi. 2018. Significant role of cationic polymers in drug delivery systems. Artificial Cells, Nanomedicine, and Biotechnology 46 (8):1872–91.
  • Feng, R., L. Wang, P. Zhou, Z. Luo, X. Li, and L. Gao. 2020. Development of the pH responsive chitosan-alginate based microgel for encapsulation of Jughans regia L. polyphenols under simulated gastrointestinal digestion in vitro. Carbohydrate Polymers 250:116917. doi: 10.1016/j.carbpol.2020.116917.
  • Fernandes, A., J. Oliveira, F. Fonseca, F. Ferreira-Da-Silva, N. Mateus, J.-P. Vincken, and V. De Freitas. 2020. Molecular binding between anthocyanins and pectic polysaccharides – Unveiling the role of pectic polysaccharides structure. Food Hydrocolloids. 102:105625 doi:10.1016/j.foodhyd.2019.105625.
  • Figueiredo, J. A., A. Mt Lago, J. M. Mar, L. S. Silva, E. A. Sanches, T. P. Souza, J. A. Bezerra, P. H. Campelo, D. A. Botrel, and S. V. Borges. 2020. Stability of camu-camu encapsulated with different prebiotic biopolymers. Journal of the Science of Food and Agriculture 100 (8):3471–80. doi: 10.1002/jsfa.10384.
  • Flamminii, F.,. C. D. Di Mattia, M. Nardella, M. Chiarini, L. Valbonetti, L. Neri, G. Difonzo, and P. Pittia. 2020. Structuring alginate beads with different biopolymers for the development of functional ingredients loaded with olive leaves phenolic extract. Food Hydrocolloids 108:105849. doi: 10.1016/j.foodhyd.2020.105849.
  • Fu, J., Y. Zhu, F. Cheng, S. Zhang, T. Xiu, Y. Hu, and S. Yang. 2021. A composite chitosan derivative nanoparticle to stabilize a W1/O/W2 emulsion: Preparation and characterization. Carbohydrate Polymers 256:117533. doi: 10.1016/j.carbpol.2020.117533.
  • Gaikwad, V. L., P. B. Choudhari, N. M. Bhatia, and M. S. Bhatia. 2019. Chapter 2 – Characterization of pharmaceutical nanocarriers: In vitro and in vivo studies. In Nanomaterials for Drug Delivery and Therapy, ed. A. M. Grumezescu, 33–58. Amsterdam: William Andrew Publishing.
  • George, A., P. A. Shah, and P. S. Shrivastav. 2019. Guar gum: Versatile natural polymer for drug delivery applications. European Polymer Journal 112:722–35. doi: 10.1016/j.eurpolymj.2018.10.042.
  • Goëlo, V., M. Chaumun, A. Gonçalves, B. N. Estevinho, and F. Rocha. 2020. Polysaccharide-based delivery systems for curcumin and turmeric powder encapsulation using a spray-drying process. Powder Technology 370:137–46. doi:10.1016/j.powtec.2020.05.016.
  • Gómez-Ordóñez, E., and P. Rupérez. 2011. FTIR-ATR spectroscopy as a tool for polysaccharide identification in edible brown and red seaweeds. Food Hydrocolloids 25 (6):1514–20. doi: 10.1016/j.foodhyd.2011.02.009.
  • Gonçalves, A., B. N. Estevinho, and F. Rocha. 2021. Methodologies for simulation of gastrointestinal digestion of different controlled delivery systems and further uptake of encapsulated bioactive compounds. Trends in Food Science & Technology 114:510–20. doi: 10.1016/j.tifs.2021.06.007.
  • González, E., A. M. Gómez-Caravaca, B. Giménez, R. Cebrián, M. Maqueda, A. Martínez-Férez, A. Segura-Carretero, and P. Robert. 2019. Evolution of the phenolic compounds profile of olive leaf extract encapsulated by spray-drying during in vitro gastrointestinal digestion. Food Chemistry 279:40–8. doi: 10.1016/j.foodchem.2018.11.127.
  • González, E., A. M. Gómez-Caravaca, B. Giménez, R. Cebrián, M. Maqueda, J. Parada, A. Martínez-Férez, A. Segura-Carretero, and P. Robert. 2020. Role of maltodextrin and inulin as encapsulating agents on the protection of oleuropein during in vitro gastrointestinal digestion. Food Chemistry 310:125976. doi: 10.1016/j.foodchem.2019.125976.
  • Guazelli, C. F. S., V. Fattori, B. B. Colombo, S. R. Georgetti, F. T. M. C. Vicentini, R. Casagrande, M. M. Baracat, and W. A. Verri. 2013. Quercetin-loaded microcapsules ameliorate experimental colitis in mice by anti-inflammatory and antioxidant mechanisms. Journal of Natural Products 76 (2):200–8. doi: 10.1021/np300670w.
  • Hamley, I. W., and V. Castelletto. 2017. Self-assembly of peptide bioconjugates: Selected recent research highlights. Bioconjugate Chemistry 28 (3):731–9. doi: 10.1021/acs.bioconjchem.6b00284.
  • Hatzakis, E. 2019. Nuclear magnetic resonance (NMR) spectroscopy in food science: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety 18 (1):189–220. doi: 10.1111/1541-4337.12408.
  • Havlik, J., V. Marinello, A. Gardyne, M. Hou, W. Mullen, D. J. Morrison, T. Preston, E. Combet, and C. A. Edwards. 2020. Dietary fibres differentially impact on the production of phenolic acids from rutin in an in vitro fermentation model of the human gut microbiota. Nutrients 12 (6):1577. doi: 10.3390/nu12061577.
  • He, Y., S. Wang, J. Li, H. Liang, X. Wei, D. Peng, Z. Jiang, and B. Li. 2019. Interaction between konjac glucomannan and tannic acid: Effect of molecular weight, pH and temperature. Food Hydrocolloids 94:451–8. doi: 10.1016/j.foodhyd.2019.03.044.
  • Heijnen, C. G., G. R. Haenen, R. Minou Oostveen, E. M. Stalpers, and A. Bast. 2002. Protection of flavonoids against lipid peroxidation: The structure activity relationship revisited. Free Radical Research 36 (5):575–81. doi: 10.1080/10715760290025951.
  • Hussain, M. A., K. Abbas, I. Jantan, and S. N. A. Bukhari. 2017. Polysaccharide-based materials in macromolecular prodrug design and development. International Materials Reviews 62 (2):78–98. doi: 10.1080/09506608.2016.1209617.
  • Ishihara, N., D. C. Chu, S. Akachi, and L. R. Juneja. 2001. Improvement of intestinal microflora balance and prevention of digestive and respiratory organ diseases in calves by green tea extracts. Livestock Production Science 68 (2–3):217–29. doi: 10.1016/S0301-6226(00)00233-5.
  • Iurciuc-Tincu, C.-E., L. I. Atanase, L. Ochiuz, C. Jérôme, V. Sol, P. Martin, and M. Popa. 2020. Curcumin-loaded polysaccharides-based complex particles obtained by polyelectrolyte complexation and ionic gelation. I-Particles obtaining and characterization. International Journal of Biological Macromolecules 147:629–42. doi: 10.1016/j.ijbiomac.2019.12.247.
  • Jain, A. K., V. Sood, M. Bora, R. Vasita, and D. S. Katti. 2014. Electrosprayed inulin microparticles for microbiota triggered targeting of colon. Carbohydrate Polymers 112:225–34. doi: 10.1016/j.carbpol.2014.05.087.
  • Jayaprakasha, G. K., K. N. Chidambara Murthy, and B. S. Patil. 2016. Enhanced colon cancer chemoprevention of curcumin by nanoencapsulation with whey protein. European Journal of Pharmacology 789:291–300. doi: 10.1016/j.ejphar.2016.07.017.
  • Ji, R., J. Wu, J. Zhang, T. Wang, X. Zhang, L. Shao, D. Chen, and J. Wang. 2019. Extending Viability of Bifidobacterium longum in Chitosan-Coated Alginate Microcapsules Using Emulsification and Internal Gelation Encapsulation Technology 10: 1–10. doi: 10.3389/fmicb.2019.01389.
  • Kaliva, M., and M. Vamvakaki. 2020. Chapter 17 – Nanomaterials characterization. In Polymer Science and Nanotechnology, ed. Narain, R., 401–33. Amsterdam: Elsevier.
  • Kaur, J., V. Mehta, and G. Kaur. 2021. Preparation, development and characterization of Leucaena leucocephala galactomannan (LLG) conjugated sinapic acid: A potential colon targeted prodrug. International Journal of Biological Macromolecules 178:29–40.
  • Khan, N., F. Afaq, M. Saleem, N. Ahmad, and H. Mukhtar. 2006. Targeting multiple signaling pathways by green tea polyphenol (-)-epigallocatechin-3-gallate. Cancer Research 66 (5):2500–5. doi: 10.1158/0008-5472.CAN-05-3636.
  • Klose, D., F. Siepmann, K. Elkharraz, S. Krenzlin, and J. Siepmann. 2006. How porosity and size affect the drug release mechanisms from PLGA-based microparticles. International Journal of Pharmaceutics 314 (2):198–206. doi: 10.1016/j.ijpharm.2005.07.031.
  • Koh, A., F. De Vadder, P. Kovatcheva-Datchary, and F. Backhed. 2016. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell 165 (6):1332–45. doi: 10.1016/j.cell.2016.05.041.
  • Koshani, R., S. M. Jafari, and T. G. M. van de Ven. 2020. Going deep inside bioactive-loaded nanocarriers through nuclear magnetic resonance (NMR) spectroscopy. Trends in Food Science & Technology 101:198–212. doi: 10.1016/j.tifs.2020.05.010.
  • Kotla, N. G., S. Rana, G. Sivaraman, O. Sunnapu, P. K. Vemula, A. Pandit, and Y. Rochev. 2019. Bioresponsive drug delivery systems in intestinal inflammation: State-of-the-art and future perspectives. Advanced Drug Delivery Reviews 146:248–66. doi: 10.1016/j.addr.2018.06.021.
  • Le Bastard, Q., G. Chapelet, F. Javaudin, D. Lepelletier, E. Batard, and E. Montassier. 2020. The effects of inulin on gut microbial composition: A systematic review of evidence from human studies. European Journal of Clinical Microbiology & Infectious Diseases: Official Publication of the European Society of Clinical Microbiology 39 (3):403–13. doi: 10.1007/s10096-019-03721-w.
  • Lee, J. S., Y. J. Jung, M. J. Doh, and Y. M. Kim. 2001. Synthesis and properties of dextran-nalidixic acid ester as a colon-specific prodrug of nalidixic acid . Drug Development and Industrial Pharmacy 27 (4):331–6. doi: 10.1081/ddc-100103732.
  • Lee, K. Y., and D. J. Mooney. 2012. Alginate: Properties and biomedical applications. Progress in Polymer Science 37 (1):106–26. doi: 10.1016/j.progpolymsci.2011.06.003.
  • Li, Q., M. Duan, D. Hou, X. Chen, J. Shi, and W. Zhou. 2021a. Fabrication and characterization of Ca(II)-alginate-based beads combined with different polysaccharides as vehicles for delivery, release and storage of tea polyphenols. Food Hydrocolloids 112:106274. doi: 10.1016/j.foodhyd.2020.106274.
  • Li, X., R. Feng, P. Zhou, L. Wang, Z. Luo, and S. An. 2021b. Construction and characterization of Juglans regia L. polyphenols nanoparticles based on bovine serum albumin and Hohenbuehelia serotina polysaccharides, and their gastrointestinal digestion and colonic fermentation in vitro. Food & Function 12 (21):10397–410. doi: 10.1039/D1FO01993G.
  • Li, M., G. Li, Q. Shang, X. Chen, W. Liu, X. e Pi, L. Zhu, Y. Yin, G. Yu, and X. Wang. 2016a. In vitro fermentation of alginate and its derivatives by human gut microbiota. Anaerobe 39:19–25. doi: 10.1016/j.anaerobe.2016.02.003.
  • Lin, Y.-H., H.-F. Liang, C.-K. Chung, M.-C. Chen, and H.-W. Sung. 2005. Physically crosslinked alginate/N, O-carboxymethyl chitosan hydrogels with calcium for oral delivery of protein drugs. Biomaterials 26 (14):2105–13.
  • Liu, F., J. Antoniou, Y. Li, H. Majeed, R. Liang, Y. Ma, J. Ma, and F. Zhong. 2016. Chitosan/sulfobutylether-β-cyclodextrin nanoparticles as a potential approach for tea polyphenol encapsulation. Food Hydrocolloids. 57:291–300. doi: 10.1016/j.foodhyd.2016.01.024.
  • Liudvinaviciute, D., R. Rutkaite, J. Bendoraitiene, R. Klimaviciute, and L. Dagys. 2020. Formation and characteristics of alginate and anthocyanin complexes. International Journal of Biological Macromolecules 164:726–34. doi: 10.1016/j.ijbiomac.2020.07.157.
  • Liu, X., C. Le Bourvellec, and C. M. G. C. Renard. 2020. Interactions between cell wall polysaccharides and polyphenols: Effect of molecular internal structure. Comprehensive Reviews in Food Science and Food Safety 19 (6):3574–617. doi: 10.1111/1541-4337.12632.
  • Li, S., Q. Xiong, X. Lai, X. Li, M. Wan, J. Zhang, Y. Yan, M. Cao, L. Lu, J. Guan, et al. 2016b. Molecular modification of polysaccharides and resulting bioactivities. Comprehensive Reviews in Food Science and Food Safety 15 (2):237–50. doi: 10.1111/1541-4337.12161.
  • Loo, Y. T., K. Howell, M. Chan, P. Zhang, and K. Ng. 2020. Modulation of the human gut microbiota by phenolics and phenolic fiber-rich foods. Comprehensive Reviews in Food Science and Food Safety 19 (4):1268–98. doi: 10.1111/1541-4337.12563.
  • Lupo, B., A. Maestro, M. Porras, J. M. Gutiérrez, and C. González. 2014. Preparation of alginate microspheres by emulsification/internal gelation to encapsulate cocoa polyphenols. Food Hydrocolloids 38:56–65. doi: 10.1016/j.foodhyd.2013.11.003.
  • Mackie, A., A.-I. Mulet-Cabero, and A. Torcello-Gómez. 2020. Simulating human digestion: Developing our knowledge to create healthier and more sustainable foods. Food & Function 11 (11):9397–431. doi: 10.1039/d0fo01981j.
  • Maity, S., P. Mukhopadhyay, P. P. Kundu, and A. S. Chakraborti. 2017. Alginate coated chitosan core-shell nanoparticles for efficient oral delivery of naringenin in diabetic animals – An in vitro and in vivo approach. Carbohydrate Polymers 170:124–32. doi: 10.1016/j.carbpol.2017.04.066.
  • Maloy, K. J., and F. Powrie. 2011. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature 474 (7351):298–306. doi: 10.1038/nature10208.
  • Manach, C., A. Scalbert, C. Morand, C. Rémésy, and L. Jiménez. 2004. Polyphenols: Food sources and bioavailability. The American Journal of Clinical Nutrition 79 (5):727–47. doi: 10.1093/ajcn/79.5.727.
  • Mandracchia, D., G. Tripodo, A. Trapani, S. Ruggieri, T. Annese, T. Chlapanidas, G. Trapani, and D. Ribatti. 2016. Inulin based micelles loaded with curcumin or celecoxib with effective anti-angiogenic activity. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences 93:141–6. doi: 10.1016/j.ejps.2016.08.027.
  • Manzoor, M., J. Singh, J. D. Bandral, A. Gani, and R. Shams. 2020. Food hydrocolloids: Functional, nutraceutical and novel applications for delivery of bioactive compounds. International Journal of Biological Macromolecules 165 (Pt A):554–67.
  • Memvanga, P. B., R. Coco, and V. Préat. 2013. An oral malaria therapy: Curcumin-loaded lipid-based drug delivery systems combined with β-arteether. Journal of Controlled Release: Official Journal of the Controlled Release Society 172 (3):904–13. doi: 10.1016/j.jconrel.2013.09.001.
  • Ménard, O., M.-H. Famelart, A. Deglaire, Y. Le Gouar, S. Guérin, C.-H. Malbert, and D. Dupont. 2018. Gastric emptying and dynamic in vitro digestion of drinkable yogurts: Effect of viscosity and composition. Nutrients 10 (9):1308. doi: 10.3390/nu10091308.
  • Mendes, A. C., K. Stephansen, and I. S. Chronakis. 2017. Electrospinning of food proteins and polysaccharides. Food Hydrocolloids 68:53–68. doi: 10.1016/j.foodhyd.2016.10.022.
  • Meng, X., F. Tian, J. Yang, C.-N. He, N. Xing, and F. Li. 2010. Chitosan and alginate polyelectrolyte complex membranes and their properties for wound dressing application. Journal of Materials Science. Materials in Medicine 21 (5):1751–9. doi: 10.1007/s10856-010-3996-6.
  • Meng, F.-B., Q. Zhang, Y.-C. Li, J.-J. Li, D.-Y. Liu, and L.-X. Peng. 2020. Konjac glucomannan octenyl succinate as a novel encapsulation wall material to improve curcumin stability and bioavailability. Carbohydrate Polymers 238:116193. doi: 10.1016/j.carbpol.2020.116193.
  • Meyer, D., and M. Stasse-Wolthuis. 2009. The bifidogenic effect of inulin and oligofructose and its consequences for gut health. European Journal of Clinical Nutrition 63 (11):1277–89. doi: 10.1038/ejcn.2009.64.
  • Miene, C., A. Weise, and M. Glei. 2011. Impact of Polyphenol Metabolites Produced by Colonic Microbiota on Expression of COX-2 and GST T2 in Human Colon Cells (LT97). Nutrition and Cancer 63:653–62. doi: 10.1080/01635581.2011.552157.
  • Milea, Ș. A., M. A. Vasile, O. Crăciunescu, A.-M. Prelipcean, G. E. Bahrim, G. Râpeanu, A. Oancea, and N. Stănciuc. 2020. Co-microencapsulation of flavonoids from yellow onion skins and lactic acid bacteria lead to multifunctional ingredient for nutraceutical and pharmaceutics applications. Pharmaceutics 12 (11):1053. doi: 10.3390/pharmaceutics12111053.
  • Modrackova, N., M. Makovska, C. Mekadim, E. Vlkova, V. Tejnecky, P. Bolechova, and V. Bunesova. 2019. Prebiotic potential of natural gums and starch for bifidobacteria of variable origins. Bioactive Carbohydrates and Dietary Fibre 20:100199. doi: 10.1016/j.bcdf.2019.100199.
  • Morais, C. A., V. V. de Rosso, D. Estadella, and L. P. Pisani. 2016. Anthocyanins as inflammatory modulators and the role of the gut microbiota. The Journal of Nutritional Biochemistry 33:1–7. doi: 10.1016/j.jnutbio.2015.11.008.
  • Moreira Mar, J., L. Souza da Silva, S. da, M. Rabello, M. Moraes Biondo, V. Ferreira Kinupp, P. Henrique Campelo, E. Bruginski, F. Ramos Campos, J. de Araújo Bezerra, et al. 2021. Development of alginate/inulin carrier systems containing non-conventional Amazonian berry extracts. Food Research International (Ottawa, Ont.) 139:109838. doi: 10.1016/j.foodres.2020.109838.
  • Morelo, G., B. Gimenez, G. Marquez-Ruiz, F. Holgado, P. Romero-Hasler, E. Soto-Bustamante, and P. Robert. 2019. Influence of the physical state of spray-dried flavonoid-inulin microparticles on oxidative stability of lipid matrices. Antioxidants 8 (11):520. doi: 10.3390/antiox8110520.
  • Mudgil, D., S. Barak, A. Patel, and N. Shah. 2018. Partially hydrolyzed guar gum as a potential prebiotic source. International Journal of Biological Macromolecules 112:207–10. doi: 10.1016/j.ijbiomac.2018.01.164.
  • Nagpal, K., S. K. Singh, and D. N. Mishra. 2010. Chitosan nanoparticles: A promising system in novel drug delivery. Chemical & Pharmaceutical Bulletin 58 (11):1423–30. doi: 10.1248/cpb.58.1423.
  • Neilson, A. P., A. S. Hopf, B. R. Cooper, M. A. Pereira, J. A. Bomser, and M. G. Ferruzzi. 2007. Catechin degradation with concurrent formation of homo- and heterocatechin dimers during in vitro digestion. Journal of Agricultural and Food Chemistry 55 (22):8941–9. doi: 10.1021/jf071645m.
  • Pandey, K. B., and S. I. Rizvi. 2009. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Medicine and Cellular Longevity 2 (5):270–8. doi: 10.4161/oxim.2.5.9498.
  • Paques, J. P., E. van der Linden, C. J. M. van Rijn, and L. M. C. Sagis. 2013. Alginate submicron beads prepared through w/o emulsification and gelation with CaCl2 nanoparticles. Food Hydrocolloids. 31 (2):428–34. doi: 10.1016/j.foodhyd.2012.11.012.
  • Pathak, M. 2017. Chapter 5 – Nanoemulsions and their stability for enhancing functional properties of food ingredients. In Nanotechnology Applications in Food, ed. A. E. Oprea and A. M. Grumezescu, 87–106. Amsterdam: Academic Press.
  • Pieczykolan, E., and M. A. Kurek. 2019. Use of guar gum, gum arabic, pectin, beta-glucan and inulin for microencapsulation of anthocyanins from chokeberry. International Journal of Biological Macromolecules 129:665–71.
  • Poncelet, D. J. A. o t N. Y. A. o S. 2001. Production of alginate beads by emulsification/internal gelation. Annals of the New York Academy of Sciences 944:74–82. doi: 10.1111/j.1749-6632.2001.tb03824.x.
  • Prajapati, V. D., G. K. Jani, N. G. Moradiya, N. P. Randeria, B. J. Nagar, N. N. Naikwadi, and B. C. Variya. 2013. Galactomannan: A versatile biodegradable seed polysaccharide. International Journal of Biological Macromolecules 60:83–92. doi: 10.1016/j.ijbiomac.2013.05.017.
  • Rahdar, A., and M. Almasi-Kashi. 2016. Dynamic light scattering of xanthan gum biopolymer in colloidal dispersion . Journal of Advanced Research 7 (5):635–41. doi: 10.1016/j.jare.2016.06.009.
  • Rivas-Montoya, E., J. Miguel Ochando-Pulido, J. Manuel López-Romero, and A. Martinez-Ferez. 2016. Application of a novel gastrointestinal tract simulator system based on a membrane bioreactor (SimuGIT) to study the stomach tolerance and effective delivery enhancement of nanoencapsulated macelignan. Chemical Engineering Science 140:104–13. doi: 10.1016/j.ces.2015.10.006.
  • Robert, P., P. García, N. Reyes, J. Chávez, and J. Santos. 2012. Acetylated starch and inulin as encapsulating agents of gallic acid and their release behaviour in a hydrophilic system. Food Chemistry 134:1–8. https://doi.org/10.1016/j.foodchem.2012.02.019
  • Ronkart, S. N., C. S. Blecker, H. Fourmanoir, C. Fougnies, C. Deroanne, J.-C. Van Herck, and M. Paquot. 2007. Isolation and identification of inulooligosaccharides resulting from inulin hydrolysis. Analytica Chimica Acta 604 (1):81–7. doi: 10.1016/j.aca.2007.07.073.
  • Rutz, J. K., R. C. Zambiazi, C. D. Borges, F. D. Krumreich, S. R. da Luz, N. Hartwig, and C. G. da Rosa. 2013. Microencapsulation of purple Brazilian cherry juice in xanthan, tara gums and xanthan-tara hydrogel matrixes. Carbohydrate Polymers 98 (2):1256–65.
  • Şahin, S., and M. Bilgin. 2018. Olive tree (Olea europaea L.) leaf as a waste by-product of table olive and olive oil industry: A review. Journal of the Science of Food and Agriculture 98 (4):1271–9. doi: 10.1002/jsfa.8619.
  • Sams, L., J. Paume, J. Giallo, and F. Carrière. 2016. Relevant pH and lipase for in vitro models of gastric digestion. Food & Function 7 (1):30–45. doi: 10.1039/c5fo00930h.
  • Santangelo, C., R. Varì, B. Scazzocchio, R. Di Benedetto, C. Filesi, and R. J. A-i s d s Masella. 2007. Polyphenols, intracellular signalling and inflammation. Annali Dell’Istituto Superiore di Sanita 43 (4):394–405.
  • Schneider, C., O. N. Gordon, R. L. Edwards, and P. B. Luis. 2015. Degradation of curcumin: From mechanism to biological implications. Journal of Agricultural and Food Chemistry 63 (35):7606–14. doi: 10.1021/acs.jafc.5b00244.
  • Šeregelj, V., G. Ćetković, J. Čanadanović-Brunet, V. T. Šaponjac, J. Vulić, S. Lević, V. Nedović, A. Brandolini, and A. Hidalgo. 2021. Encapsulation of carrot waste extract by freeze and spray drying techniques: An optimization study. LWT 138:110696. doi: 10.1016/j.lwt.2020.110696.
  • Serra, D., L. M. Almeida, and T. C. P. Dinis. 2018. Dietary polyphenols: A novel strategy to modulate microbiota-gut-brain axis. Trends in Food Science & Technology 78:224–33. doi: 10.1016/j.tifs.2018.06.007.
  • Sharma, G., S. Sharma, A. Kumar, A. a H. Al-Muhtaseb, M. Naushad, A. A. Ghfar, G. T. Mola, and F. J. Stadler. 2018. Guar gum and its composites as potential materials for diverse applications: A review. Carbohydrate Polymers 199:534–45. doi: 10.1016/j.carbpol.2018.07.053.
  • Shi, M., D.-Y. Ying, M. M. Hlaing, J.-H. Ye, L. Sanguansri, and M. A. Augustin. 2019. Development of broccoli by-products as carriers for delivering EGCG. Food Chemistry 301:125301. doi: 10.1016/j.foodchem.2019.125301.
  • Shoaib, M., A. Shehzad, M. Omar, A. Rakha, H. Raza, H. R. Sharif, A. Shakeel, A. Ansari, and S. Niazi. 2016. Inulin: Properties, health benefits and food applications. Carbohydrate Polymers 147:444–54. doi:10.1016/j.carbpol.2016.04.020.
  • Sookkasem, A., S. Chatpun, S. Yuenyongsawad, and R. Wiwattanapatapee. 2015. Alginate beads for colon specific delivery of self-emulsifying curcumin. Journal of Drug Delivery Science and Technology 29:159–66. doi: 10.1016/j.jddst.2015.07.005.
  • Stevens, C. A., K. Kaur, and H.-A. Klok. 2021. Self-assembly of protein-polymer conjugates for drug delivery. Advanced Drug Delivery Reviews 174:447–60. doi: 10.1016/j.addr.2021.05.002.
  • Stingl, J. C., T. Ettrich, R. Muche, M. Wiedom, J. Brockmöller, A. Seeringer, and T. Seufferlein. 2011. Protocol for MInimizing the Risk of Metachronous Adenomas of the CoLorectum with Green Tea Extract (MIRACLE): A randomised controlled trial of green tea extract versus placebo for nutriprevention of metachronous colon adenomas in the elderly population. BMC Cancer 11:360. doi: 10.1186/1471-2407-11-360.
  • Sundar, S., J. Kundu, and S. C. Kundu. 2010. Biopolymeric nanoparticles. Science and Technology of Advanced Materials 11 (1):014104. doi: 10.1088/1468-6996/11/1/014104.
  • Sun-Waterhouse, D., S. S. Wadhwa, and G. I. N. Waterhouse. 2013. Spray-drying microencapsulation of polyphenol bioactives: A comparative study using different natural fibre polymers as encapsulants. Food and Bioprocess Technology 6 (9):2376–88. doi: 10.1007/s11947-012-0946-y.
  • Tan, S., J. A. Caparros-Martin, V. B. Matthews, H. Koch, F. O’Gara, K. D. Croft, and N. C. Ward. 2018. Isoquercetin and inulin synergistically modulate the gut microbiome to prevent development of the metabolic syndrome in mice fed a high fat diet. Scientific Reports 8 (1):13. doi: 10.1038/s41598-018-28521-8.
  • Tang, H.-Y., Z. Fang, and K. Ng. 2020. Dietary fiber-based colon-targeted delivery systems for polyphenols. Trends in Food Science & Technology 100:333–48. doi: 10.1016/j.tifs.2020.04.028.
  • Tarifa, M. C., C. M. Piqueras, D. B. Genovese, and L. I. Brugnoni. 2021. Microencapsulation of Lactobacillus casei and Lactobacillus rhamnosus in pectin and pectin-inulin microgel particles: Effect on bacterial survival under storage conditions. International Journal of Biological Macromolecules 179:457–65. doi: 10.1016/j.ijbiomac.2021.03.038.
  • Tian, H., D. Xiang, B. Wang, W. Zhang, and C. Li. 2021. Using hydrogels in dispersed phase of water-in-oil emulsion for encapsulating tea polyphenols to sustain their release. Colloids and Surfaces A: Physicochemical and Engineering Aspects 612:125999. doi: 10.1016/j.colsurfa.2020.125999.
  • Tsirigotis-Maniecka, M., Ł. Lamch, I. Chojnacka, R. Gancarz, and K. A. Wilk. 2017. Microencapsulation of hesperidin in polyelectrolyte complex microbeads: Physico-chemical evaluation and release behavior. Journal of Food Engineering 214:104–16. doi: 10.1016/j.jfoodeng.2017.06.015.
  • Tzounis, X., A. Rodriguez-Mateos, J. Vulevic, G. R. Gibson, C. Kwik-Uribe, and J. P. E. Spencer. 2011. Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double-blind, crossover intervention study. The American Journal of Clinical Nutrition 93 (1):62–72. doi: 10.3945/ajcn.110.000075.
  • Udompornmongkol, P., and B.-H. Chiang. 2015. Curcumin-loaded polymeric nanoparticles for enhanced anti-colorectal cancer applications. Journal of Biomaterials Applications 30 (5):537–46. doi: 10.1177/0885328215594479.
  • Urzúa, C., E. González, V. Dueik, P. Bouchon, B. Giménez, and P. Robert. 2017. Olive leaves extract encapsulated by spray-drying in vacuum fried starch–gluten doughs. Food and Bioproducts Processing 106:171–80. doi:10.1016/j.fbp.2017.10.001.
  • Varilek, G. W., F. Yang, E. Y. Lee, W. J. S. deVilliers, J. Zhong, H. S. Oz, K. F. Westberry, and C. J. McClain. 2001. Green Tea Polyphenol Extract Attenuates Inflammation in interleukin-2-deficient mice, a model of autoimmunity. The Journal of Nutrition 131 (7):2034–9. doi: 10.1093/jn/131.7.2034.
  • Vauzour, D., A. Rodriguez-Mateos, G. Corona, M. J. Oruna-Concha, and J. P. Spencer. 2010. Polyphenols and human health: Prevention of disease and mechanisms of action. Nutrients 2 (11):1106–31. doi: 10.3390/nu2111106.
  • Venema, K. 2015. The TNO in vitro model of the colon (TIM-2). In The impact of food bioactives on health: in vitro and ex vivo models, ed. K. Verhoeckx, P. Cotter, I. López-Expósito, C. Kleiveland, T. Lea, A. Mackie, T. Requena, D. Swiatecka, and H. Wichers, 293–304. New York City, USA: Springer.
  • Xiao, J.-X., L.-H. Wang, T.-C. Xu, and G.-Q. Huang. 2019. Complex coacervation of carboxymethyl konjac glucomannan and chitosan and coacervate characterization. International Journal of Biological Macromolecules 123:436–45. doi:10.1016/j.ijbiomac.2018.11.086.
  • Wang, C., Z. Han, Y. Wu, X. Lu, X. Tang, J. Xiao, and N. Li. 2021. Enhancing stability and anti-inflammatory properties of curcumin in ulcerative colitis therapy using liposomes mediated colon-specific drug delivery system. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 151:112123. doi: 10.1016/j.fct.2021.112123.
  • Wang, Q.-S., G.-F. Wang, J. Zhou, L.-N. Gao, and Y.-L. Cui. 2016. Colon targeted oral drug delivery system based on alginate-chitosan microspheres loaded with icariin in the treatment of ulcerative colitis. International Journal of Pharmaceutics 515 (1–2):176–85. doi: 10.1016/j.ijpharm.2016.10.002.
  • Wang, M., S. Wichienchot, X. He, X. Fu, Q. Huang, and B. Zhang. 2019. In vitro colonic fermentation of dietary fibers: Fermentation rate, short-chain fatty acid production and changes in microbiota. Trends in Food Science & Technology 88:1–9. doi: 10.1016/j.tifs.2019.03.005.
  • Wen, P., T.-G. Hu, L. Li, M.-H. Zong, and H. Wu. 2018. A colon-specific delivery system for quercetin with enhanced cancer prevention based on co-axial electrospinning. Food & Function 9 (11):5999–6009. doi: 10.1039/c8fo01216d.
  • Winter, J., M. Popoff, P. Grimont, and V. Bokkenheuser. 1991. Clostridium orbiscindens sp. nov., a human intestinal bacterium capable of cleaving the flavonoid C-ring. International Journal of Systematic Evolutionary Microbiology 41:355–7.
  • Woraphatphadung, T., W. Sajomsang, T. Rojanarata, T. Ngawhirunpat, P. Tonglairoum, and P. Opanasopit. 2018. Development of chitosan-based pH-sensitive polymeric micelles containing curcumin for colon-targeted drug delivery. AAPS PharmSciTech 19 (3):991–1000. doi: 10.1208/s12249-017-0906-y.
  • Wu, C., J. Sun, H. Jiang, Y. Li, and J. Pang. 2021. Construction of carboxymethyl konjac glucomannan/chitosan complex nanogels as potential delivery vehicles for curcumin. Food Chemistry 362:130242. doi: 10.1016/j.foodchem.2021.130242.
  • Yan, J., X. Liang, C. Ma, D. J. McClements, X. Liu, and F. Liu. 2021. Design and characterization of double-cross-linked emulsion gels using mixed biopolymers: Zein and sodium alginate. Food Hydrocolloids 113:106473. doi: 10.1016/j.foodhyd.2020.106473.
  • Yang, L., and L.-M. Zhang. 2009. Chemical structural and chain conformational characterization of some bioactive polysaccharides isolated from natural sources. Carbohydrate Polymers 76 (3):349–61. doi: 10.1016/j.carbpol.2008.12.015.
  • Zhang, Y.-J., S. Li, R.-Y. Gan, T. Zhou, D.-P. Xu, and H.-B. Li. 2015. Impacts of gut bacteria on human health and diseases. International Journal of Molecular Sciences 16 (4):7493–519. doi: 10.3390/ijms16047493.
  • Zhou, Y., H. Cao, M. Hou, S. Nirasawa, E. Tatsumi, T. J. Foster, and Y. Cheng. 2013. Effect of konjac glucomannan on physical and sensory properties of noodles made from low-protein wheat flour. Food Research International 51 (2):879–85. doi: 10.1016/j.foodres.2013.02.002.
  • Zhu, F. 2018a. Interactions between cell wall polysaccharides and polyphenols. Critical Reviews in Food Science and Nutrition 58 (11):1808–31. doi: 10.1080/10408398.2017.1287659.
  • Zhu, F. 2018b. Modifications of konjac glucomannan for diverse applications. Food Chemistry 256:419–26. doi: 10.1016/j.foodchem.2018.02.151.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.