1,386
Views
13
CrossRef citations to date
0
Altmetric
Review Articles

Fruit peel bioactives, valorisation into nanoparticles and potential applications: A review

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Abboud, K. Y., B. B. da Luz, J. L. Dallazen, M. F. d. P. Werner, C. B. B. Cazarin, M. R. MarósticaJunior, M. Iacomini, and L. M. C. Cordeiro. 2019. Gastroprotective Effect of Soluble Dietary Fibres from Yellow Passion Fruit (Passiflora Edulis f. Flavicarpa) Peel against Ethanol-Induced Ulcer in Rats. Journal of Functional Foods 54:552–8. doi: 10.1016/j.jff.2019.02.003.
  • Adebayo, A. E., A. M. Oke, A. Lateef, A. A. Oyatokun, O. D. Abisoye, I. P. Adiji, D. O. Fagbenro, T. V. Amusan, J. A. Badmus, T. B. Asafa, et al. 2019. Biosynthesis of silver, gold and silver–gold alloy nanoparticles using persea americana fruit peel aqueous extract for their biomedical properties. Nanotechnology for Environmental Engineering 4 (1):13. doi: 10.1007/s41204-019-0060-8.
  • Agarwal, H., S. V. Kumar, and S. Rajeshkumar. 2017. A review on green synthesis of zinc oxide nanoparticles – An eco-friendly approach. Resource-Efficient Technologies 3 (4):406–13. doi: 10.1016/j.reffit.2017.03.002.
  • Ahmad, N., and S. Sharma;Radheshyam Rai. 2012. Rapid green synthesis of silver and gold nanoparticles using peels of punica granatum. Advanced Materials Letters 3 (5):376–80. doi: 10.5185/amlett.2012.5357.
  • Ahmed, S., S. I. Annu, and S. Yudha S. 2016. Biosynthesis of gold nanoparticles: A green approach. Journal of Photochemistry and Photobiology B: Biology 161:141–53. doi: 10.1016/j.jphotobiol.2016.04.034.
  • Ain Samat, N., and R. Md Nor. 2013. Sol–gel synthesis of zinc oxide nanoparticles using citrus aurantifolia extracts. Ceramics International 39:S545–S548. doi: 10.1016/j.ceramint.2012.10.132.
  • Al-Ruqeishi, M. S., T. Mohiuddin, and L. K. Al-Saadi. 2019. Green synthesis of iron oxide nanorods from deciduous omani mango tree leaves for heavy oil viscosity treatment. Arabian Journal of Chemistry 12 (8):4084–90. doi: 10.1016/j.arabjc.2016.04.003.
  • Aminzade, R., A. Ramezanian, S. Eshghi, and S. M. H. Hosseini. 2022. Maintenance of pomegranate arils quality by zinc enrichment, a comparison between zinc sulfate and nano zinc oxide. Postharvest Biology and Technology 184:111757. doi: 10.1016/j.postharvbio.2021.111757.
  • Annu, A., S. Ahmed, G. Kaur, P. Sharma, S. Singh, and S. Ikram. 2018. Fruit waste (peel) as bio-reductant to synthesize silver nanoparticles with antimicrobial, antioxidant and cytotoxic activities. Journal of Applied Biomedicine 16 (3):221–31. doi: 10.1016/j.jab.2018.02.002.
  • Aqil, F., M. V. Vadhanam, and R. C. Gupta. 2012. Enhanced activity of punicalagin delivered via polymeric implants against benzo[a]pyrene-induced DNA adducts. Mutation Research 743 (1–2):59–66. doi: 10.1016/j.mrgentox.2011.12.022.
  • Azizan, A., A. X. Lee, N. A. Abdul Hamid, M. Maulidiani, A. Mediani, S. Z. Abdul Ghafar, N. K. Z. Zolkeflee, and F. Abas. 2020. Potentially bioactive metabolites from pineapple waste extracts and their antioxidant and α-glucosidase inhibitory activities by 1H NMR. Foods 9 (2):173. doi: 10.3390/foods9020173.
  • Balavijayalakshmi, J., and V. Ramalakshmi. 2017. Carica papaya peel mediated synthesis of silver nanoparticles and its antibacterial activity against human pathogens. Journal of Applied Research and Technology 15 (5):413–22. doi: 10.1016/j.jart.2017.03.010.
  • Banerjee, S., V. Ranganathan, A. Patti, and A. Arora. 2018. Valorisation of pineapple wastes for food and therapeutic applications. Trends in Food Science & Technology 82:60–70. doi: 10.1016/j.tifs.2018.09.024.
  • Bankar, A., B. Joshi, A. R. Kumar, and S. Zinjarde. 2010a. Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects 368 (1–3):58–63. doi: 10.1016/j.colsurfa.2010.07.024.
  • Bankar, A., B. Joshi, A. R. Kumar, and S. Zinjarde. 2010b. Banana peel extract mediated novel route for the synthesis of palladium nanoparticles. Materials Letters 64 (18):1951–3. doi: 10.1016/j.matlet.2010.06.021.
  • Bankar, A., B. Joshi, A. R. Kumar, and S. Zinjarde. 2010c. Banana peel extract mediated synthesis of gold nanoparticles. Colloids and Surfaces. B, Biointerfaces 80 (1):45–50. doi: 10.1016/j.colsurfb.2010.05.029.
  • Ben-Othman, S., I. Jõudu, and R. Bhat. 2020. Bioactives from agri-food wastes: Present insights and future challenges. Molecules 25 (3):510. doi: 10.3390/molecules25030510.
  • Bhagat, D. S., W. B. Gurnule, S. G. Pande, M. M. Kolhapure, and A. D. Belsare. 2020. Biosynthesis of gold nanoparticles for detection of dichlorvos residue from different samples. Materials Today: Proceedings 29:763–7. doi: 10.1016/j.matpr.2020.04.589.
  • Bhatnagar, A., M. Sillanpää, and A. Witek-Krowiak. 2015. Agricultural waste peels as versatile biomass for water purification – A review. Chemical Engineering Journal 270:244–71. doi: 10.1016/j.cej.2015.01.135.
  • Biswas, A. K., M. R. Islam, Z. S. Choudhury, A. Mostafa, and M. F. Kadir. 2014. Nanotechnology based approaches in cancer therapeutics. Advances in Natural Sciences: Nanoscience and Nanotechnology 5 (4):043001. doi: 10.1088/2043-6262/5/4/043001.
  • Blancas-Benitez, F. J., G. Mercado-Mercado, A. E. Quirós-Sauceda, E. Montalvo-González, G. A. González-Aguilar, and S. G. Sáyago-Ayerdi. 2015. Bioaccessibility of polyphenols associated with dietary fiber and in vitro kinetics release of polyphenols in Mexican ‘Ataulfo’ mango (Mangifera indica L.) by-products. Food & Function 6 (3):859–68. doi: 10.1039/C4FO00982G.
  • Boomi, P., G. P. Poorani, S. Selvam, S. Palanisamy, S. Jegatheeswaran, K. Anand, C. Balakumar, K. Premkumar, and H. G. Prabu. 2020. Green biosynthesis of gold nanoparticles using croton sparsiflorus leaves extract and evaluation of UV protection, antibacterial and anticancer applications. Applied Organometallic Chemistry 34 (5): e5574. doi: 10.1002/aoc.5574.
  • Boukroufa, M., C. Boutekedjiret, and F. Chemat. 2017. Development of a green procedure of citrus fruits waste processing to recover carotenoids. Resource-Efficient Technologies 3 (3):252–62. doi: 10.1016/j.reffit.2017.08.007.
  • Brito, T. B. N., A. P. A. Pereira, G. M. Pastore, R. F. A. Moreira, M. S. L. Ferreira, and A. E. C. Fai. 2020. Chemical composition and physicochemical characterization for cabbage and pineapple by-products flour valorization. LWT 124:109028. doi: 10.1016/j.lwt.2020.109028.
  • Cao, Q., J. Teng, B. Wei, L. Huang, and N. Xia. 2021. Phenolic compounds, bioactivity, and bioaccessibility of ethanol extracts from passion fruit peel based on simulated gastrointestinal digestion. Food Chemistry 356:129682. doi: 10.1016/j.foodchem.2021.129682.
  • Carneiro, J. O., S. Azevedo, F. Fernandes, E. Freitas, M. Pereira, C. J. Tavares, S. Lanceros-Méndez, and V. Teixeira. 2014. Synthesis of iron-doped TiO2 nanoparticles by ball-milling process: The influence of process parameters on the structural, optical, magnetic, and photocatalytic properties. Journal of Materials Science 49 (21):7476–88. doi: 10.1007/s10853-014-8453-3.
  • Casabar, J. T., Y. Unpaprom, and R. Ramaraj. 2019. Fermentation of pineapple fruit peel wastes for bioethanol production. Biomass Conversion and Biorefinery 9 (4):761–5. doi: 10.1007/s13399-019-00436-y.
  • Castro, L., M. Blázquez, F. González, J. Muñoz, and A. Ballester. 2015. Exploring the possibilities of biological fabrication of gold nanostructures using orange peel extract. Metals 5 (3):1609–19. doi: 10.3390/met5031609.
  • Chanakya, H. N., I. Sharma, and T. V. Ramachandra. 2009. Micro-scale anaerobic digestion of point source components of organic fraction of municipal solid waste. Waste Management (New York, NY) 29 (4):1306–12. doi: 10.1016/j.wasman.2008.09.014.
  • Chang, P. R., J. Yu, X. Ma, and D. P. Anderson. 2011. Polysaccharides as stabilizers for the synthesis of magnetic nanoparticles. Carbohydrate Polymers 83 (2):640–4. doi: 10.1016/j.carbpol.2010.08.027.
  • Chen, X.-M., A. R. Tait, and D. D. Kitts. 2017. Flavonoid composition of orange peel and its association with antioxidant and anti-inflammatory activities. Food Chemistry 218:15–21. doi: 10.1016/j.foodchem.2016.09.016.
  • Cheong, M. W., Chong, Z. S. S. Q. Liu, W. Zhou, and P. Curran, Bin Yu. 2012. Characterisation of calamansi (Citrus Microcarpa). Part I: Volatiles, aromatic profiles and phenolic acids in the peel. Food Chemistry 134 (2):686–95. doi: 10.1016/j.foodchem.2012.02.162.
  • Colantuono, A., R. Ferracane, and P. Vitaglione. 2016. In vitro bioaccessibility and functional properties of polyphenols from pomegranate peels and pomegranate peels-enriched cookies. Food & Function 7 (10):4247–58. doi: 10.1039/C6FO00942E.
  • Coman, V., B.-E. Teleky, L. Mitrea, G. A. Martău, K. Szabo, L.-F. Călinoiu, and D. C. Vodnar. 2020. Bioactive potential of fruit and vegetable wastes. Advances in Food and Nutrition Research 91:157–225. doi: 10.1016/bs.afnr.2019.07.001.
  • Dai, H., Y. Huang, Y. Zhang, H. Zhang, and H. Huang. 2019. Green and facile fabrication of pineapple peel cellulose/magnetic diatomite hydrogels in ionic liquid for methylene blue adsorption. Cellulose 26 (6):3825–44. doi: 10.1007/s10570-019-02283-6.
  • Darroudi, M., M. Bin Ahmad, R. Zamiri, A. K. Zak, A. H. Abdullah, and N. A. Ibrahim. 2011. Time-dependent effect in green synthesis of silver nanoparticles. International Journal of Nanomedicine 6:677–81. doi: 10.2147/IJN.S17669.
  • de Ancos, B., C. Sánchez-Moreno, L. Zacarías, M. J. Rodrigo, S. Sáyago Ayerdí, F. J. Blancas Benítez, J. A. Domínguez Avila, and G. A. González-Aguilar. 2018. Effects of two different drying methods (freeze-drying and hot air-drying) on the phenolic and carotenoid profile of ‘Ataulfo’ mango by-products. Journal of Food Measurement and Characterization 12 (3):2145–57. doi: 10.1007/s11694-018-9830-4.
  • Devanesan, S., M. S. AlSalhi, R. V. Balaji, A. J. A. Ranjitsingh, A. Ahamed, A. A. Alfuraydi, F. Y. AlQahtani, F. S. Aleanizy, and A. H. Othman. 2018. Antimicrobial and cytotoxicity effects of synthesized silver nanoparticles from punica granatum peel extract. Nanoscale Research Letters 13 (1):315. doi: 10.1186/s11671-018-2731-y.
  • Ding, Y., G. Gu, X.-H. Xia, and Q. Huo. 2009. Cysteine-grafted chitosan-mediated gold nanoparticle assembly: From nanochains to microcubes. Journal of Materials Chemistry 19 (6):795–9. doi: 10.1039/b816886e.
  • dos Reis, L. C. R., E. M. P. Facco, M. Salvador, S. H. Flôres, and A. de Oliveira Rios. 2018. Antioxidant potential and physicochemical characterization of yellow, purple and orange passion fruit. Journal of Food Science and Technology 55 (7):2679–91. doi: 10.1007/s13197-018-3190-2.
  • Duan, H., D. Wang, and Y. Li. 2015. Green chemistry for nanoparticle synthesis. Chemical Society Reviews 44 (16):5778–92. doi: 10.1039/C4CS00363B.
  • Edison, T. J. I., and M. G. Sethuraman. 2013. Biogenic robust synthesis of silver nanoparticles using punica granatum peel and its application as a green catalyst for the reduction of an anthropogenic pollutant 4-nitrophenol. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 104:262–4. doi: 10.1016/j.saa.2012.11.084.
  • Ehrampoush, M. H., M. Miria, M. H. Salmani, and A. H. Mahvi. 2015. Cadmium removal from aqueous solution by green synthesis iron oxide nanoparticles with tangerine peel extract. Journal of Environmental Health Science & Engineering 13 (1):84. doi: 10.1186/s40201-015-0237-4.
  • Fernandes, R., A. Berretta, E. Torres, A. Buszinski, G. Fernandes, C. Mendes-Gouvêa, F. de Souza-Neto, L. Gorup, E. de Camargo, and D. Barbosa. 2018. Antimicrobial potential and cytotoxicity of silver nanoparticles phytosynthesized by pomegranate peel extract. Antibiotics 7 (3):51. doi: 10.3390/antibiotics7030051.
  • Fernando, S. I. D., and K. G. Judan Cruz. 2020. Ethnobotanical biosynthesis of gold nanoparticles and its downregulation of quorum sensing-linked AhyR gene in aeromonas hydrophila. SN Applied Sciences 2 (4):570. doi: 10.1007/s42452-020-2368-1.
  • Fu, L., and Z. Fu. 2015. Plectranthus amboinicus leaf extract–assisted biosynthesis of ZnO nanoparticles and their photocatalytic activity. Ceramics International 41 (2):2492–6. doi: 10.1016/j.ceramint.2014.10.069.
  • Gao, Y., D. Xu, D. Ren, K. Zeng, and X. Wu. 2020. Green synthesis of zinc oxide nanoparticles using citrus sinensis peel extract and application to strawberry preservation: A comparison study. LWT 126:109297. doi: 10.1016/j.lwt.2020.109297.
  • García, P., C. Fredes, I. Cea, J. Lozano-Sánchez, F. J. Leyva-Jiménez, P. Robert, C. Vergara, and P. Jimenez. 2021. Recovery of bioactive compounds from pomegranate (Punica Granatum L.) peel using pressurized liquid extraction. Foods 10 (2):203. doi: 10.3390/foods10020203.
  • Gayosso-García Sancho, L. E., E. M. Yahia, and G. A. González-Aguilar. 2011. Identification and quantification of phenols, carotenoids, and vitamin C from Papaya (Carica Papaya L., Cv. Maradol) fruit determined by HPLC-DAD-MS/MS-ESI. Food Research International 44 (5):1284–91. doi: 10.1016/j.foodres.2010.12.001.
  • Goldenberg, L., Y. Yaniv, R. Porat, and N. Carmi. 2018. Mandarin fruit quality: A review. Journal of the Science of Food and Agriculture 98 (1):18–26. doi: 10.1002/jsfa.8495.
  • Gómez-Mejía, E., N. Rosales-Conrado, M. Eugenia León-González, and Y. Madrid. 2019. Citrus peels waste as a source of value-added compounds: Extraction and quantification of bioactive polyphenols. Food Chemistry 295:289–99. doi: 10.1016/j.foodchem.2019.05.136.
  • González-Montelongo, R., M. G. Lobo, and M. González. 2010. Antioxidant activity in banana peel extracts: Testing extraction conditions and related bioactive compounds. Food Chemistry 119 (3):1030–9. doi: 10.1016/j.foodchem.2009.08.012.
  • Gorinstein, S., O. Martı́n-Belloso, Y.-S. Park, R. Haruenkit, A. Lojek, M. Ĉı́ž, A. Caspi, I. Libman, and S. Trakhtenberg, 2001. Comparison of some biochemical characteristics of different citrus fruits. Food Chemistry 74 (3):309–15. doi: 10.1016/S0308-8146(01)00157-1.
  • Guimarães, R., L. Barros, J. C. M. Barreira, M. J. Sousa, A. M. Carvalho, and I. C. F. R. Ferreira. 2010. Targeting excessive free radicals with peels and juices of citrus fruits: Grapefruit, lemon, lime and orange. Food and Chemical Toxicology 48 (1):99–106. doi: 10.1016/j.fct.2009.09.022.
  • Gurumallesh, P., B. Ramakrishnan, and B. Dhurai. 2019. A novel metalloprotease from banana peel and its biochemical characterization. International Journal of Biological Macromolecules 134:527–35. doi: 10.1016/j.ijbiomac.2019.05.051.
  • Hernández-Carranza, P., R. Ávila-Sosa, J. A. Guerrero-Beltrán, A. R. Navarro-Cruz, E. Corona-Jiménez, and C. E. Ochoa-Velasco. 2016. Optimization of antioxidant compounds extraction from fruit by-products: Apple pomace, orange and banana peel. Journal of Food Processing and Preservation 40 (1):103–15. doi: 10.1111/jfpp.12588.
  • Hossin, F. L. A. 2009. Effect of pomegranate (Punica Granatum) peels and it’s extract on obese hypercholesterolemic rats. Pakistan Journal of Nutrition 8 (8):1251–7. doi: 10.3923/pjn.2009.1251.1257.
  • Hulkoti, N. I., and T. C. Taranath. 2014. Biosynthesis of nanoparticles using microbes- a review. Colloids and Surfaces. B, Biointerfaces 121:474–83. doi: 10.1016/j.colsurfb.2014.05.027.
  • Ibrahim, H. M. M. 2015. Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. Journal of Radiation Research and Applied Sciences 8 (3):265–75. doi: 10.1016/j.jrras.2015.01.007.
  • Iravani, S. 2011. Green synthesis of metal nanoparticles using plants. Green Chemistry 13 (10):2638. doi: 10.1039/c1gc15386b.
  • Ismail, T., S. Akhtar, M. Riaz, and A. Ismail. 2014. Effect of pomegranate peel supplementation on nutritional, organoleptic and stability properties of cookies. International Journal of Food Sciences and Nutrition 65 (6):661–6. doi: 10.3109/09637486.2014.908170.
  • Ismail, R. A., A. K. Ali, M. M. Ismail, and K. I. Hassoon. 2011. Preparation and characterization of colloidal ZnO nanoparticles using nanosecond laser ablation in water. Applied Nanoscience 1 (1):45–9. doi: 10.1007/s13204-011-0006-3.
  • Jagadhesan, S., N. Senthilkumar, V. Senthilnathan, and T. S. Senthil. 2018. Sb Doped ZnO nanostructures prepared via co-precipitation approach for the enhancement of MB dye degradation. Materials Research Express 5 (2):025040. doi: 10.1088/2053-1591/aaaf80.
  • Judy Azar, A. R., and S. Mohebbi. 2013. One‐pot greener synthesis of silver nanoparticles using tangerine peel extract: Large‐scale production. Micro & Nano Letters 8 (11):813–5. doi: 10.1049/mnl.2013.0473.
  • Kaderides, K., A. M. Goula, and K. G. Adamopoulos. 2015. A process for turning pomegranate peels into a valuable food ingredient using ultrasound-assisted extraction and encapsulation. Innovative Food Science & Emerging Technologies 31:204–15. doi: 10.1016/j.ifset.2015.08.006.
  • Kaderides, K., A. Kyriakoudi, I. Mourtzinos, and A. M. Goula. 2021. Potential of pomegranate peel extract as a natural additive in foods. Trends in Food Science & Technology 115:380–90. doi: 10.1016/j.tifs.2021.06.050.
  • Kaderides, K., I. Mourtzinos, and A. M. Goula. 2020. Stability of pomegranate peel polyphenols encapsulated in orange juice industry by-product and their incorporation in cookies. Food Chemistry 310:125849. doi: 10.1016/j.foodchem.2019.125849.
  • Kanazawa, K., and H. Sakakibara. 2000. High content of dopamine, a strong antioxidant, in cavendish banana. Journal of Agricultural and Food Chemistry 48 (3):844–8. doi: 10.1021/jf9909860.
  • Kanaze, F. I., A. Termentzi, C. Gabrieli, I. Niopas, M. Georgarakis, and E. Kokkalou. 2009. The phytochemical analysis and antioxidant activity assessment of orange peel (citrus sinensis) cultivated in greece-crete indicates a new commercial source of hesperidin. Biomedical Chromatography: BMC 23 (3):239–49. doi: 10.1002/bmc.1090.
  • Karnan, T., and S. A. S. Selvakumar. 2016. Biosynthesis of ZnO nanoparticles using rambutan (Nephelium LappaceumL.) peel extract and their photocatalytic activity on methyl orange dye. Journal of Molecular Structure 1125:358–65. doi: 10.1016/j.molstruc.2016.07.029.
  • Kaur, S., P. S. Panesar, and H. K. Chopra. 2021. Citrus processing by-products: An overlooked repository of bioactive compounds. Critical Reviews in Food Science and Nutrition 61:1–20. doi: 10.1080/10408398.2021.1943647.
  • Kaur, P., R. Thakur, and A. Chaudhury. 2016. Biogenesis of copper nanoparticles using peel extract of punica granatum and their antimicrobial activity against opportunistic pathogens. Green Chemistry Letters and Reviews 9 (1):33–8. doi: 10.1080/17518253.2016.1141238.
  • Kaviya, S., J. Santhanalakshmi, B. Viswanathan, J. Muthumary, and K. Srinivasan. 2011. Biosynthesis of silver nanoparticles using citrus sinensis peel extract and its antibacterial activity. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 79 (3):594–8. doi: 10.1016/j.saa.2011.03.040.
  • Kowsalya, E., K. MosaChristas, P. Balashanmugam, V. Manivasagan, T. Devasena, and C. R. I. Jaquline. 2021. Sustainable use of biowaste for synthesis of silver nanoparticles and its incorporation into gelatin‐based nanocomposite films for antimicrobial food packaging applications. Journal of Food Process Engineering 44 (3):e13641. doi: 10.1111/jfpe.13641.
  • Kulkarni, S. K. 2015. Synthesis of nanomaterials—II (chemical methods). In Nanotechnology: principles and practices, 77–109. Cham: Springer International Publishing. doi: 10.1007/978-3-319-09171-6_4.
  • Kumar, A. 2021. Utilization of bioactive components present in pineapple waste: A review. The Pharma Innovation Journal. 10 (2021): 954-961.
  • Kumar, B., K. Smita, L. Cumbal, and A. Debut. 2014. Green approach for fabrication and applications of zinc oxide nanoparticles. Bioinorganic Chemistry and Applications 2014:1–7. doi: 10.1155/2014/523869.
  • Kurowska, E. M., and J. A. Manthey. 2004. Hypolipidemic effects and absorption of citrus polymethoxylated flavones in hamsters with diet-induced hypercholesterolemia. Journal of Agricultural and Food Chemistry 52 (10):2879–86. doi: 10.1021/jf035354z.
  • Lebaka, V. R., Y.-J. Wee, W. Ye, and M. Korivi. 2021. Nutritional composition and bioactive compounds in three different parts of mango fruit. International Journal of Environmental Research and Public Health 18 (2):741. doi: 10.3390/ijerph18020741.
  • Lee, K. X., K. Shameli, M. Miyake, N. B. B. Ahmad Khairudin, S. E. B. Mohamad, H. Hara, M. F. B. Mad Nordin, and Y. P. Yew. 2017. Gold nanoparticles biosynthesis: A simple route for control size using waste peel extract. IEEE Transactions on Nanotechnology 16 (6):954–7. doi: 10.1109/TNANO.2017.2728600.
  • Li, X., Z. Pan, G. Bingol, T. H. McHugh, and G. G. Atungulu. 2009. Feasibility study of using infrared radiation heating as a sustainable tomato peeling method. In 2009 Reno, Nevada, June 21 - June 24, 2009. St. Joseph, MI: American Society of Agricultural and Biological Engineers. doi: 10.13031/2013.27171.
  • López-Cobo, A., V. Verardo, E. Diaz-de-Cerio, A. Segura-Carretero, A. Fernández-Gutiérrez, and A. M. Gómez-Caravaca. 2017. Use of HPLC- and GC-QTOF to determine hydrophilic and lipophilic phenols in mango fruit (Mangifera Indica L.) and its by-products. Food Research International (Ottawa, ON) 100 (Pt 3):423–34. doi: 10.1016/j.foodres.2017.02.008.
  • Ma, H., B. Yin, S. Wang, Y. Jiao, W. Pan, S. Huang, S. Chen, and F. Meng. 2004. Synthesis of silver and gold nanoparticles by a novel electrochemical method. Chemphyschem: A European Journal of Chemical Physics and Physical Chemistry 5 (1):68–75. doi: 10.1002/cphc.200300900.
  • Madhankumar, S., H. Suryakumar, R. Sabarish, M. Suresh, and A. Ummer Farook. 2021. Fabrication of pineapple peeling machine using pneumatic solenoid valve. IOP Conference Series: Materials Science and Engineering 1059 (1):012038. doi: 10.1088/1757-899X/1059/1/012038.
  • Madima, N., S. B. Mishra, and A. K. Mishra. 2022. Nanotechnology and green materials: Introduction, fundamentals, and applications. In Green functionalized nanomaterials for environmental applications, 3–19. Elsevier. doi: 10.1016/B978-0-12-823137-1.00001-4.
  • Madureira, A. R., T. Atatoprak, D. Çabuk, F. Sousa, R. C. Pullar, and M. Pintado. 2018. Extraction and characterisation of cellulose nanocrystals from pineapple peel. International Journal of Food Studies 7(1):24–33. doi: 10.7455/ijfs/7.1.2018.a3.
  • Manal, A. A., A. H. Awatif, M. O. O. Khalid, F. A. E. Dalia, E. E. Nada, A. A-l Lamia, M. A.-O. Shorog, M. M. Nada, and A. G. A. Abdelelah. 2014. Silver nanoparticles biogenic synthesized using an orange peel extract and their use as an anti-bacterial agent. International Journal of Physical Sciences 9 (3):34–40. doi: 10.5897/IJPS2013.4080.
  • Manna, K., S. Mishra, M. Saha, S. Mahapatra, C. Saha, G. Yenge, N. Gaikwad, R. Pal, D. Oulkar, K. Banerjee, et al. 2019. Amelioration of diabetic nephropathy using pomegranate peel extract-stabilized gold nanoparticles: Assessment of NF-ΚB and Nrf2 signaling system. International Journal of Nanomedicine 14:1753–77. doi: 10.2147/IJN.S176013.
  • Marçal, S., and M. Pintado. 2021. Mango peels as food ingredient/additive: Nutritional value, processing, safety and applications. Trends in Food Science & Technology 114:472–89. doi: 10.1016/j.tifs.2021.06.012.
  • Mercado-Mercado, G., E. Montalvo-González, G. A. González-Aguilar, E. Alvarez-Parrilla, and S. G. Sáyago-Ayerdi. 2018. Ultrasound-assisted extraction of carotenoids from mango (Mangifera Indica L. ‘Ataulfo’) by-products on in vitro bioaccessibility. Food Bioscience 21:125–31. doi: 10.1016/j.fbio.2017.12.012.
  • Mohan, A. C., and B. Renjanadevi. 2016. Preparation of zinc oxide nanoparticles and its characterization using scanning electron microscopy (SEM) and X-ray diffraction(XRD). Procedia Technology 24:761–6. doi: 10.1016/j.protcy.2016.05.078.
  • Morais, D. R., E. M. Rotta, S. C. Sargi, E. G. Bonafe, R. M. Suzuki, N. E. Souza, M. Matsushita, and J. V. Visentainer. 2016. Proximate composition, mineral contents and fatty acid composition of the different parts and dried peels of tropical fruits cultivated in Brazil. Journal of the Brazilian Chemical Society 28 (2017):308–318. doi: 10.5935/0103-5053.20160178.
  • Mulvaney, P. 1996. Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12 (3):788–800. doi: 10.1021/la9502711.
  • Nabi, G., Q.-U. Ain, M. B. Tahir, K. Nadeem Riaz, T. Iqbal, M. Rafique, S. Hussain, W. Raza, I. Aslam, and M. Rizwan. 2022. Green synthesis of TiO 2 nanoparticles using lemon peel extract: Their optical and photocatalytic properties. International Journal of Environmental Analytical Chemistry 102 (2):434–42. doi: 10.1080/03067319.2020.1722816.
  • Nasiriboroumand, M., M. Montazer, and H. Barani. 2018. Preparation and characterization of biocompatible silver nanoparticles using pomegranate peel extract. Journal of Photochemistry and Photobiology. B, Biology 179:98–104. doi: 10.1016/j.jphotobiol.2018.01.006.
  • Nava, O. J., C. A. Soto-Robles, C. M. Gómez-Gutiérrez, A. R. Vilchis-Nestor, A. Castro-Beltrán, A. Olivas, and P. A. Luque. 2017. Fruit peel extract mediated green synthesis of zinc oxide nanoparticles. Journal of Molecular Structure 1147:1–6. doi: 10.1016/j.molstruc.2017.06.078.
  • Naz, S., F. Shams, S. Tabassum, I. Ul-Haq, M. Ashraf, and M. Zia. 2017. Kinnow peel extract as a reducing and capping agent for the fabrication of silver NPs and their biological applications. IET Nanobiotechnology 11 (8):1040–5. doi: 10.1049/iet-nbt.2017.0082.
  • Ndayishimiye, J., D. J. Lim, and B. S. Chun. 2018. Antioxidant and antimicrobial activity of oils obtained from a mixture of citrus by-products using a modified supercritical carbon dioxide. Journal of Industrial and Engineering Chemistry 57:339–48. doi: 10.1016/j.jiec.2017.08.041.
  • Nieto Calvache, J., M. Cueto, A. Farroni, M. de Escalada Pla, and L. N. Gerschenson. 2016. Antioxidant characterization of new dietary fiber concentrates from papaya pulp and peel (Carica Papaya L.). Journal of Functional Foods 27:319–28. doi: 10.1016/j.jff.2016.09.012.
  • Nirmala Grace, A., and K. Pandian. 2007. Antibacterial efficacy of aminoglycosidic antibiotics protected gold nanoparticles—A brief study. Colloids and Surfaces A: Physicochemical and Engineering Aspects 297 (1–3):63–70. doi: 10.1016/j.colsurfa.2006.10.024.
  • Olakunle, O. O., J. B. Deborah, and O. J. Irene. 2019. Antifungal activity and phytochemical analysis of selected fruit peels. Journal of Biology and Medicine 3 (1):040–3. doi: 10.17352/jbm.000013.
  • Ovais, M., A. T. Khalil, N. U. Islam, I. Ahmad, M. Ayaz, M. Saravanan, Z. K. Shinwari, and S. Mukherjee. 2018. Role of plant phytochemicals and microbial enzymes in biosynthesis of metallic nanoparticles. Applied Microbiology and Biotechnology 102 (16):6799–814. doi: 10.1007/s00253-018-9146-7.
  • Ovando-Martínez, M., and G. A. González-Aguilar. 2020. Papaya. In Nutritional composition and antioxidant properties of fruits and vegetables, ed. K. B. T. Amit, 499–513. Jaiswal: Elsevier. doi: 10.1016/B978-0-12-812780-3.00031-3.
  • Ovando-Martinez, M., López-Teros, M. V. O. Tortoledo-Ortiz, H. Astiazarán-García, J. F. Ayala-Zavala, M. A. Villegas-Ochoa, and G. A. González-Aguilar. 2018. Effect of ripening on physico-chemical properties and bioactive compounds in papaya pulp skin and seeds. Indian Journal of Natural Products and Resources 9 (1):47–59. http://nopr.niscair.res.in/handle/123456789/44638.
  • Pacheco-Ordaz, R., M. Antunes-Ricardo, J. Gutiérrez-Uribe, and G. González-Aguilar. 2018. Intestinal permeability and cellular antioxidant activity of phenolic compounds from mango (Mangifera Indica Cv. Ataulfo) peels. International Journal of Molecular Sciences 19 (2):514. doi: 10.3390/ijms19020514.
  • Parniakov, O., E. Roselló-Soto, F. J. Barba, N. Grimi, N. Lebovka, and E. Vorobiev. 2015. New approaches for the effective valorization of papaya seeds: Extraction of proteins, phenolic compounds, carbohydrates, and isothiocyanates assisted by pulsed electric energy. Food Research International 77:711–7. doi: 10.1016/j.foodres.2015.03.031.
  • Passo Tsamo, C. V., M.-F. Herent, K. Tomekpe, T. Happi Emaga, J. Quetin-Leclercq, H. Rogez, Y. Larondelle, and C. Andre. 2015. Phenolic profiling in the pulp and peel of nine plantain cultivars (Musa Sp.). Food Chemistry 167:197–204. doi: 10.1016/j.foodchem.2014.06.095.
  • Patel, M., N. J. Siddiqi, P. Sharma, A. S. Alhomida, and H. A. Khan. 2019. Reproductive toxicity of pomegranate peel extract synthesized gold nanoparticles: A multigeneration study in C. Elegans. Journal of Nanomaterials 2019:1–7. doi: 10.1155/2019/8767943.
  • Pathak, P. D., S. A. Mandavgane, and B. D. Kulkarni. 2016. Characterizing fruit and vegetable peels as bioadsorbents. Current Science 110 (11):2114. doi: 10.18520/cs/v110/i11/2114-2123.
  • Pathak, P. D., S. A. Mandavgane, and B. D. Kulkarni. 2019. Waste to wealth: A case study of papaya peel. Waste and Biomass Valorization 10 (6):1755–66. doi: 10.1007/s12649-017-0181-x.
  • Phongtongpasuk, S., S. Poadang, and N. Yongvanich. 2016. Environmental-friendly method for synthesis of silver nanoparticles from dragon fruit peel extract and their antibacterial activities. Energy Procedia 89:239–47. doi: 10.1016/j.egypro.2016.05.031.
  • Pimprikar, P. S., S. S. Joshi, A. R. Kumar, S. S. Zinjarde, and S. K. Kulkarni. 2009. Influence of biomass and gold salt concentration on nanoparticle synthesis by the tropical marine yeast yarrowia Lipolytica NCIM 3589. Colloids and Surfaces. B, Biointerfaces 74 (1):309–16. doi: 10.1016/j.colsurfb.2009.07.040.
  • Polte, J., T. T. Ahner, F. Delissen, S. Sokolov, F. Emmerling, A. F. Thünemann, and R. Kraehnert. 2010. Mechanism of gold nanoparticle formation in the classical citrate synthesis method derived from coupled in situ XANES and SAXS evaluation. Journal of the American Chemical Society 132 (4):1296–301. doi: 10.1021/ja906506j.
  • Prathna, T. C., N. Chandrasekaran, A. M. Raichur, and A. Mukherjee. 2011. Biomimetic synthesis of silver nanoparticles by citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Colloids and Surfaces. B, Biointerfaces 82 (1):152–9. doi: 10.1016/j.colsurfb.2010.08.036.
  • Putnik, P., D. Bursać Kovačević, A. Režek Jambrak, F. Barba, G. Cravotto, A. Binello, J. Lorenzo, and A. Shpigelman. 2017. Innovative ‘green’ and novel strategies for the extraction of bioactive added value compounds from citrus wastes—A review. Molecules 22 (5):680. doi: 10.3390/molecules22050680.
  • Rajabi, H. R., R. Naghiha, M. Kheirizadeh, H. Sadatfaraji, A. Mirzaei, and Z. M. Alvand. 2017. Microwave assisted extraction as an efficient approach for biosynthesis of zinc oxide nanoparticles: synthesis, characterization, and biological properties. Materials Science & Engineering. C, Materials for Biological Applications 78:1109–18. doi: 10.1016/j.msec.2017.03.090.
  • Ranganath, K. G., K. S. Shivashankara, T. K. Roy, M. R. Dinesh, G. A. Geetha, K. C. Pavithra, and K. V. Ravishankar. 2018. Profiling of anthocyanins and carotenoids in fruit peel of different colored mango cultivars. Journal of Food Science and Technology 55 (11):4566–77. doi: 10.1007/s13197-018-3392-7.
  • Rebello, L. P. G., A. M. Ramos, P. B. Pertuzatti, M. T. Barcia, N. Castillo-Muñoz, and I. Hermosín-Gutiérrez. 2014. Flour of banana (Musa AAA) peel as a source of antioxidant phenolic compounds. Food Research International 55:397–403. doi: 10.1016/j.foodres.2013.11.039.
  • Rico, X., B. Gullón, J. L. Alonso, and R. Yáñez. 2020. Recovery of high value-added compounds from pineapple, melon, watermelon and pumpkin processing by-products: An overview. Food Research International (Ottawa, ON) 132:109086. doi: 10.1016/j.foodres.2020.109086.
  • Rivera-Pastrana, D. M., E. M. Yahia, and G. A. González-Aguilar. 2010. Phenolic and carotenoid profiles of papaya fruit (Carica Papaya L.) and their contents under low temperature storage. Journal of the Science of Food and Agriculture 90 (14):2358–65. doi: 10.1002/jsfa.4092.
  • Roopan, S. M., A. Bharathi, R. Kumar, V. G. Khanna, and A. Prabhakarn. 2012. Acaricidal, insecticidal, and larvicidal efficacy of aqueous extract of Annona Squamosa L peel as biomaterial for the reduction of palladium salts into nanoparticles. Colloids and Surfaces. B, Biointerfaces 92:209–12. doi: 10.1016/j.colsurfb.2011.11.044.
  • Roopan, S. M., A. Bharathi, A. Prabhakarn, A. Abdul Rahuman, K. Velayutham, G. Rajakumar, R. D. Padmaja, M. Lekshmi, and G. Madhumitha. 2012. Efficient phyto-synthesis and structural characterization of rutile TiO2 nanoparticles using annona squamosa peel extract. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 98:86–90. doi: 10.1016/j.saa.2012.08.055.
  • Ruddaraju, L. K., S. V. N. Pammi, G. s Guntuku, V. S. Padavala, and V. R. M. Kolapalli. 2020. A review on anti-bacterials to combat resistance: From ancient era of plants and metals to present and future perspectives of green nano technological combinations. Asian Journal of Pharmaceutical Sciences 15 (1):42–59. doi: 10.1016/j.ajps.2019.03.002.
  • Rudra, S., Gaur, J. Nishad, N. Jakhar, and C. Kaur. 2015. Food industry waste: Mine of nutraceuticals. International Journal of Science, Enviroment and Technology 4 (1):205–229.
  • Saeed, F., M. Umair Arshad, I. Pasha, R. Naz, R. Batool, A. A. Khan, M. A. Nasir, and B. Shafique. 2014. Nutritional and phyto-therapeutic potential of papaya (Carica Papaya Linn.): An overview. International Journal of Food Properties 17 (7):1637–53. doi: 10.1080/10942912.2012.709210.
  • Sancho, L. E. G.-G., E. M. Yahia, and G. A. González-Aguilar. 2013. Contribution of major hydrophilic and lipophilic antioxidants from papaya fruit to total antioxidant capacity. Food and Nutrition Sciences 4 (8):93–100. doi: 10.4236/fns.2013.48A012.
  • Santhoshkumar, T., A. Abdul Rahuman, G. Rajakumar, S. Marimuthu, A. Bagavan, C. Jayaseelan, A. A. Zahir, G. Elango, and C. Kamaraj. 2011. Synthesis of silver nanoparticles using nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitology Research 108 (3):693–702. doi: 10.1007/s00436-010-2115-4.
  • Segovia, M., C. Sotomayor, G. González, and E. Benavente. 2012. Zinc oxide nanostructures by solvothermal synthesis. Molecular Crystals and Liquid Crystals 555 (1):40–50. doi: 10.1080/15421406.2012.634363.
  • Sepúlveda, L., A. Romaní, C. N. Aguilar, and J. Teixeira. 2018. Valorization of pineapple waste for the extraction of bioactive compounds and glycosides using autohydrolysis. Innovative Food Science & Emerging Technologies 47:38–45. doi: 10.1016/j.ifset.2018.01.012.
  • Sharma, A., A. Bachheti, P. Sharma, R. Kumar Bachheti, and A. Husen. 2020. Phytochemistry, pharmacological activities, nanoparticle fabrication, commercial products and waste utilization of Carica Papaya L.: A comprehensive review. Current Research in Biotechnology 2:145–60. doi: 10.1016/j.crbiot.2020.11.001.
  • Sharma, K., N. Mahato, M. H. Cho, and Y. R. Lee. 2017. Converting citrus wastes into value-added products: Economic and environmently friendly approaches. Nutrition (Burbank, Los Angeles County, CA) 34:29–46. doi: 10.1016/j.nut.2016.09.006.
  • Sharmila, G., M. Farzana Fathima, S. Haries, S. Geetha, N. M. Kumar, and C. Muthukumaran. 2017. Green synthesis, characterization and antibacterial efficacy of palladium nanoparticles synthesized using filicium decipiens leaf extract. Journal of Molecular Structure 1138:35–40. doi: 10.1016/j.molstruc.2017.02.097.
  • Silva, L. M. R. d., E. A. T. d Figueiredo, N. M. P. S. Ricardo, I. G. P. Vieira, R. W. d Figueiredo, I. M. Brasil, and C. L. Gomes. 2014. Quantification of bioactive compounds in pulps and by-products of tropical fruits from Brazil. Food Chemistry 143:398–404. doi: 10.1016/j.foodchem.2013.08.001.
  • Singh, B., J. P. Singh, A. Kaur, and N. Singh. 2020. Phenolic composition, antioxidant potential and health benefits of citrus peel. Food Research International (Ottawa, ON) 132:109114. doi: 10.1016/j.foodres.2020.109114.
  • Someya, S., Y. Yoshiki, and K. Okubo. 2002. Antioxidant compounds from bananas (Musa Cavendish). Food Chemistry 79 (3):351–4. doi: 10.1016/S0308-8146(02)00186-3.
  • Soto, K. M., C. T. Quezada-Cervantes, M. Hernández-Iturriaga, G. Luna-Bárcenas, R. Vazquez-Duhalt, and S. Mendoza. 2019. Fruit peels waste for the green synthesis of silver nanoparticles with antimicrobial activity against foodborne pathogens. LWT 103:293–300. doi: 10.1016/j.lwt.2019.01.023.
  • Srivastava, S. K., R. Yamada, C. Ogino, and A. Kondo. 2013. Biogenic synthesis and characterization of gold nanoparticles by Escherichia Coli K12 and its heterogeneous catalysis in degradation of 4-nitrophenol. Nanoscale Research Letters 8 (1):70. doi: 10.1186/1556-276X-8-70.
  • Sulaiman, S. F., Yusoff, N. A. M. I. M. Eldeen, E. M. Seow, A. A. B. Sajak, Supriatno, and K. L. Ooi. 2011. Correlation between total phenolic and mineral contents with antioxidant activity of eight Malaysian bananas (Musa Sp.). Journal of Food Composition and Analysis 24 (1):1–10. doi: 10.1016/j.jfca.2010.04.005.
  • Swain, A. K. 2016. Review on green synthesis of silver nanoparticles by physical, chemical and biological methods. International Journal of Scientific & Engineering Research 7 (10):551–4. doi: 10.14299/ijser.2016.10.008.
  • Ting, A. S. Y., and J. E. Chin. 2020. Biogenic synthesis of iron nanoparticles from apple peel extracts for decolorization of malachite green dye. Water, Air, & Soil Pollution 231 (6):278. doi: 10.1007/s11270-020-04658-z.
  • Vaseem, M., A. Umar, and Y. Hahn. 2010. ZnO nanoparticles: Growth, properties, and applications. Metal oxide nanostructures and their applications, vol. 5, 1–36. American Scientific Publishers.
  • Venkateswarlu, S., Y. S. Rao, T. Balaji, B. Prathima, and N. V. V. Jyothi. 2013. Biogenic synthesis of Fe3O4 magnetic nanoparticles using plantain peel extract. Materials Letters 100:241–4. doi: 10.1016/j.matlet.2013.03.018.
  • Venkateswarlu, S., and M. Yoon. 2015. Rapid removal of cadmium ions using green-synthesized Fe 3 O 4 nanoparticles capped with diethyl-4-(4 Amino-5-Mercapto-4H-1,2,4-Triazol-3-Yl)phenyl phosphonate. RSC Advances 5 (80):65444–53. doi: 10.1039/C5RA10628A.
  • Vijaya Kumar, P., S. Mary Jelastin Kala, and K. S. Prakash. 2019. Green synthesis of gold nanoparticles using croton caudatus geisel leaf extract and their biological studies. Materials Letters 236:19–22. doi: 10.1016/j.matlet.2018.10.025.
  • Vishnupriya, B., G. R. Elakkiya Nandhini, and G. Anbarasi. 2022. Biosynthesis of zinc oxide nanoparticles using hylocereus undatus fruit peel extract against clinical pathogens. Materials Today: Proceedings 48:164–8. doi: 10.1016/j.matpr.2020.05.474.
  • Vuolo, M. M., G. C. Lima, Â. G. Batista, C. B. B. Carazin, D. E. Cintra, M. A. Prado, and M. R. M. Júnior. 2020. Passion fruit peel intake decreases inflammatory response and reverts lipid peroxidation and adiposity in diet-induced obese rats. Nutrition Research (New York, NY) 76:106–17. doi: 10.1016/j.nutres.2019.08.007.
  • Vu, H. T., C. J. Scarlett, and Q. V. Vuong. 2018. Phenolic compounds within banana peel and their potential uses: A review. Journal of Functional Foods 40:238–48. doi: 10.1016/j.jff.2017.11.006.
  • Vu, H. T., C. J. Scarlett, and Q. V. Vuong. 2019. Changes of phytochemicals and antioxidant capacity of banana peel during the ripening process; with and without ethylene treatment. Scientia Horticulturae 253:255–62. doi: 10.1016/j.scienta.2019.04.043.
  • Xin Lee, K., K. Shameli, M. Miyake, N. Kuwano, N. B. Bt Ahmad Khairudin, S. E. Bt Mohamad, and Y. P. Yew. 2016. Green synthesis of gold nanoparticles using aqueous extract of garcinia mangostana fruit peels. Journal of Nanomaterials 2016:1–7. doi: 10.1155/2016/8489094.
  • Yang, N., and W.-H. Li. 2013. Mango peel extract mediated novel route for synthesis of silver nanoparticles and antibacterial application of silver nanoparticles loaded onto non-woven fabrics. Industrial Crops and Products 48:81–8. doi: 10.1016/j.indcrop.2013.04.001.
  • Yang, B., F. Qi, J. Tan, T. Yu, and C. Qu. 2019. Study of green synthesis of ultrasmall gold nanoparticles using citrus sinensis peel. Applied Sciences 9 (12):2423. doi: 10.3390/app9122423.
  • Yang, N., L. WeiHong, and L. Hao. 2014. Biosynthesis of Au nanoparticles using agricultural waste mango peel extract and its in vitro cytotoxic effect on two normal cells. Materials Letters 134:67–70. doi: 10.1016/j.matlet.2014.07.025.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.