999
Views
9
CrossRef citations to date
0
Altmetric
Review Articles

Structural characteristics and immunomodulatory effects of sulfated polysaccharides derived from marine algae

, , ORCID Icon &

References

  • Agarwal, S., V. Singh, and K. Chauhan. 2022. Antidiabetic potential of seaweed and their bioactive compounds: A review of developments in last decade. Critical Reviews in Food Science and Nutrition:1–32. doi: 10.1080/10408398.2021.2024130.
  • Al-Ogaili, A. S., R. Liyanage, J. O. Lay, T. Jiang, C. N. Vuong, S. Agrawal, T. K. S. Kumar, L. R. Berghman, B. M. Hargis, and Y. M. Kwon. 2020. DNA aptamer-based rolling circle amplification product as a novel immunological adjuvant. Scientific Reports 10 (1):22282. doi: 10.1038/s41598-020-79420-w.
  • Amin, H. Z., N. Sasaki, T. Yamashita, T. Mizoguchi, T. Hayashi, T. Emoto, T. Matsumoto, N. Yoshida, T. Tabata, S. Horibe, et al. 2019. CTLA-4 protects against angiotensin ii-induced abdominal aortic aneurysm formation in mice. Scientific Reports 9 (1):8065. doi: 10.1038/s41598-019-44523-6.
  • Andrew, M., and G. Jayaraman. 2021. Marine sulfated polysaccharides as potential antiviral drug candidates to treat Corona Virus disease (COVID-19). Carbohydrate Research 505:108326. doi: 10.1016/j.carres.2021.108326.
  • Arokiarajan, M. S., R. Thirunavukkarasu, J. Joseph, O. Ekaterina, and W. Aruni. 2022. Advance research in biomedical applications on marine sulfated polysaccharide. International Journal of Biological Macromolecules 194:870–81. doi: 10.1016/j.ijbiomac.2021.11.142.
  • Bhardwaj, M., S. Mani, R. Malarvizhi, V. K. Sali, and H. R. Vasanthi. 2021. Immunomodulatory activity of brown algae Turbinaria ornata derived sulfated polysaccharide on LPS induced systemic inflammation. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 89:153615 doi: 10.1016/j.phymed.2021.153615.
  • Borazjani, N. J., M. Tabarsa, S. G. You, and M. Rezaei. 2018. Purification, molecular properties, structural characterization, and immunomodulatory activities of water soluble polysaccharides from Sargassum angustifolium. Int J Biol Macromol 109:793–802. doi: 10.1016/j.ijbiomac.2017.11.059.
  • Chaiklahan, R., T. Srinorasing, N. Chirasuwan, M. Tamtin, and B. Bunnag. 2020. The potential of polysaccharide extracts from Caulerpa lentillifera waste. International Journal of Biological Macromolecules 161:1021–8. doi: 10.1016/j.ijbiomac.2020.06.104.
  • Chen, X. M., W. J. Nie, S. R. Fan, J. F. Zhang, Y. X. Wang, J. X. Lu, and L. Q. Jin. 2012. A polysaccharide from Sargassum fusiforme protects against immunosuppression in cyclophosphamide-treated mice. Carbohydrate Polymers 90 (2):1114–9. doi: 10.1016/j.carbpol.2012.06.052.
  • Chen, Y. Y., and Y. T. Xue. 2019. Optimization of microwave assisted extraction, chemical characterization and antitumor activities of polysaccharides from porphyra haitanensis. Carbohydrate Polymers 206:179–86. doi: 10.1016/j.carbpol.2018.10.093.
  • Chen, X. M., G. Q. Yu, S. R. Fan, M. M. Bian, H. J. Ma, J. X. Lu, and L. Q. Jin. 2014. Sargassum fusiforme polysaccharide activates nuclear factor kappa-B (NF-κB) and induces cytokine production via Toll-like receptors. Carbohydrate Polymers 105:113–20. doi: 10.1016/j.carbpol.2014.01.056.
  • Cho, M. L., C. Yang, S. M. Kim, and S. G. You. 2010. Molecular characterization and biological activities of water-soluble sulfated polysaccharides from Enteromorpha Prolifera. Food Science and Biotechnology 19 (2):525–33. doi: 10.1007/s10068-010-0073-3.
  • Conquy, M. A., D. S. Algara, J. M. Cavaillon, and F. S. F. Guimaraes. 2014. TLR-mediated activation of NK cells and their role in bacterial/viral immune responses in mammals. Immunology and Cell Biology 92 (3):256–62. doi: 10.1038/icb.2013.99.
  • Cui, Y. X., X. Liu, S. F. Li, L. M. Hao, J. Du, D. H. Gao, Q. Z. Kang, and J. K. Lu. 2018. Extraction, characterization and biological activity of sulfated polysaccharides from seaweed Dictyopteris divaricata. International Journal of Biological Macromolecules 117:256–63. doi: 10.1016/j.ijbiomac.2018.05.134.
  • Elebo, N., P. N. F. Fru, J. A. O. O. Jones, G. Candy, and E. Nweke. 2020. Role of different immune cells and metabolic pathways in modulating the immune response in pancreatic cancer (Review). Molecular Medicine Reports 22 (6):4981–91. doi: 10.3892/mmr.2020.11622.
  • Fan, Q., Q. L. Ma, J. Y. Bai, J. L. Xu, Z. Y. Fei, Z. L. Dong, A. Maruyama, K. W. Leong, Z. Liu, and C. Wang. 2020. An implantable blood clot-based immune niche for enhanced cancer vaccination. Science Advances 6 (39):eabb4639. doi: 10.1126/sciadv.abb4639.
  • Fang, Q., J. F. Wang, X. Q. Zha, S. H. Cui, L. C. Jian, and P. Luo. 2015. Immunomodulatory activity on macrophage of a purified polysaccharide extracted from Laminaria japonica. Carbohydrate Polymers 134:66–73. doi: 10.1016/j.carbpol.2015.07.070.
  • Feng, Y. Y., H. Y. Ji, X. D. Dong, and A. J. Liu. 2019a. An alcohol-soluble polysaccharide from Atractylodes macrocephala Koidz induces apoptosis of Eca-109 cells. Carbohydrate Polymers 226:115136 doi: 10.1016/j.carbpol.2019.115136.
  • Feng, Y. Y., H. Y. Ji, X. D. Dong, J. Yu, and A. J. Liu. 2019b. Polysaccharide extracted from Atractylodes macrocephala Koidz (PAMK) induce apoptosis in transplanted H22 cells in mice. International Journal of Biological Macromolecules 137:604–11. doi: 10.1016/j.ijbiomac.2019.06.059.
  • Figueroa, L. A., L. B. Navarro, M. P. Vera, and V. L. Petricevich. 2015. Preliminary studies of the immunomodulator effect of the Bougainvillea xbuttiana extract in a mouse model. Evidence-Based Complementary and Alternative Medicine: eCAM 2015:479412. doi: 10.1155/2015/479412.
  • Frentsch, M., R. Stark, N. Matzmohr, S. Meier, S. Durlanik, A. R. Schulz, U. Stervbo, K. Jürchott, F. Gebhardt, G. Heine, et al. 2013. CD40L expression permits CD8+ T cells to execute immunologic helper functions. Blood 122 (3):405–12. doi: 10.1182/blood-2013-02-483586.
  • Fu, X., C. L. Cao, B. B. Ren, B. Zhang, Q. Huang, and C. Li. 2018. Structural characterization and in vitro fermentation of a novel polysaccharide from Sargassum thunbergii and its impact on gut microbiota. Carbohydrate Polymers 183:230–9. doi: 10.1016/j.carbpol.2017.12.048.
  • Gao, X., H. Qu, Z. L. Gao, D. Y. Zeng, J. P. Wang, D. Baranenko, Y. Z. Li, and W. H. Lu. 2019. Protective effects of Ulva pertusa polysaccharide and polysaccharide‑iron (III) complex on cyclophosphamide induced immunosuppression in mice. International Journal of Biological Macromolecules 133:911–9. doi: 10.1016/j.ijbiomac.2019.04.101.
  • Gao, X., H. Qu, S. Shan, C. Song, D. Baranenko, Y. Li, and W. Lu. 2020. A novel polysaccharide isolated from Ulva Pertusa: Structure and physicochemical property. Carbohydrate Polymers 233:115849. doi: 10.1016/j.carbpol.2020.115849.
  • Geng, L. H., W. C. Hu, Y. J. Liu, J. Wang, and Q. B. Zhang. 2018. A heteropolysaccharide from Saccharina japonica with immunomodulatory effect on RAW 264.7 cells. Carbohydrate Polymers 201:557–65. doi: 10.1016/j.carbpol.2018.08.096.
  • Gong, Y. F., Y. X. Ma, P. C. K. Cheung, L. J. You, L. Liao, S. PedisíC, and V. Kulikouskaya. 2021. Structural characteristics and anti-inflammatory activity of UV/H2O2-treated algal sulfated polysaccharide from Gracilaria lemaneiformis. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 152:112157 doi: 10.1016/j.fct.2021.112157.
  • Gordon, S., and F. O. Martinez. 2010. Alternative activation of macrophages: Mechanism and functions. Immunity 32 (5):593–604. doi: 10.1016/j.immuni.2010.05.007.
  • Han, R., Y. X. Ma, J. B. Xiao, L. J. You, S. PedisíC, and L. Liao. 2021a. The possible mechanism of the protective effect of a sulfated polysaccharide from Gracilaria Lemaneiformis against colitis induced by dextran sulfate sodium in mice. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 149:112001 doi: 10.1016/j.fct.2021.112001.
  • Hans, N., A. Malik, and S. Naik. 2021. Antiviral activity of sulfated polysaccharides from marine algae and its application in combating COVID-19: Mini review. Bioresource Technology Reports 13:100623. doi: 10.1016/j.biteb.2020.100623.
  • Han, Y., Y. L. Wu, G. Q. Li, M. Y. Li, R. Yan, Z. L. Xu, H. T. Lei, Y. M. Sun, X. W. Duan, L. M. Hu, et al. 2021b. Structural characterization and transcript-metabolite correlation network of immunostimulatory effects of sulfated polysaccharides from green alga Ulva pertusa. Food Chemistry 342:128537. doi: 10.1016/j.foodchem.2020.128537.
  • Hao, H. L., Y. Han, L. H. Yang, L. M. Hu, X. W. Duan, X. Yang, and R. M. Huang. 2019. Structural characterization and immunostimulatory activity of a novel polysaccharide from green alga Caulerpa racemosa var peltata. International Journal of Biological Macromolecules 134:891–900. doi: 10.1016/j.ijbiomac.2019.04.101
  • Harizi, H. 2013. Reciprocal crosstalk between dendritic cells and natural killer cells under the effects of PGE2 in immunity and immunopathology. Cellular & Molecular Immunology 10 (3):213–21. doi: 10.1038/cmi.2013.1.
  • Hayashi, K., J. B. Lee, T. Nakano, and T. Hayashi. 2013. Anti-influenza A virus characteristics of a fucoidan from sporophyll of Undaria pinnatifida in mice with normal and compromised immunity. Microbes and Infection 15 (4):302–9. doi: 10.1016/j.micinf.2012.12.004.
  • He, A., L. J. Ma, Y. J. Huang, H. J. Zhang, W. Duan, Z. X. Li, T. Fei, J. Q. Yuan, H. Wu, L. G. Liu, et al. 2020. CDKL3 promotes osteosarcoma progression by activating Akt/PKB. Life Science Alliance 3 (5):e202000648. doi: 10.26508/lsa.202000648.
  • Hirata, E., and E. Kiyokawa. 2019. ERK activity imaging during migration of living cells in vitro and in vivo. International Journal of Molecular Sciences 20 (3):679. doi: 10.3390/ijms20030679.
  • Huang, L. X., M. Y. Shen, G. A. Morris, and J. H. Xie. 2019. Sulfated polysaccharides: Immunomodulation and signaling mechanisms. Trends in Food Science & Technology 92:1–11. doi: 10.1016/j.tifs.2019.08.008.
  • Kang, J., X. Jia, N. F. Wang, M. Xiao, S. Song, S. F. Wu, Z. J. Li, S. J. Wang, S. W. Cui, and Q. B. Guo. 2022. Insights into the structure-bioactivity relationships of marine sulfated polysaccharides: A review. Food Hydrocolloids. 123:107049. doi: 10.1016/j.foodhyd.2021.107049.
  • Karkossa, I., S. Raps, M. V. Bergen, and K. Schubert. 2020. Systematic review of multi-omics approaches to investigate toxicological effects in macrophages. International Journal of Molecular Sciences 21 (24):9371. doi: 10.3390/ijms21249371.
  • Karnjanapratum, S., and S. G. You. 2011. Molecular characteristics of sulfated polysaccharides from Monostroma nitidum and their in vitro anticancer and immunomodulatory activities. International Journal of Biological Macromolecules 48 (2):311–8. doi: 10.1016/j.ijbiomac.2010.12.002.
  • Ke, H. Z., S. Lee, J. Kim, H. C. Liu, and D. Yoo. 2019. Interaction of PIAS1 with PRRS virus nucleocapsid protein mediates NF-κB activation and triggers proinflammatory mediators during viral infection. Scientific Reports 9 (1):11042 doi: 10.1038/s41598-019-47495-9.
  • Khongthong, S., Y. Theapparat, N. Roekngam, C. Tantisuwanno, M. Otto, and P. Piewngam. 2021. Characterization and immunomodulatory activity of sulfated galactan from the red seaweed Gracilaria fisheri. International Journal of Biological Macromolecules 189:705–14. doi: 10.1016/j.ijbiomac.2021.08.182.
  • Lee, J. S., and E. K. Hong. 2011. Immunostimulating activity of the polysaccharides isolated from Cordyceps militaris. International Immunopharmacology 11 (9):1226–33. doi: 10.1016/j.intimp.2011.04.001.
  • Lee, H., H. S. Kim, J. M. Lee, K. H. Park, A. R. Choi, J. H. Yoon, H. Ryu, and E. J. Oh. 2019. Natural killer cell function tests by Flowcytometry-based cytotoxicity and IFN-γ production for the diagnosis of adult hemophagocytic lymphohistiocytosis. International Journal of Molecular Sciences 20:5413. doi: 10.3390/ijms20215413.
  • Li, X. Y., H. R. Chen, X. Q. Zha, S. Chen, L. H. Pan, Q. M. Li, and J. P. Luo. 2020b. Prevention and possible mechanism of a purified Laminaria japonica polysaccharide on adriamycin-induced acute kidney injury in mice. International Journal of Biological Macromolecules 148:591–600. doi: 10.1016/j.ijbiomac.2020.01.159.
  • Li, Y. X., S. L. Jiang, Y. X. Hao, S. P. Zhang, Y. S. Cui, Z. Fu, C. L. Xue, C. X. Dong, Z. Yao, and J. Du. 2021b. Galactofucoidans from Sargassum fusiforme and their antagonistic effects against the proliferation-inhibition of RAW264.7 macrophage induced by culture supernatants of melanoma cells. Carbohydrate Polymer Technologies and Applications 2:100090. doi: 10.1016/j.carpta.2021.100090.
  • Li, M., J. Liu, Y. Bi, J. X. Chen, and L. Zhao. 2018a. Potential medications or compounds acting on toll-like receptors in cerebral ischemia. Current Neuropharmacology 16 (2):160–75. doi: 10.2174/1570159X15666170601125139.
  • Li, X. L., R. Liu, X. Su, Y. S. Pan, X. F. Han, C. S. Shao, and Y. F. Shi. 2019. Harnessing tumor-associated macrophages as aids for cancer immunotherapy. Molecular Cancer 18 (1):177 doi: 10.1186/s12943-019-1102-3.
  • Li, Q. M., H. Teng, X. Q. Zha, L. H. Pan, and J. P. Luo. 2018b. Sulfated Laminaria japonica polysaccharides inhibit macrophage foam cell formation. International Journal of Biological Macromolecules 111:857–61. doi: 10.1016/j.ijbiomac.2018.01.103.
  • Liu, X., J. J. Hao, X. X. He, S. Y. Wang, S. J. Cao, L. Qin, and W. J. Mao. 2017b. A rhamnan-type sulfated polysaccharide with novel structure from Monostroma angicava Kjellm (Chlorophyta) and its bioactivity. Carbohydrate Polymers 173:732–48. doi: 10.1016/j.carbpol.2017.06.031.
  • Liu, Q. M., S. S. Xu, L. Li, T. M. Pan, C. L. Shi, H. Liu, M. J. Cao, W. J. Su, and G. M. Liu. 2017a. In vitro and in vivo immunomodulatory activity of sulfated polysaccharide from Porphyra haitanensis. Carbohydrate Polymers 165:189–96. doi: 10.1016/j.carbpol.2017.02.032.
  • Li, N. Y., C. F. Wang, M. I. Georgiev, V. K. Bajpai, R. Tundis, J. S. Gandara, X. M. Lu, J. B. Xiao, X. Z. Tang, and X. G. Qiao. 2021a. Advances in dietary polysaccharides as anticancer agents: Structure-activity relationship. Trends in Food Science & Technology 111:360–77. doi: 10.1016/j.tifs.2021.03.008.
  • Li, X. P., J. Wang, H. Zhang, and Q. B. Zhang. 2017. Renoprotective effect of low-molecular-weight sulfated polysaccharide from the seaweed Laminaria japonica on glycerol-induced acute kidney injury in rats. International Journal of Biological Macromolecules 95:132–7. doi: 10.1016/j.ijbiomac.2016.11.051.
  • Li, B. X., H. T. Xu, X. Q. Wang, Y. Z. Wan, N. F. Jiang, H. M. Qia, and X. X. Liu. 2020a. Antioxidant and antihyperlipidemic activities of high sulfate content purified polysaccharide from Ulva pertusa. International Journal of Biological Macromolecules 146:756–62. doi: 10.1016/j.ijbiomac.2019.11.061.
  • Meng, J. J., Y. Cao, Y. M. Meng, H. Luo, X. H. Gao, and F. P. Shan. 2014. Maturation of mouse bone marrow dendritic cells (BMDCs) induced by Laminaria japonica polysaccharides (LJP). International Journal of Biological Macromolecules 69:388–92. doi: 10.1016/j.ijbiomac.2014.05.018.
  • Ngo, D. H., and S. K. Kim. 2013. Sulfated polysaccharides as bioactive agents from marine algae. International Journal of Biological Macromolecules 62:70–5. doi: 10.1016/j.ijbiomac.2013.08.036.
  • Otero, P., M. Carpena, P. Garcia-Oliveira, J. Echave, A. Soria-Lopez, P. Garcia-Perez, M. Fraga-Corral, H. Cao, S. P. Nie, J. B. Xiao, et al. 2021. Seaweed polysaccharides: Emerging extraction technologies, chemical modifications and bioactive properties. Critical Reviews in Food Science and Nutrition:1–29. doi: 10.1080/10408398.2021.1969534.
  • Padisar, P.,. R. Hashemi, M. Naseh, B. A. Nikfarjam, and M. Mohammadi. 2018. Assessment of tumor necrosis factor alpha (TNF-α) and interleukin 6 level in gingival crevicular fluid during orthodontic tooth movement: A randomized split-mouth clinical trial. Electronic Physician 10 (8):7146–54. doi: 10.19082/7146.
  • Peasura, N., N. Laohakunjit, O. Kerdchoechuen, P. Vongsawasdi, and L. K. P. Chao. 2016. Assessment of biochemical and immunomodulatory activity of sulphated polysaccharides from Ulva intestinalis. International Journal of Biological Macromolecules 91:269–77. doi: 10.1016/j.ijbiomac.2016.05.062.
  • Qi, J., and S. M. Kim. 2017a. Characterization and immunomodulatory activities of polysaccharides extracted from green alga Chlorella ellipsoidea. International Journal of Biological Macromolecules 95:106–14. doi: 10.1016/j.ijbiomac.2016.11.039.
  • Qi, J., and S. M. Kim. 2017b. Effects of the molecular weight and protein and sulfate content of Chlorella ellipsoidea polysaccharides on their immunomodulatory activity. International Journal of Biological Macromolecules 107 (Pt A):70–7. doi: 10.1016/j.ijbiomac.2017.08.144.
  • Qin, L., J. Cao, K. Shao, F. Tong, Z. H. Yang, T. Lei, Y. Z. Wang, C. Hu, C. S. Umeshappa, H. L. Gao, et al. 2020. A tumor-to-lymph procedure navigated versatile gel system for combinatorial therapy against tumor recurrence and metastasis. Science Advances 6 (36):eabb3116. doi: 10.1126/sciadv.abb3116.
  • Ren, Y. L., G. Q. Zheng, L. J. You, L. R. Wen, C. Li, X. Fu, and L. Zhou. 2017. Structural characterization and macrophage immunomodulatory activity of a polysaccharide isolated from Gracilaria lemaneiformis. Journal of Functional Foods 33:286–96. doi: 10.1016/j.jff.2017.03.062.
  • Rodriguez, A. L. R., M. A. Reuter, and D. Mcdonald. 2016. Dendritic cells enhance HIV infection of memory CD4(+) T cells in human lymphoid tissues. AIDS Research and Human Retroviruses 32 (2):203–10. doi: 10.1089/aid.2015.0235.
  • Shi, C. L., T. Pan, M. J. Cao, Q. M. Liu, L. J. Zhang, and G. M. Liu. 2015. Suppression of Th2 immune responses by the sulfated polysaccharide from Porphyra haitanensis in tropomyosin-sensitized mice. International Immunopharmacology 24 (2):211–8. doi: 10.1016/j.intimp.2014.11.019.
  • Silva, F. R. P. d., M. e S. C. Pinto, L. F. d C. França, E. H. P. Alves, J. d S. Carvalho, D. D. Lenardo, T. V. Brito, J.-V R. Medeiros, J. S. d Oliveira, A. L. P. Freitas, et al. 2019. Sulfated polysaccharides from the marine algae Gracilaria caudata prevent tissue damage caused by ligature-induced periodontitis. International Journal of Biological Macromolecules 132:1–8. doi: 10.1016/j.ijbiomac.2019.03.194.
  • Singh, R. P., R. Bhaiyya, K. Khandare, and J. M. R. Tingirikari. 2022. Macroalgal dietary glycans: Potential source for human gut bacteria and enhancing immune system for better health. Critical Reviews in Food Science and Nutrition 62 (6):1674–95. doi: 10.1080/10408398.2020.1845605.
  • Song, K. M., S. J. Ha, J. E. Lee, S. H. Kim, Y. H. Kim, Y. Kim, S. P. Hong, S. K. Jung, and N. H. Lee. 2015. High yield ultrasonication extraction method for Undaria pinnatifida sporophyll and its anti-inflammatory properties associated with AP-1 pathway suppression. LWT - Food Science and Technology 64 (2):1315–22. doi: 10.1016/j.lwt.2015.07.055.
  • Sun, Y. J., Z. Q. Liu, S. Song, B. W. Zhu, L. L. Zhao, J. J. Jiang, N. Liu, J. Wang, and X. F. Chen. 2020. Anti-inflammatory activity and structural identification of a sulfated polysaccharide CLGP4 from Caulerpa lentillifera. International Journal of Biological Macromolecules 146:931–8. doi: 10.1016/j.ijbiomac.2019.09.216.
  • Sun, L. Q., L. Wang, and Y. Zhou. 2012. Immunomodulation and antitumor activities of different-molecular-weight polysaccharides from Porphyridium cruentum. Carbohydrate Polymers 87 (2):1206–10. doi: 10.1016/j.carbpol.2011.08.097.
  • Tabarsa, M., E. H. Dabaghian, S. You, K. Yelithao, RAn Cao, M. Rezaei, M. Alboofetileh, and S. Bita. 2020. The activation of NF-κB and MAPKs signaling pathways of RAW264.7 murine macrophages and natural killer cells by fucoidan from Nizamuddinia zanardinii. International Journal of Biological Macromolecules 148:56–67. doi: 10.1016/j.ijbiomac.2020.01.125.
  • Tabarsa, M., J. H. Han, C. Y. Kim, and S. G. You. 2012. Molecular characteristics and immunomodulatory activities of water-soluble sulfated polysaccharides from Ulva pertusa. Journal of Medicinal Food 15 (2):135–44. doi: 10.1089/jmf.2011.1716.
  • Tabarsa, M., S. G. You, E. H. Dabaghian, and U. Surayot. 2018. Water-soluble polysaccharides from Ulva intestinalis: Molecular properties, structural elucidation and immunomodulatory activities. Journal of Food and Drug Analysis 26 (2):599–608. doi: 10.1016/j.jfda.2017.07.016.
  • Tang, Y. P., G. S. Zhou, L. J. Yao, P. Xue, D. H. Yu, R. J. Xu, W. Shi, X. Yao, Z. W. Yan, and J. A. Duan. 2017. Protective effect of Ginkgo biloba leaves extract, EGb761, on myocardium injury in ischemia reperfusion rats via regulation of TLR-4/NF-κB signaling pathway. Oncotarget 8 (49):86671–80. doi: 10.18632/oncotarget.21372.
  • Tian, H., H. F. Liu, W. K. Song, L. Zhu, T. T. Zhang, R. G. Li, and X. Q. Yin. 2020. Structure, antioxidant and immunostimulatory activities of the polysaccharides from Sargassum carpophyllum. Algal Research 49:101853. doi: 10.1016/j.algal.2020.101853.
  • Usoltseva, R. V., N. M. Shevchenko, O. S. Malyarenko, S. D. Anastyuk, A. E. Kasprik, N. V. Zvyagintsev, and S. P. Ermakova. 2019. Fucoidans from brown algae Laminaria longipes and Saccharina cichorioides: Structural characteristics, anticancer and radiosensitizing activity in vitro. Carbohydrate Polymers 221:157–65. doi: 10.1016/j.carbpol.2019.05.079.
  • Wan, X. Z., X. Q. Li, D. Liu, X. X. Gao, Y. H. Chen, Z. X. Chen, C. L. Fu, L. Lin, B. Liu, and C. Zhao. 2021. Physicochemical characterization and antioxidant effects of green microalga Chlorella pyrenoidosa polysaccharide by regulation of microRNAs and gut microbiota in Caenorhabditis elegans. International Journal of Biological Macromolecules 168:152–62. doi: 10.1016/j.ijbiomac.2020.12.010.
  • Wang, W. J., Z. H. Deng, H. Y. Wu, Q. Zhao, T. T. Li, W. C. Zhu, X. J. Wang, L. H. Tang, C. S. Wang, S. Z. Cui, et al. 2019. A small secreted protein triggers a TLR2/4-dependent inflammatory response during invasive Candida albicans infection. Nature Communications 10 (1):1015 doi: 10.1038/s41467-019-08950-3.
  • Wassie, T., X. Y. Duan, C. Y. Xie, R. X. Wang, and X. Wu. 2022. Dietary Enteromorpha polysaccharide-Zn supplementation regulates amino acid and fatty acid metabolism by improving the antioxidant activity in chicken. Journal of Animal Science and Biotechnology 13:18. doi: 10.1186/s40104-021-00648-1.
  • Wassie, T., Z. Lu, X. Y. Duan, C. Y. Xie, K. Gebeyew, Y. M. Zhang, Y. L. Yin, and X. Wu. 2021a. Dietary Enteromorpha polysaccharide enhances intestinal immune response and barrier function of broiler chickens via modulating gut microbiota. Frontiers in Nutrition 8:783819. doi: 10.3389/fnut.2021.783819.
  • Wassie, T., K. M. Niu, C. Y. Xie, H. H. Wang, and W. Xin. 2021b. Extraction techniques, biological activities and health benefits of marine algae enteromorpha prolifera polysaccharide. Frontiers in Nutrition 8:747928. doi: 10.3389/fnut.2021.747928.
  • Wei, J. T., S. X. Wang, G. Liu, D. Pei, Y. F. Liu, Y. Liu, and D. L. Di. 2014. Polysaccharides from Enteromorpha prolifera enhance the immunity of normal mice. International Journal of Biological Macromolecules 64:1–5. doi: 10.1016/j.ijbiomac.2013.11.013.
  • Xia, X. W., H. L. Hao, X. Y. Zhang, I. N. Wong, S. K. Chung, Z. X. Chen, B. J. Xu, and R. M. Huang. 2021. Immunomodulatory sulfated polysaccharides from Caulerpa racemosa var. peltata induces metabolic shifts in NF-κB signaling pathway in RAW 264.7 macrophages. International Journal of Biological Macromolecules 182:321–32. doi: 10.1016/j.ijbiomac.2021.04.025.
  • Xie, C. Y., Y. M. Zhang, K. M. Niu, X. X. Liang, H. H. Wang, J. W. Shan, and X. Wu. 2021. Enteromorpha polysaccharidezinc replacing prophylactic antibiotics contributes to improving gut health of weaned piglets. Animal Nutrition 7 (3):641–9. doi: 10.1016/j.aninu.2021.01.008.
  • Yang, T., C. Li, W. T. Xue, L. J. Huang, and Z. F. Wang. 2021. Natural immunomodulating substances used for alleviating food allergy. Critical Reviews in Food Science and Nutrition:1 doi: 10.1080/10408398.2021.19.75257.
  • Yuan, Q. X., H. Li, Z. Y. Wei, K. L. Lv, C. H. Gao, Y. H. Liu, and L. Y. Zhao. 2020. Isolation, structures and biological activities of polysaccharides from Chlorella: A review. International Journal of Biological Macromolecules 163:2199–209. doi: 10.1016/j.ijbiomac.2020.09.080.
  • Yu, Y.,. Y. P. Li, C. Y. Du, H. J. Mou, and P. Wang. 2017. Compositional and structural characteristics of sulfated polysaccharide from Enteromorpha prolifera. Carbohydrate Polymers 165:221–8. doi: 10.1016/j.carbpol.2017.02.011.
  • Yu, Y. T., X. B. Ma, R. F. Gong, J. M. Zhu, L. H. Wei, and J. G. Yao. 2018. Recent advances in CD8+ regulatory T cell research. Oncology Letters 15 (6):8187–94. doi: 10.3892/ol.2018.8378.
  • Yu, Y. Y., Y. J. Zhang, C. B. Hu, X. Y. Zou, Y. Lin, Y. Y. Xia, and L. J. You. 2019. Chemistry and immunostimulatory activity of a polysaccharide from Undaria pinnatifida. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 128:119–28. doi: 10.1016/j.fct.2019.03.042.
  • Zha, X. Q., C. Q. Lu, S. H. Cui, L. H. Pan, H. L. Zhang, J. H. Wang, and J. P. Luo. 2015a. Structural identification and immunostimulating activity of a Laminaria japonica polysaccharide. International Journal of Biological Macromolecules 78:429–38. doi: 10.1016/j.ijbiomac.2015.04.047.
  • Zhang, W., E.-K. An, H.-B. Park, J. Hwang, Y. Dhananjay, S.-J. Kim, H.-Y. Eom, T. Oda, M. Kwak, P. C.-W. Lee, et al. 2021a. Ecklonia cava fucoidan has potential to stimulate natural killer cells in vivo. International Journal of Biological Macromolecules 185:111–21. doi: 10.1016/j.ijbiomac.2021.06.045.
  • Zhang, X., J. J. Aweya, Z. X. Huang, Z. Y. Kang, Z. H. Bai, K. H. Li, X. T. He, Y. Liu, X. Q. Chen, and K. L. Cheong. 2020b. In vitro fermentation of Gracilaria lemaneiformis sulfated polysaccharides and its agaro-oligosaccharides by human fecal inocula and its impact on microbiota. Carbohydrate Polymers 234:115894 doi: 10.1016/j.carbpol.2020.115894.
  • Zhang, Y. M., X. Y. Duan, T. Wassie, H. H. Wang, T. J. Li, C. Y. Xie, and X. Wu. 2022. Enteromorpha prolifera polysaccharide-zinc complex modulates the immune response and alleviates LPS-induced intestinal inflammation via inhibiting the TLR4/NF-κB signaling pathway. Food & Function 13 (1):52–63. doi: 10.1039/D1FO02171K.
  • Zhang, X. M., Z. H. Wei, and C. H. Xue. 2021b. Physicochemical properties of fucoidan and its applications as building blocks of nutraceutical delivery systems. Critical Reviews in Food Science and Nutrition:1 doi: 10.1080/10408398.2021.19.37042.
  • Zhang, M. J., M. H. Zhao, Y. D. Qing, Y. Y. Luo, G. H. Xia, and Y. C. Li. 2020a. Study on immunostimulatory activity and extraction process optimization of polysaccharides from Caulerpa lentillifera. International Journal of Biological Macromolecules 143:677–84. doi: 10.1016/j.ijbiomac.2019.10.042.
  • Zhao, T. T., Q. B. Zhang, H. M. Qi, X. G. Liu, and Z. E. Li. 2008. Extension of life span and improvement of vitality of Drosophila melanogaster by long-term supplementation with different molecular weight polysaccharides from Porphyra haitanensis. Pharmacological Research 57 (1):67–72. doi: 10.1016/j.phrs.2007.12.001.
  • Zha, X. Q., L. Xue, H. L. Zhang, M. N. Asghar, L. H. Pan, J. Liu, and J. P. Luo. 2015b. Molecular mechanism of a new Laminaria japonica polysaccharide on the suppression of macrophage foam cell formation via regulating cellular lipid metabolism and suppressing cellular inflammation. Molecular Nutrition & Food Research 59 (10):2008–21. doi: 10.1002/mnfr.201500113.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.