1,284
Views
9
CrossRef citations to date
0
Altmetric
Review Articles

Valorization of by-products from Prunus genus fruit processing: Opportunities and applications

ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, & ORCID Icon show all

References

  • Ahmadi, F., N. Aghajani, and A. G. Ardabili. Forthcoming. Response surface optimization of cupcake physicochemical and sensory attributes during storage period: Effect of apricot kernel flour addition. Food Science and Nutrition.
  • Ali, A., S. Ali, L. Yu, H. Liu, S. Khalid, A. Hussain, M. M. N. Qayum, and C. Ying. 2019. Preparation and characterization of starch-based composite films reinforced by apricot and walnut shells. Journal of Applied Polymer Science 136 (38):47978. doi: 10.1002/app.47978.
  • Amin, M., A. Gurmani, F. Ali, S. Khan, A. Farid, M. Shakur, and W. Khan. 2022. Investigation of multi-pesticide residues in Prunus persica L. (peach) cultivars of district Swat using gas chromatography-mass spectroscopy. Polish Journal of Environmental Studies 31 (2):1–8. doi: 10.15244/pjoes/141808.
  • Amiran, F., A. Shafaghat, and M. Shafaghatlonbar. 2015. Omega-6 content, antioxidant and antimicrobial activities of hexanic extract from Prunus armeniaca L. kernel from North-West Iran. National Academy Science Letters 38 (2):107–11. doi: 10.1007/s40009-014-0284-x.
  • Aronson, J. K. 2016. Amygdalin. In Meyler’s Side Effects of Drugs, 359. Amsterdam: Elsevier. Accessed February 02, 2022. doi:10.1016/B978-0-444-53717-1.00014-7
  • Ayar, A., H. Siçramaz, S. Öztürk, and S. Öztürk Yilmaz. 2018. Probiotic properties of ice creams produced with dietary fibres from by-products of the food industry. International Journal of Dairy Technology 71 (1):174–82. doi: 10.1111/1471-0307.12387.
  • Balandrán-Quintana, R. R. 2018. Recovery of proteins from cereal processing by-products. In Sustainable Recovery and Reutilization of Cereal Processing By-Products, ed. C. M. Galanakis, 125–57. Duxford, UK: Woodhead Publishing.
  • Basanta, M. F., S. A. Rizzo, N. Szerman, S. R. Vaudagna, A. M. Descalzo, L. N. Gerschenson, C. D. Pérez, and A. M. Rojas. 2018. Plum (Prunus salicina) peel and pulp microparticles as natural antioxidant additives in breast chicken patties. Food Research International (Ottawa, Ont.) 106:1086–94. doi: 10.1016/j.foodres.2017.12.011.
  • Başyiğit, B., H. Sağlam, Ş. Kandemir, A. Karaaslan, and M. Karaaslan. 2020. Microencapsulation of sour cherry oil by spray drying: Evaluation of physical morphology, thermal properties, storage stability, and antimicrobial activity. Powder Technology 364:654–63. doi: 10.1016/j.powtec.2020.02.035.
  • Bolarinwa, I. F., C. Orfila, and M. R. A. Morgan. 2014. Amygdalin content of seeds, kernels and food products commercially- available in the UK. Food Chemistry 152:133–9.
  • Bursić, V., G. Vuković, M. Đukić, A. Petrović, M. Cara, D. Marinković, and R. Đurović-Pejčev. 2018. Article entitled: Determination of multi-class pesticide residues in sour cherries by LC-MS/MS. Contemporary Agriculture 67 (3–4):227–32. doi: 10.1515/contagri-2018-0033.
  • Čakarević, J., S. Vidović, J. Vladić, A. Gavarić, S. Jokić, N. Pavlovíc, M. Blažíc, and L. Popovíc. 2019a. Production of bio-functional protein through revalorization of apricot kernel cake. Foods 8 (8):318. doi: 10.3390/foods8080318.
  • Čakarević, J., S. Vidović, J. Vladić, S. Jokić, N. Pavlović, and L. Popović. 2019b. Plum oil cake protein isolate: A potential source of bioactive peptides. Food and Feed Research 46 (2):171–8. doi: 10.5937/FFR1902171C.
  • Carunchia, M., L. Wang, and J. H. Han. 2015. The use of antioxidants in the preservation of snack foods. In Handbook of Antioxidants for Food Preservation, ed. F. Shahidi, 447–74. Cambridge: Woodhead Publishing.
  • Çelik, M., M. Güzel, and M. Yildirim. 2019. Effect of pH on protein extraction from mahaleb kernels and functional properties of resulting protein concentrate. International Journal of Food Engineering 15 (7):3023–32.
  • Chamli, D., M. A. Bootello, I. Bouali, S. Jouhri, S. Boukhchina, and E. Martínez-Force. 2017. Chemical characterization and thermal properties of kernel oils from Tunisian peach and nectarine varieties of Prunus persica. Grasas y Aceites 68 (3):e211–e211. doi: 10.3989/gya.0111171.
  • Cheaib, D., N. E. Darra, H. N. Rajha, I. El-Ghazzawi, Y. Mouneimne, A. Jammoul, R. G. Maroun, and N. Louka. 2018. Study of the selectivity and bioactivity of polyphenols using infrared assisted extraction from apricot pomace compared to conventional methods. Antioxidants 7 (12):174. doi: 10.3390/antiox7120174.
  • Chemat, F., M. Abert Vian, A.-S S. Fabiano-Tixier, M. Nutrizio, A. Režek Jambrak, P. E. S. S. Munekata, J. M. Lorenzo, F. J. Barba, A. Binello, and G. Cravotto. 2020. A review of sustainable and intensified techniques for extraction of food and natural products. Green Chemistry 22 (8):2325–53. doi: 10.1039/C9GC03878G.
  • Ciccoritti, R., M. Paliotta, L. Centioni, F. Mencarelli, and K. Carbone. 2018. The effect of genotype and drying condition on the bioactive compounds of sour cherry pomace. European Food Research and Technology 244 (4):635–45. doi: 10.1007/s00217-017-2982-3.
  • Dabbou, S., S. Maatallah, A. Castagna, M. Guizani, W. Sghaeir, H. Hajlaoui, and A. Ranieri. 2017. Carotenoids, phenolic profile, mineral content and antioxidant properties in flesh and peel of prunus persica fruits during two maturation stages. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 72 (1):103–10. doi: 10.1007/s11130-016-0585-y.
  • De Laurentiis, V., S. Corrado, and S. Sala. 2018. Quantifying household waste of fresh fruit and vegetables in the EU. Waste Management (New York, N.Y.) 77:238–51. doi: 10.1016/j.wasman.2018.04.001.
  • Demirdöven, A., Ş. Karabiyikli, K. Tokatli, and N. Öncül. 2015. Inhibitory effects of red cabbage and sour cherry pomace anthocyanin extracts on food borne pathogens and their antioxidant properties. LWT - Food Science and Technology 63 (1):8–13. doi: 10.1016/j.lwt.2015.03.101.
  • Deng, P., B. Cui, H. Zhu, B. Phommakoun, D. Zhang, Y. Li, F. Zhao, and Z. Zhao. 2021. Accumulation pattern of amygdalin and prunasin and its correlation with fruit and kernel agronomic characteristics during apricot (Prunus armeniaca L.) Kernel development. Foods 10 (2):397–19. doi: 10.3390/foods10020397.
  • Dhen, N., I. Ben Rejeb, H. Boukhris, C. Damergi, and M. Gargouri. 2018. Physicochemical and sensory properties of wheat- Apricot kernels composite bread. Lwt 95:262–7. doi: 10.1016/j.lwt.2018.04.068.
  • Dhen, N., I. Ben Rejeb, M. M. Martínez, L. Román, M. Gómez, and M. Gargouri. 2017. Effect of apricot kernels flour on pasting properties, pastes rheology and gels texture of enriched wheat flour. European Food Research and Technology 243 (3):419–28. doi: 10.1007/s00217-016-2755-4.
  • Domínguez, R., B. Bohrer, M. Pateiro, P. E. S. Munekata, and J. M. Lorenzo. 2021. Packaging systems. In Sustainable Production Technology in Food, ed. J. M. Lorenzo, P. E. S. Munekata, and F. J. Barba, 49–69. London: Academic Press.
  • Dülger, H, and O. Tiryaki. 2021. Investigation of pesticide residues in peach and nectarine sampled from Çanakkale, Turkey, and consumer dietary risk assessment. Environmental Monitoring and Assessment 193 (9):1–10. doi: 10.1007/s10661-021-09349-8.
  • Ersoy, N., O. Tekinarslan, E. A. Ozgür, and U. Göktas. 2018. Determination of pesticide residues in apricot (Prunus armeniaca L.) Grown at Good Agricultural Practices (GAPs) by LC-MS/MS and GC-MS. Erwerbs-Obstbau 60 (4):349–58. doi: 10.1007/s10341-018-0383-9.
  • European Commission. 2010. Commission Regulation (EU) No 165/2010 of 26 February 2010 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards aflatoxins. Official Journal of the European Union 50 (8):1–5.
  • Fan, X., W. Jiao, X. Wang, J. Cao, and W. Jiang. 2018. Polyphenol composition and antioxidant capacity in pulp and peel of apricot fruits of various varieties and maturity stages at harvest. International Journal of Food Science & Technology 53 (2):327–36. doi: 10.1111/ijfs.13589.
  • FAO. 2015. The Sustainable Development Goals. 17 goals to transform our world.
  • FAO. 2019. Moving forward on food loss and waste reduction. https://www.fao.org/3/ca6030en/ca6030en.pdf.
  • FAO/WHO. 2020. FAOSTAT statistical database. http://www.fao.org/faostat/en/#data/QC.
  • Farhadi, S, and M. Javanmard. 2021. Mechanical and physical properties of polyethylene/sour cherry shell powder bio-composite as potential food packaging. Food Science & Nutrition 9 (6):3071–7. doi: 10.1002/fsn3.2264.
  • Fierascu, R. C., E. Sieniawska, A. Ortan, I. Fierascu, and J. Xiao. 2020. Fruits by-products - a source of valuable active principles. A short review. Frontiers in Bioengineering and Biotechnology 8:319. doi: 10.3389/fbioe.2020.00319.
  • García, M. C., J. Endermann, E. González-García, and M. L. Marina. 2015. HPLC-Q-TOF-MS identification of antioxidant and antihypertensive peptides recovered from cherry (Prunus cerasus L.) subproducts. Journal of Agricultural and Food Chemistry 63 (5):1514–20. doi: 10.1021/jf505037p.
  • García-Aguilar, L., A. Rojas-Molina, C. Ibarra-Alvarado, J. I. Rojas-Molina, P. A. Vázquez-Landaverde, F. J. Luna-Vázquez, and M. A. Zavala-Sánchez. 2015. Nutritional value and volatile compounds of black cherry (Prunus serotina) seeds. Molecules (Basel, Switzerland) 20 (2):3479–95. doi: 10.3390/molecules20023479.
  • Ghorab, H., C. Lammi, A. Arnoldi, Z. Kabouche, and G. Aiello. 2018. Proteomic analysis of sweet algerian apricot kernels (Prunus armeniaca L.) by combinatorial peptide ligand libraries and LC-MS/MS. Food Chemistry 239:935–45. doi: 10.1016/j.foodchem.2017.07.054.
  • González-García, E., M. L. Marina, and M. C. García. 2014. Plum (Prunus Domestica L.) by-product as a new and cheap source of bioactive peptides: Extraction method and peptides characterization. Journal of Functional Foods 11 (C):428–37. doi: 10.1016/j.jff.2014.10.020.
  • González-García, E., P. Puchalska, M. L. Marina, and M. C. García. 2015. Fractionation and identification of antioxidant and angiotensin-converting enzyme-inhibitory peptides obtained from plum (Prunus domestica L.) stones. Journal of Functional Foods 19:376–84. doi: 10.1016/j.jff.2015.08.033.
  • Górnaś, P., E. Radziejewska-Kubzdela, I. Mišina, R. Biegańska-Marecik, A. Grygier, and M. Rudzińska. 2017. Tocopherols, tocotrienols and carotenoids in kernel oils recovered from 15 apricot (Prunus armeniaca L.) genotypes. Journal of the American Oil Chemists’ Society 94 (5):693–9. doi: 10.1007/s11746-017-2978-y.
  • Gungor, E, and G. Erener. 2020. Effect of dietary raw and fermented sour cherry kernel (Prunus cerasus L.) on growth performance, carcass traits, and meat quality in broiler chickens. Poultry Science 99 (1):301–9. doi: 10.3382/ps/pez490.
  • Guo, P., Y. Qi, C. Zhu, and Q. Wang. 2015. Purification and identification of antioxidant peptides from Chinese cherry (Prunus pseudocerasus Lindl.) seeds. Journal of Functional Foods 19:394–403. doi: 10.1016/j.jff.2015.09.003.
  • Hayta, M, and M. Alpaslan. 2011. Apricot kernel flour and its use in maintaining health. In Flour and Breads and their Fortification in Health and Disease Prevention, 213–21. London: Academic Press.
  • Hosseini, S., K. Parastouei, and F. Khodaiyan. 2020. Simultaneous extraction optimization and characterization of pectin and phenolics from sour cherry pomace. International Journal of Biological Macromolecules 158:911–21. doi: 10.1016/j.ijbiomac.2020.04.241.
  • Huang, C., X. Tang, Z. Liu, W. Huang, and Y. Ye. 2022. Enzymes-dependent antioxidant activity of sweet apricot kernel protein hydrolysates. Lwt 154:112825. doi: 10.1016/j.lwt.2021.112825.
  • Imperato, R., L. Campone, A. L. Piccinelli, A. Veneziano, and L. Rastrelli. 2011. Survey of aflatoxins and ochratoxin a contamination in food products imported in Italy. Food Control. 22 (12):1905–10. doi: 10.1016/j.foodcont.2011.05.002.
  • Imran, A., M. Arif, Z. Shah, and A. Bari. 2020. Integration of peach (Prunus persica L.) residues, beneficial microbes and phosphorous enhance phenology, growth and yield of soybean. Russian Agricultural Sciences 46 (3):223–30. doi: 10.3103/S1068367420030064.
  • Iqbal, A., P. Schulz, and S. S. H. Rizvi. 2021. Valorization of bioactive compounds in fruit pomace from agro-fruit industries: Present Insights and future challenges. Food Bioscience 44:101384. doi: 10.1016/j.fbio.2021.101384.
  • Kasapoğlu, K. N., E. Demircan, H. S. Eryılmaz, A. C. Karaça, and B. Özçelik. 2021b. Sour cherry kernel as an unexploited processing waste: Optimisation of extraction conditions for protein recovery, functional properties and in vitro digestibility. Waste and Biomass Valorization 12 (12):6685–98. doi: 10.1007/s12649-021-01417-x.
  • Kasapoğlu, E. D., S. Kahraman, and F. Tornuk. 2021a. Optimization of ultrasound assisted antioxidant extraction from apricot pomace using response surface methodology. Journal of Food Measurement and Characterization 15 (6):5277–87. doi: 10.1007/s11694-021-01089-0.
  • Klingelhöfer, D., Y. Zhu, M. Braun, M. H. K. Bendels, D. Brüggmann, and D. A. Groneberg. 2018. Aflatoxin—Publication analysis of a global health threat. Food Control. 89:280–90. doi: 10.1016/j.foodcont.2018.02.017.
  • Kołodziejczyk, K., M. Sójka, M. Abadias, I. Viñas, S. Guyot, and A. Baron. 2013. Polyphenol composition, antioxidant capacity, and antimicrobial activity of the extracts obtained from industrial sour cherry pomace. Industrial Crops and Products 51:279–88. doi: 10.1016/j.indcrop.2013.09.030.
  • Koprivica, M. R., J. Trifković, A. M. Dramićanin, U. M. Gašić, M. M. F. Akšić, and D. M. Milojković-Opsenica. 2018. Determination of the phenolic profile of peach (Prunus persica L.) kernels using UHPLC–LTQ OrbiTrap MS/MS technique. European Food Research and Technology 244 (11):2051–64. doi: 10.1007/s00217-018-3116-2.
  • Lau, K. Q., M. R. Sabran, and S. R. Shafie. 2021. Utilization of vegetable and fruit by-products as functional ingredient and food. Frontiers in Nutrition 8:661693. doi: 10.3389/fnut.2021.661693.
  • Li, C., J. Pei, X. Xiong, and F. Xue. 2020. Encapsulation of grapefruit essential oil in emulsion-based edible film prepared by plum (Pruni domesticae semen) seed protein isolate and gum acacia conjugates. Coatings 10 (8):784. doi: 10.3390/coatings10080784.
  • Liu, H., J. Cao, and W. Jiang. 2015. Evaluation and comparison of vitamin C, phenolic compounds, antioxidant properties and metal chelating activity of pulp and peel from selected peach cultivars. LWT - Food Science and Technology 63 (2):1042–8. doi: 10.1016/j.lwt.2015.04.052.
  • Liu, H., W. Jiang, J. Cao, and L. Ma. 2018. Evaluation of antioxidant properties of extractable and nonextractable polyphenols in peel and flesh tissue of different peach varieties. Journal of Food Processing and Preservation 42 (6):e13624. doi: 10.1111/jfpp.13624.
  • Liu, M. J., F. F. Shi, and Q. A. Zhang. 2021. Evaluation of the ultrasonically accelerated debitterizing with citric acid solutions of different pH: On the basis of amino acids changes in apricot kernels during debitterizing. Journal of Food Processing and Preservation 45 (5):e15403. doi: 10.1111/jfpp.15403.
  • Li, D., Y. Zhang, R. Jiang, and W. He. Forthcoming. Textural properties and consumer preference of functional milk puddings fortified with apricot kernel extracts. Journal of Texture Studies. doi: 10.1111/jtxs.12653.
  • Loizzo, M. R., D. Pacetti, P. Lucci, O. Núñez, F. Menichini, N. G. Frega, and R. Tundis. 2015. Prunus persica var. platycarpa (Tabacchiera Peach): Bioactive compounds and antioxidant activity of pulp, peel and seed ethanolic extracts. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 70 (3):331–7. doi: 10.1007/s11130-015-0498-1.
  • Lorenzo, J. M., P. E. S. Munekata, B. Gómez, F. J. Barba, L. Mora, C. Pérez-Santaescolástica, and F. Toldrá. 2018. Bioactive peptides as natural antioxidants in food products—A review. Trends in Food Science & Technology 79:136–47. doi: 10.1016/j.tifs.2018.07.003.
  • Luca, A., B. Cilek, V. Hasirci, S. Sahin, and G. Sumnu. 2013. Effect of degritting of phenolic extract from sour cherry pomace on encapsulation efficiency-production of nano-suspension. Food and Bioprocess Technology 6 (9):2494–502. doi: 10.1007/s11947-012-0880-z.
  • Luttfullah, G, and A. Hussain. 2011. Studies on contamination level of aflatoxins in some dried fruits and nuts of Pakistan. Food Control. 22 (3–4):426–9. doi: 10.1016/j.foodcont.2010.09.015.
  • Mada, S. B., C. P. Ugwu, and M. M. Abarshi. 2020. Health promoting effects of food-derived bioactive peptides: A review. International Journal of Peptide Research and Therapeutics 26 (2):831–48. doi: 10.1007/s10989-019-09890-8.
  • Maikhuri, R. K., D. S. Parshwan, P. Kewlani, V. S. Negi, S. Rawat, and L. S. Rawat. 2021. Nutritional composition of seed kernel and oil of wild edible plant species from Western Himalaya, India. International Journal of Fruit Science 21 (1):609–18. doi: 10.1080/15538362.2021.1907009.
  • Medina-Meza, I. G, and G. V. Barbosa-Cánovas. 2015. Assisted extraction of bioactive compounds from plum and grape peels by ultrasonics and pulsed electric fields. Journal of Food Engineering 166:268–75. doi: 10.1016/j.jfoodeng.2015.06.012.
  • Mitchell, N. J., A. G. Marroquín-Cardona, A. Romoser, T. D. Phillips, and A. W. Hayes. 2014. Mycotoxins. In Reference Module in Biomedical Sciences. Elsevier. Accessed February 02, 2022. doi: 10.1016/B978-0-12-801238-3.00135-5
  • Mokrani, A., S. Cluzet, K. Madani, E. Pakina, A. Gadzhikurbanov, M. Mesnil, A. Monvoisin, and T. Richard. 2019. HPLC-DAD-MS/MS profiling of phenolics from different varieties of peach leaves and evaluation of their antioxidant activity: A comparative study. International Journal of Mass Spectrometry 445:116192. doi: 10.1016/j.ijms.2019.116192.
  • Nagarajaiah, S. B, and J. Prakash. 2016. Chemical composition and bioactivity of pomace from selected fruits. International Journal of Fruit Science 16 (4):423–43. doi: 10.1080/15538362.2016.1143433.
  • Nicolopoulou-Stamati, P., S. Maipas, C. Kotampasi, P. Stamatis, and L. Hens. 2016. Chemical pesticides and human health: The urgent need for a new concept in agriculture. Frontiers in Public Health 4:148. doi: 10.3389/fpubh.2016.00148.
  • Nowicka, P, and A. Wojdyło. 2019. Content of bioactive compounds in the peach kernels and their antioxidant, anti-hyperglycemic, anti-aging properties. European Food Research and Technology 245 (5):1123–36. doi: 10.1007/s00217-018-3214-1.
  • Okur, İ., C. Baltacıoğlu, E. Ağçam, H. Baltacıoğlu, and H. Alpas. 2019. Evaluation of the effect of different extraction techniques on sour cherry pomace phenolic content and antioxidant activity and determination of phenolic compounds by FTIR and HPLC. Waste and Biomass Valorization 10 (12):3545–55. doi: 10.1007/s12649-019-00771-1.
  • Petrović, J., B. Pajin, I. Lončarević, V. T. Šaponjac, I. Nikolić, Đ. Ačkar, and D. Zarić. 2019. Encapsulated sour cherry pomace extract: Effect on the colour and rheology of cookie dough. Food Science and Technology International = Ciencia y Tecnologia de Los Alimentos Internacional 25 (2):130–40. doi: 10.1177/1082013218802027.
  • Plazzotta, S., R. Ibarz, L. Manzocco, and O. Martín-Belloso. 2020. Optimizing the antioxidant biocompound recovery from peach waste extraction assisted by ultrasounds or microwaves. Ultrasonics Sonochemistry 63:104954. doi: 10.1016/j.ultsonch.2019.104954.
  • Plazzotta, S., R. Ibarz, L. Manzocco, and O. Martín-Belloso. 2021. Modelling the recovery of biocompounds from peach waste assisted by pulsed electric fields or thermal treatment. Journal of Food Engineering 290:110196. doi: 10.1016/j.jfoodeng.2020.110196.
  • Popović, B. M., B. Blagojević, A. Z. Kucharska, D. Agić, N. Magazin, M. Milović, and A. T. Serra. 2021. Exploring fruits from genus Prunus as a source of potential pharmaceutical agents - In vitro and in silico study. Food Chemistry 358:129812. doi: 10.1016/j.foodchem.2021.129812.
  • Priyadarshi, R., S. Sauraj, B. Kumar, F. Deeba, A. Kulshreshtha, and Y. S. Negi. 2018. Chitosan films incorporated with Apricot (Prunus armeniaca) kernel essential oil as active food packaging material. Food Hydrocolloids 85:158–66. doi: 10.1016/j.foodhyd.2018.07.003.
  • Programme, U. E. 2022. Worldwide food waste—ThinkEatSave. https://www.unep.org/thinkeatsave/get-informed/worldwide-food-waste.
  • Qiu, L., M. Zhang, B. Adhikari, and L. Chang. 2022. Microencapsulation of rose essential oil in mung bean protein isolate-apricot peel pectin complex coacervates and characterization of microcapsules. Food Hydrocolloids 124:107366. doi: 10.1016/j.foodhyd.2021.107366.
  • Quiles, A., G. M. Campbell, S. Struck, H. Rohm, and I. Hernando. 2018. Fiber from fruit pomace: A review of applications in cereal-based products. Food Reviews International 34 (2):162–81. doi: 10.1080/87559129.2016.1261299.
  • Quirante-Moya, F., A. Martinez-Alonso, A. Lopez-Zaplana, G. Bárzana, and M. Carvajal. 2022. Water relations after Ca, B and Si application determine fruit physical quality in relation to aquaporins in Prunus. Scientia Horticulturae 293:110718. doi: 10.1016/j.scienta.2021.110718.
  • Rabetafika, H. N., B. Bchir, C. Blecker, and A. Richel. 2014. Fractionation of apple by-products as source of new ingredients: Current situation and perspectives. Trends in Food Science & Technology 40 (1):99–114. doi: 10.1016/j.tifs.2014.08.004.
  • Rampáčková, E., M. Göttingerová, P. Gála, T. Kiss, S. Ercişli, and T. Nečas. 2021. Evaluation of protein and antioxidant content in apricot kernels as a sustainable additional source of nutrition. Sustainability (Switzerland) 13 (9):4742. doi: 10.3390/su13094742.
  • Redondo, D., D. Gimeno, H. Calvo, M. E. Venturini, R. Oria, and E. Arias. 2021. Antioxidant activity and phenol content in different tissues of stone fruits at thinning and at commercial maturity stages. Waste and Biomass Valorization 12 (4):1861–75. doi: 10.1007/s12649-020-01133-y.
  • Rudzińska, M., P. Górnaś, M. Raczyk, and A. Soliven. 2017. Sterols and squalene in apricot (Prunus armeniaca L.) kernel oils: The variety as a key factor. Natural Product Research 31 (1):84–8. doi: 10.1080/14786419.2015.1135146.
  • Saidani, F., R. Giménez, C. Aubert, G. Chalot, J. A. Betrán, and Y. Gogorcena. 2017. Phenolic, sugar and acid profiles and the antioxidant composition in the peel and pulp of peach fruits. Journal of Food Composition and Analysis 62:126–33. doi: 10.1016/j.jfca.2017.04.015.
  • Saleem, M., J. Asif, M. Asif, and U. Saleem. 2018. Amygdalin from apricot kernels induces apoptosis and causes cell cycle arrest in cancer cells: An updated review. Anti-Cancer Agents in Medicinal Chemistry 18 (12):1650–5. doi: 10.2174/1871520618666180105161136.
  • Šaponjac, V. T., G. Ćetković, J. Čanadanović-Brunet, S. Djilas, B. Pajin, J. Petrović, S. Stajčić, and J. Vulić. 2017. Encapsulation of sour cherry pomace extract by freeze drying: Characterization and storage stability. Acta Chimica Slovenica 64 (2):283–9. doi: 10.17344/acsi.2016.2789.
  • Sheikh, M. A., C. S. Saini, and H. K. Sharma. Forthcoming. Antioxidant potential, anti-nutritional factors, volatile compounds and phenolic composition of microwave heat-treated plum (Prunus domestica L.) kernels: An analytical approach. British Food Journal. doi: 10.1108/BFJ-06-2021-0649.
  • Sheikh, M. A., C. S. Saini, and H. K. Sharma. 2021. Analyzing the effects of hydrothermal treatment on antinutritional factor content of plum kernel grits by using response surface methodology. Applied Food Research 1 (1):100010. doi: 10.1016/j.afres.2021.100010.
  • Sheikh, M. A., C. S. Saini, and H. K. Sharma. 2022. Synergistic effect of microwave heating and hydrothermal treatment on cyanogenic glycosides and bioactive compounds of plum (Prunus domesticaL.) kernels: An analytical approach. Current Research in Food Science 5:65–72. doi: 10.1016/j.crfs.2021.12.007.
  • Shi, J., Q. Chen, M. Xu, Q. Xia, T. Zheng, J. Teng, M. Li, and L. Fan. 2019. Recent updates and future perspectives about amygdalin as a potential anticancer agent: A review. Cancer Medicine 8 (6):3004–11. doi: 10.1002/cam4.2197.
  • Shigaki, T. 2016. Cassava: The Nature and Uses. In Encyclopedia of Food and Health 687–93.Elsevier. Accessed February 02, 2022. doi: 10.1016/B978-0-12-384947-2.00124-0
  • Singh, N. S., R. Sharma, T. Parween, and P. K. Patanjali. 2017. Pesticide contamination and human health risk factor. In Modern Age Environmental Problems and their Remediation, 49–68. Cham: Springer.
  • Sodeifian, G, and S. A. Sajadian. 2021. Antioxidant capacity, physicochemical properties, thermal behavior, and oxidative stability of nectarine (Prunus persica var. nucipersica) kernel oil. Journal of Food Processing and Preservation 45 (2):e15198. doi: 10.1111/jfpp.15198.
  • Stein, R. A, and A. E. Bulboacă. 2017. Mycotoxins. In Foodborne Diseases, 3rd ed., 407–46. London: Academic Press.
  • Suleria, H. A. R., C. J. Barrow, and F. R. Dunshea. 2020. Screening and characterization of phenolic compounds and their antioxidant capacity in different fruit peels. Foods 9 (9):1206. doi: 10.3390/foods9091206.
  • Sun, G., W. Chi, S. Xu, and L. Wang. 2020. Developing a simultaneously antioxidant and pH-responsive κ-carrageenan/hydroxypropyl methylcellulose film blended with Prunus maackii extract. International Journal of Biological Macromolecules 155:1393–400. doi: 10.1016/j.ijbiomac.2019.11.114.
  • Tanwar, B., R. Modgil, and A. Goyal. 2019. Effect of detoxification on biological quality of wild apricot (Prunus armeniaca L.) kernel. Journal of the Science of Food and Agriculture 99 (2):517–28. doi: 10.1002/jsfa.9209.
  • Tareen, A. K., M. A. Panezai, A. Sajjad, J. K. Achakzai, A. M. Kakar, and N. Y. Khan. 2021. Comparative analysis of antioxidant activity, toxicity, and mineral composition of kernel and pomace of apricot (Prunus armeniaca L.) grown in Balochistan, Pakistan. Saudi Journal of Biological Sciences 28 (5):2830–9. doi: 10.1016/j.sjbs.2021.02.015.
  • United Nations. 2022. Stop food loss and waste reduction United Nations. https://www.un.org/en/observances/end-food-waste-day.
  • Vásquez-Villanueva, R., M. L. Marina, and M. C. García. 2015. Revalorization of a peach (Prunus persica (L.) Batsch) byproduct: Extraction and characterization of ACE-inhibitory peptides from peach stones. Journal of Functional Foods 18:137–46. doi: 10.1016/j.jff.2015.06.056.
  • Vásquez-Villanueva, R., J. M. Orellana, M. L. Marina, and M. C. García. 2019. Isolation and Characterization of Angiotensin Converting Enzyme Inhibitory Peptides from Peach Seed Hydrolysates: In Vivo Assessment of Antihypertensive Activity. Journal of Agricultural and Food Chemistry 67 (37):10313–20. doi: 10.1021/acs.jafc.9b02213.
  • Wang, D., Y. Dong, X. Chen, Y. Liu, J. Wang, X. Wang, C. Wang, and H. Song. 2020. Incorporation of apricot (Prunus armeniaca) kernel essential oil into chitosan films displaying antimicrobial effect against Listeria monocytogenes and improving quality indices of spiced beef. International Journal of Biological Macromolecules 162:838–44. doi: 10.1016/j.ijbiomac.2020.06.220.
  • Wang, S., R. J. Kowalski, Y. Kang, A. M. Kiszonas, M. J. Zhu, and G. M. Ganjyal. 2017. Impacts of the Particle Sizes and Levels of Inclusions of Cherry Pomace on the Physical and Structural Properties of Direct Expanded Corn Starch. Food and Bioprocess Technology 10 (2):394–406. doi: 10.1007/s11947-016-1824-9.
  • Wen, X., F. Jin, J. M. Regenstein, and F. Wang. 2018. Transglutaminase induced gels using bitter apricot kernel protein: Chemical, textural and release properties. Food Bioscience 26:15–22. doi: 10.1016/j.fbio.2018.09.002.
  • WHO. 2007. Protein and amino acid requirements in human nutrition: Report of a joint FAO/WHO/UNU expert consultation. WHO Technical report Series, no. 935. Geneva, Switzerland.
  • Yang, Y., A. Li, Z. Zhong, and M. Xie. 2019. Angiotensin converting enzyme inhibitory peptide fractions from Tibet wild peach kernel protein hydrolysates. Acta Alimentaria 48 (4):495–506. doi: 10.1556/066.2019.48.4.11.
  • Yao, J. L., Q. A. Zhang, and M. J. Liu. 2021a. Utilization of apricot kernel skins by ultrasonic treatment of the dough to produce a bread with better flavor and good shelf life. Lwt 145:111545. doi: 10.1016/j.lwt.2021.111545.
  • Yao, J. L., Q. A. Zhang, and M. J. Liu. 2021b. Effects of apricot kernel skins addition and ultrasound treatment on the properties of the dough and bread. Journal of Food Processing and Preservation 45 (7):e15611. doi: 10.1111/jfpp.15611.
  • Yilmaz, C, and V. Gökmen. 2013. Compositional characteristics of sour cherry kernel and its oil as influenced by different extraction and roasting conditions. Industrial Crops and Products 49:130–5. doi: 10.1016/j.indcrop.2013.04.048.
  • Yin, M., T. Wuyun, Z. Jiang, and J. Zeng. 2020. Amino acid profiles and protein quality of Siberian apricot (Prunus sibirica L.) kernels from Inner Mongolia. Journal of Forestry Research 31 (4):1391–7. doi: 10.1007/s11676-019-00882-4.
  • Zeb, A., N. Khadim, and W. Ali. 2017. Changes in the polyphenolic profile, carotenoids and antioxidant potential of apricot (Prunus armeniaca L.) leaves during maturation. Agriculture (Switzerland) 7 (2):9. doi: 10.3390/agriculture7020009.
  • Zhang, H. S., P. H. Guo, Q. A. Zhang, D. D. Wu, and H. R. Zheng. 2021b. Effects of saturated hot air pretreatment compared to traditional blanching on the physicochemical properties of Apricot (Prunus armeniaca L.) kernels and its skin during removing skin. Lwt 150:111947. doi: 10.1016/j.lwt.2021.111947.
  • Zhang, X., Y. Liu, H. Yong, Y. Qin, J. Liu, and J. Liu. 2019. Development of multifunctional food packaging films based on chitosan, TiO 2 nanoparticles and anthocyanin-rich black plum peel extract. Food Hydrocolloids 94:80–92. doi: 10.1016/j.foodhyd.2019.03.009.
  • Zhang, Q. A., F. F. Shi, J. L. Yao, and N. Zhang. 2020. Effects of ultrasound irradiation on the properties of apricot kernels during accelerated debitterizing. RSC Advances 10 (18):10624–33. doi: 10.1039/C9RA10965J.
  • Zhang, C., G. Sun, J. Li, and L. Wang. 2021a. A green strategy for maintaining intelligent response and improving antioxidant properties of κ-carrageenan-based film via cork bark extractive addition. Food Hydrocolloids 113:106470. doi: 10.1016/j.foodhyd.2020.106470.
  • Zhang, H., J. Xue, H. Zhao, X. Zhao, H. Xue, Y. Sun, and W. Xue. 2018. Isolation and structural characterization of antioxidant peptides from degreased apricot seed kernels. Journal of AOAC International 101 (5):1661–3. doi: 10.5740/jaoacint.17-0465.
  • Zhou, B., Y. Wang, J. Kang, H. Zhong, and P. D. Prenzler. 2016. The quality and volatile-profile changes of Longwangmo apricot (Prunus armeniaca L.) kernel oil prepared by different oil-producing processes. European Journal of Lipid Science and Technology 118 (2):236–43. doi: 10.1002/ejlt.201400545.
  • Zivoli, R., L. Gambacorta, L. Piemontese, and M. Solfrizzo. 2016. Reduction of aflatoxins in apricot kernels by electronic and manual color sorting. Toxins 8 (1):26. doi: 10.3390/toxins8010026.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.