1,243
Views
3
CrossRef citations to date
0
Altmetric
Review Articles

Effect of fermented foods on some neurological diseases, microbiota, behaviors: mini review

& ORCID Icon

References

  • Adams, C., F. Sawh, J. M. Green-Johnson, H. J. Taggart, and J. L. Strap. 2020. Characterization of casein-derived peptide bioactivity: Differential effects on angiotensin-converting enzyme inhibition and cytokine and nitric oxide production. Journal of Dairy Science 103 (7):5805–15. doi: 10.3168/jds.2019-17976.
  • Ait-Belgnaoui, A., H. Durand, C. Cartier, G. Chaumaz, H. Eutamene, L. Ferrier, E. Houdeau, J. Fioramonti, L. Bueno, and V. Theodorou. 2012. Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology 37 (11):1885–95. doi: 10.1016/j.psyneuen.2012.03.024.
  • Akbari, E., Z. Asemi, R. Daneshvar Kakhaki, F. Bahmani, E. Kouchaki, O. R. Tamtaji, and M. Salami. 2016. Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer’s disease: A randomized, double-blind and controlled trial. Frontiers ın Aging Neuroscience 8 (256):1–8. doi: 10.3389/fnagi.2016.00256.
  • Alauddin, M., H. Shirakawa, T. Koseki, N. Kijima, S. Budijanto, J. Islam, and M. Komai. 2016. Fermented rice bran supplementation mitigates metabolic syndrome in stroke-prone spontaneously hypertensive rats. Complementary and Alternative Medicine 16 (1):1–11. doi: 10.1186/s12906-016-1427.
  • Allen, A. P., W. Hutch, Y. E. Borre, P. J. Kennedy, A. Temko, G. Boylan, E. Murphy, J. F. Cryan, T. G. Dinan, and G. Clarke. 2016. Bifidobacterium longum 1714 as a translational psychobiotic: Modulation of stress, electrophysiology and neurocognition in healthy volunteers. Translational Psychiatry 6 (11):e939. doi: 10.1038/tp.2016.191.
  • An, S.-Y., M. S. Lee, J. Y. Jeon, E. S. Ha, T. H. Kim, J. Y. Yoon, C.-O. Ok, H.-K. Lee, W.-S. Hwang, S. J. Choe, et al. 2013. Beneficial effects of fresh and fermented kimchi in prediabetic individuals. Annals of Nutrition & Metabolism 63 (1–2):111–9. doi: 10.1159/000353583.
  • Ano, Y., M. Ozawa, T. Kutsukake, S. Sugiyama, K. Uchida, A. Yoshida, and H. Nakayama. 2015. Preventive effects of a fermented dairy product against Alzheimer’s disease and identification of a novel oleamide with enhanced microglial phagocytosis and anti-inflammatory activity. PLoS One 10 (3):e0118512. doi: 10.1371/journal.pone.0118512.
  • Asghar, F., S. Ali, A. Goraya, I. Javaida, and Z. Hussain. 2017. A review on the role of fermented foods as health promoters. International Journal of Engineering & Technology 3:141–8.
  • Aslam, H., J. Green, F. N. Jacka, F. Collier, M. Berk, J. Pasco, and S. L. Dawson. 2020. Fermented foods, the gut and mental health: A mechanistic overview with implications for depression and anxiety. Nutritional Neuroscience 23 (9):659–71. doi:0.1080/1028415X.2018.1544332. doi: 10.1080/1028415X.2018.1544332.
  • Azizi, N. F., M. R. Kumar, S. K. Yeap, J. O. Abdullah, M. Khalid, A. R. Omar, M. A. Osman, S. A. S. Mortadza, and N. B. Alitheen. 2021. Kefir and its biological activities. Foods 10 (6):1210. doi: 10.3390/foods10061210.
  • Baruah, R., M. Ray, and P. M. Halami. 2022. Preventive and therapeutic aspects of fermented foods. Journal of Applied Microbiology. 1–14. doi: 10.1111/jam.15444.
  • Bell, V., J. Ferrão, and T. Fernandes. 2017. Nutritional guidelines and fermented food frameworks. Foods 6 (8):65. doi: 10.3390/foods6080065.
  • Benakis, C., D. Brea, S. Caballero, G. Faraco, J. Moore, M. Murphy, G. Sita, G. Racchumi, L. Ling, E. G. Pamer, et al. 2016. Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδ T cells. Nature Medicine 22 (5):516–23. doi: 10.1038/nm.4068.
  • Bienenstock, J., W. Kunze, and P. Forsythe. 2015. Microbiota and the gut–brain axis. Nutrition Reviews 73 (suppl 1):28–31. doi: 10.1093/nutrit/nuv019.
  • Bogiatzi, C., G. Gloor, E. Allen-Vercoe, G. Reid, R. G. Wong, B. L. Urquhart, V. Dinculescu, K. N. Ruetz, T. J. Velenosi, M. Pignanelli, et al. 2018. Metabolic products of the intestinal microbiome and extremes of atherosclerosis. Atherosclerosis 273:91–7. doi: 10.1016/j.atherosclerosis.2018.04.015.
  • Bonaz, B., T. Bazin, and S. Pellissier. 2018. The vagus nerve at the interface of the microbiota-gut-brain axis. Frontiers in Neuroscience 12:49. doi: 10.3389/fnins.2018.00049.
  • Braniste, V., M. Al-Asmakh, C. Kowal, F. Anuar, A. Abbaspour, M. Tóth, A. Korecka, N. Bakocevic, L. G. Ng, P. Kundu, et al. 2014. The gut microbiota influences blood-brain barrier permeability in mice. Science Translational Medicine 6 (263):158. doi: 10.1126/scitranslmed.3009759.
  • Bruning, J., A. Chapp, G. A. Kaurala, R. Wang, S. Techtmann, and Q. H. Chen. 2020. Gut microbiota and short chain fatty acids: Influence on the autonomic nervous system. Neuroscience Bulletin 36 (1):91–5. doi: 10.1007/s12264-019-00410-8.
  • Carlson, J., J. M. Erickson, B. B. Lloyd, and J. L. Slavin. 2018. Health effects and sources of prebiotic dietary fiber. Current Developments in Nutrition 2 (3):nzy005. doi: 10.1093/cdn/nzy005.
  • Casertano, M., V. Fogliano, and D. Ercolini. 2022. Psychobiotics, gut microbiota and fermented foods can help preserving mental health. Food Research International (Ottawa, Ontario) 152:110892. doi: 10.1016/j.foodres.2021.110892.
  • Chakraborty, A., S. Banerjee, B. Mukherjee, and M. K. Poddar. 2020. Calorie restriction improves aging-induced impairment of cognitive function in relation to deregulation of corticosterone status and brain regional GABA system. Mechanisms of Ageing and Development 189:111248. doi: 10.1016/j.mad.2020.111248.
  • Chang, C. Y., B. Y. Ho, and T. M. Pan. 2019. Lactobacillus paracasei subsp. paracasei NTU 101-fermented skim milk as an adjuvant to uracil-tegafur reduces tumor growth and improves chemotherapy side effects in an orthotopic mouse model of colorectal cancer. Journal of Functional Foods 55:36–47. doi: 10.1016/j.jff.2019.02.025.
  • Chen, Z., T. Liu, T. Ye, X. Yang, Y. Xue, Y. Shen, Q. Zhang, and X. Zheng. 2021. Effect of lactic acid bacteria and yeasts on the structure and fermentation properties of Tibetan kefir grains. International Dairy Journal 114:104943. doi: 10.1016/j.idairyj.2020.10494.
  • Chilton, S. N., J. P. Burton, and G. Reid. 2015. Inclusion of fermented foods in food guides around the world. Nutrients 7 (1):390–404. doi: 10.3390/nu7010390.
  • Chong, H. X., N. A. A. Yusoff, Y. Y. Hor, L. C. Lew, M. H. Jaafar, S. B. Choi, M. S. B. Yusoff, N. Wahid, M. F. I. L. Abdullah, N. Zakaria, et al. 2019. Lactobacillus plantarum DR7 alleviates stress and anxiety in adults: A randomised, double-blind, placebo-controlled study. Beneficial Microbes 10 (4):355–73. doi: 10.3920/BM2018.0135.
  • Chung, Y.-C., H.-M. Jin, Y. Cui, D. S. Kim, J. M. Jung, J.-I. Park, E.-S. Jung, E.-K. Choi, and S.-W. Chae. 2014. Fermented milk of Lactobacillus helveticus IDCC3801 improves cognitive functioning during cognitive fatigue tests in healthy older adults. Journal of Functional Foods 10:465–74. doi: 10.1016/j.jff.2014.07.007.
  • Colombo, M., N. P. Castilho, S. D. Todorov, and L. A. Nero. 2018. Beneficial properties of lactic acid bacteria naturally present in dairy production. Biomed Central Microbiology 18 (1):1–12. doi: 10.1186/s12866-018-1356-8.
  • Cryan, J. F., K. J. O’Riordan, K. Sandhu, V. Peterson, and T. G. Dinan. 2020. The gut microbiome in neurological disorders. The Lancet Neurology 19 (2):179–94. doi: 10.1016/S1474-4422(19)30356-4.
  • Dalile, B., B. Vervliet, G. Bergonzelli, K. Verbeke, and L. Oudenhove. 2020. Colon-delivered short-chain fatty acids attenuate the cortisol response to psychosocial stress in healthy men: A randomized, placebo-controlled trial. Neuropsychopharmacology: official Publication of the American College of Neuropsychopharmacology 45 (13):2257–66. doi: 10.1038/s41386-020-0732-x.
  • Dalile, B., L. Van Oudenhove, B. Vervliet, and K. Verbeke. 2019. The role of short-chain fatty acids in microbiota-gut-brain communication. Nature Reviews. Gastroenterology & Hepatology 16 (8):461–78. doi: 10.1038/s41575-019-0157-3.
  • Davinelli, S., D. De Stefani, I. De Vivo, and G. Scapagnini. 2020. Polyphenols as caloric restriction mimetics regulating mitochondrial biogenesis and mitophagy. Trends in Endocrinology and Metabolism: TEM 31 (7):536–50. doi: 10.1016/j.tem.2020.02.011.
  • De Filippis, F., E. Parente, and D. Ercolini. 2018. Recent past, present, and future of the food microbiome. Annual Review of Food Science and Technology 9:589–608. doi: 10.1146/annurev-food-030117-012312.
  • Duscha, A., B. Gisevius, S. Hirschberg, N. Yissachar, G. I. Stangl, E. Eilers, V. Bader, S. Haase, J. Kaisler, C. David, et al. 2020. Propionic acid shapes the multiple sclerosis disease course by an immunomodulatory mechanism. Cell 180 (6):1067–80. doi: 10.1016/j.cell.2020.02.035.
  • Duscha, A., B. Gisevius, S. Hirschberg, S. Haase, G. I. Stangl, J. Berg, and O. Staszewski. 2018. Propionic acid shapes the course of multiple sclerosis by a distinct immunomodulatory and neuroprotective mechanism. Cell 51 doi: 10.2139/ssrn.3293683.
  • Eltokhi, A., I. E. Janmaat, M. Genedi, B. C. Haarma, and I. E. Sommer. 2020. Dysregulation of synaptic pruning as a possible link between intestinal microbiota dysbiosis and neuropsychiatric disorders. Journal of Neuroscience Research 98 (7):1335–69. doi: 10.1002/jnr.24616.
  • Erny, D., A. L. Hrabě de Angelis, D. Jaitin, P. Wieghofer, O. Staszewski, E. David, H. Keren-Shaul, T. Mahlakoiv, K. Jakobshagen, T. Buch, et al. 2015. Host microbiota constantly control maturation and function of microglia in the CNS. Nature Neuroscience 18 (7):965–77. doi: 10.1038/nn.4030.
  • Fabricio, M. F., M. B. Mann, C. I. Kothe, J. Frazzon, B. Tischer, S. H. Flôres, and M. A. Z. Ayub. 2022. Effect of freeze-dried kombucha culture on microbial composition and assessment of metabolic dynamics during fermentation. Food Microbiology 101:103889. doi: 10.1016/j.fm.2021.103889.
  • Firmesse, O., E. Alvaro, A. Mogenet, J.-L. Bresson, R. Lemée, P. Le Ruyet, C. Bonhomme, D. Lambert, C. Andrieux, J. Doré, et al. 2008. Fate and effects of Camembert cheese micro-organisms in the human colonic microbiota of healthy volunteers after regular Camembert consumption. International Journal of Food Microbiology 125 (2):176–81. doi: 10.1016/j.ijfoodmicro.2008.03.044.
  • Fulde, M., F. Sommer, B. Chassaing, K. van Vorst, A. Dupont, M. Hensel, M. Basic, R. Klopfleisch, P. Rosenstiel, A. Bleich, et al. 2018. Neonatal selection by toll-like receptor 5 influences long-term gut microbiota composition. Nature 560 (7719):489–93. doi: 10.1038/s41586-018-039.
  • Fuzzati-Armentero, M. T., S. Cerri, and F. Blandini. 2019. Peripheral-Central neuroimmune crosstalk in Parkinson’s disease: What do patients and animal models tell us? Frontiers in Neurology 10:232. doi: 10.3389/fneur.2019.00232.
  • Galley, J. D., M. C. Nelson, Z., Yu, S. E., Dowd, J. Walter, P. S. Kumar, M. Lyte, and M. T. Bailey. 2014. Exposure to a social stressor disrupts the community structure of the colonic mucosa-associated microbiota. Biomed Center Microbiology 14 (1):1–13. doi: 10.1186/1471-2180-14-189.
  • Ghaisas, S., J. Maher, and A. Kanthasamy. 2016. Gut microbiome in health and disease: Linking the microbiome-gut-brain axis and environmental factors in the pathogenesis of systemic and neurodegenerative diseases. Pharmacology & Therapeutics 158:52–62. doi: 10.1016/j.pharmthera.2015.11.012.
  • Haghikia, A., S. Jörg, A. Duscha, J. Berg, A. Manzel, A. Waschbisch, A. Hammer, D.-H. Lee, C. May, N. Wilck, et al. 2015. Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity 43 (4):817–29. doi: 10.1016/j.immuni.2015.09.007.
  • Han, K., S. Bose, J. Wang, B. S. Kim, M. J. Kim, E. J. Kim, and H. Kim. 2015. Contrasting effects of fresh and fermented kimchi consumption on gut microbiota composition and gene expression related to metabolic syndrome in obese Korean women. Molecular Nutrition & Food Research 59 (5):1004–8. doi: 10.1002/mnfr.201400780.
  • Hanssens, M. B., S. Patterson, and C. Wagner. 2019. The relationship between fermented foods and depression: A systematic review. Sophia. https://sophia.stkate.edu/ma_hhs/21/
  • Hemmer, B, and M. Mühlau. 2017. Multiple sclerosis in 2016: Immune-directed therapies in MS–efficacy and limitations . Nature Reviews. Neurology 13 (2):72–4. doi: 10.1038/nrneurol.2017.2.
  • Hilimire, M. R., J. E. DeVylder, and C. A. Forestell. 2015. Fermented foods, neuroticism, and social anxiety: An interaction model. Psychiatry Research 228 (2):203–8. doi: 10.1016/j.psychres.2015.04.023.
  • Hjerpsted, J, and T. Tholstrup. 2016. Cheese and cardiovascular disease risk: A review of the evidence and discussion of possible mechanisms. Critical Reviews in Food Science and Nutrition 56 (8):1389–403. doi: 10.1016/j.psychres.2015.04.023.
  • Hori, T., K. Matsuda, and K. Oishi. 2020. Probiotics: A dietary factor to modulate the gut microbiome, host immune system, and gut–brain interaction. Microorganisms 8 (9):1401. doi: 10.3390/microorganisms8091401.
  • Hosseini, A., T. Gharibi, A. Mohammadzadeh, A. Ebrahimi-Kalan, F. Jadidi-Niaragh, Z. Babaloo, D. Shanehbandi, E. Baghbani, and B. Baradaran. 2021. Ruxolitinib attenuates experimental autoimmune encephalomyelitis (EAE) development as animal models of multiple sclerosis (MS). Life Sciences 276:119395. doi: 10.1016/j.lfs.2021.119395.
  • Hu, Y. Y., Q. Chen, R. X. Wen, Y. Wang, L. G. Qin, and B. H. Kong. 2019. Quality characteristics and flavor profile of Harbin dry sausages inoculated with lactic acid bacteria and Staphylococcus xylosus. Lwt 114:108392. doi: 10.1016/j.lwt.2019.108392.
  • Hu, Y., L. Zhang, Q. Liu, Y. Wang, Q. Chen, and B. Kong. 2020. The potential correlation between bacterial diversity and the characteristic volatile flavour of traditional dry sausages from Northeast China. Food Microbiology 91:103505. doi: 10.1016/j.fm.2020.103505.
  • Hwang, Y.-H., S. Park, J.-W. Paik, S.-W. Chae, D.-H. Kim, D.-G. Jeong, E. Ha, M. Kim, G. Hong, S.-H. Park, et al. 2019. Efficacy and safety of Lactobacillus plantarum C29-fermented soybean (DW2009) in individuals with mild cognitive impairment: A 12-week, multi-center, randomized, double-blind, placebo-controlled clinical trial. Nutrients 11 (2):305. doi: 10.3390/nu11020305.
  • Iwasa, M., W. Aoi, K. Mune, H. Yamauchi, K. Furuta, S. Sasaki, K. Takeda, K. Harada, S. Wada, Y. Nakamura, et al. 2013. Fermented milk improves glucose metabolism in exercise-induced muscle damage in young healthy men. Nutrition Journal 12 (1):83–7. doi: 10.1186/1475-2891-12-83.
  • Jang, C. H., J. Oh, J. S. Lim, H. J. Kim, and J. S. Kim. 2021. Fermented soy products: Beneficial potential in neurodegenerative diseases. Foods 10 (3):636. doi: 10.3390/foods10030636.
  • Jiang, W., C. Ju, H. Jiang, and D. Zhang. 2014. Dairy foods intake and risk of Parkinson’s disease: A dose-response meta-analysis of prospective cohort studies . European Journal of Epidemiology 29 (9):613–9. doi: 10.1007/s10654-014-9921-4.
  • Jung, I. H., M. A. Jung, E. J. Kim, M. Han, and D. H. Kim. 2012. Lactobacillus pentosus var. plantarum C29 protects scopolamine-induced memory deficit in mice . Journal of Applied Microbiology 113 (6):1498–506. doi: 10.1111/j.1365-2672.2012.05437.x.
  • Jung, J. Y., S. H. Lee, and C. O. Jeon. 2014. Kimchi microflora: History, current status, and perspectives for industrial kimchi production. Applied Microbiology and Biotechnology 98 (6):2385–93. doi: 10.1007/s00253-014-5513-1.
  • Kanmani, P, and H. Kim. 2020. Beneficial effect of immunobiotic strains on attenuation of Salmonella induced inflammatory response in human intestinal epithelial cells. Plos One 15 (3):e0229647. doi: 10.1371/journal.pone.022964.
  • Kanouchi, H., T. Kakimoto, H. Nakano, M. Suzuki, Y. Nakai, K. Shiozaki, K. Akikoka, K. Otomaru, M. Nagano, and M. Matsumoto. 2016. The brewed rice vinegar Kurozu increases HSPA1A expression and ameliorates cognitive dysfunction in aged P8 mice. PLoS One 11 (3):e0150796. doi: 10.1371/journal.pone.0150796.
  • Kim, B., V. M. Hong, J. Yang, H. Hyun, J. J. Im, J. Hwang, S. Yoon, and J. E. Kim. 2016. A review of fermented foods with beneficial effects on brain and cognitive function. Preventive Nutrition and Food Science 21 (4):297–309. doi: 10.3746/pnf.2016.21.4.297.
  • Kim, D.-H., H. Kim, D. Jeong, I.-B. Kang, J.-W. Chon, H.-S. Kim, K.-Y. Song, and K.-H. Seo. 2017. Kefir alleviates obesity and hepatic steatosis in high-fat diet-fed mice by modulation of gut microbiota and mycobiota: Targeted and untargeted community analysis with correlation of biomarkers. The Journal of Nutritional Biochemistry 44:35–43. doi: 10.1016/j.jnutbio.2017.02.014.
  • Kim, J., E. Choi, Y. Hong, Y. Song, J. Han, S. Lee, and K. Cho. 2016. Changes in Korean adult females’ intestinal microbiota resulting from kimchi intake. Journal of Nutrition & Food Sciences 6 (486)10)::4172. doi: 10.4172/2155-9600.1000486.
  • Kim, J., S. H. Kim, D. S. Lee, D. J. Lee, S. H. Kim, S. Chung, and H. O. Yang. 2013. Effects of fermented ginseng on memory impairment and β-amyloid reduction in Alzheimer’s disease experimental models. Journal of Ginseng Research 37 (1):100–7. doi: 10.5142/jgr.2013.37.100.
  • Kobek-Kjeldager, C., A. A. Schönherz, N. Canibe, and L. J. Pedersen. 2022. Diet and microbiota-gut-brain axis in relation to tail biting in pigs: A review. Applied Animal Behaviour Science 246:105514. doi: 10.1016/j.applanim.2021.105514.
  • Koskinen, T. T., H. E. Virtanen, S. Voutilainen, T. P. Tuomainen, J. Mursu, and J. K. Virtanen. 2018. Intake of fermented and non-fermented dairy products and risk of incident CHD: The Kuopio Ischaemic Heart Disease risk factor study. British Journal of Nutrition 120 (11):1288–97. doi: 10.1017/S0007114518002830.
  • Kowalski, K, and A. Mulak. 2019. Brain-gut-microbiota axis in Alzheimer’s disease. Journal of Neurogastroenterology and Motility 25 (1):48–60. doi: 10.5056/jnm18087.
  • Lay, C., M. Sutren, P. Lepercq, C. Juste, L. Rigottier-Gois, E. Lhoste, R. Lemée, P. L. Ruyet, J. Doré, and C. Andrieux. 2004. Influence of camembert consumption on the composition and metabolism of intestinal microbiota: A study in human microbiota-associated rats. The British Journal of Nutrition 92 (3):429–38. doi: 10.1079/bjn20041192.
  • Lee, C.-C., C.-P. Chang, C.-J. Lin, H.-L. Lai, Y.-H. Kao, S.-J. Cheng, H.-M. Chen, Y.-P. Liao, E. Faivre, L. Buée, et al. 2018. Adenosine augmentation evoked by an ENT1 inhibitor improves memory impairment and neuronal plasticity in the APP/PS1 mouse model of Alzheimer’s disease. Molecular Neurobiology 55 (12):8936–52. doi: 10.1007/s12035-018-1030-z.
  • Lee, L. W., M. W. Cheong, P. Curran, B. Yu, and S. Q. Liu. 2015. Coffee fermentation and flavor-an intricate and delicate relationship. Food Chemistry 185:182–91. doi: 10.1016/j.foodchem.2015.03.124.
  • Lisko, D., G. Johnston, and C. Johnston. 2017. Effects of dietary yogurt on the healthy human gastrointestinal (GI) microbiome. Microorganisms 5 (1):6. doi: 10.3390/microorganisms5010006.
  • Liu, R. T., R. F. Walsh, and A. E. Sheehan. 2019. Prebiotics and probiotics for depression and anxiety: A systematic review and meta-analysis of controlled clinical trials. Neuroscience & Biobehavioral Reviews 102:13–23. doi: 10.1016/j.neubiorev.2019.03.023.
  • Liu, T.-H., J. Chiou, and T.-Y. Tsai. 2016. Effects of Lactobacillus plantarum TWK10-fermented soymilk on deoxycorticosterone acetate-salt-induced hypertension and associated dementia in rats. Nutrients 8 (5):260. doi: 10.3390/nu8050260.
  • Lorea Baroja, M., P. Kirjavainen, S. Hekmat, and G. Reid. 2007. Anti-inflammatory effects of probiotic yogurt in inflammatory bowel disease patients . Clinical and Experimental Immunology 149 (3):470–9. doi: 10.1111/j.1365-2249.2007.03434.x.
  • Louis, P, and H. J. Flint. 2017. Formation of propionate and butyrate by the human colonic microbiota. Environmental Microbiology 19 (1):29–41. doi: 10.1111/1462-2920.13589.
  • Lovegrove, J. A, and D. I. Givens. 2016. Dairy food products: Good or bad for cardiometabolic disease? Nutrition Research Reviews 29 (2):249–67. doi: 10.1017/S0954422416000160.
  • Luo, X., J. Sui, B. M. Birmann, K. L. Ivey, F. K. Tabung, Y. Wu, W. Yang, K. Wu, S. Ogino, H. Liu, et al. 2021. Association between yogurt consumption and plasma soluble CD14 in two prospective cohorts of US adults. European Journal of Nutrition 60 (2):929–38. doi: 10.1007/s00394-020-02303-3.
  • Lv, J., Z. X. Yang, W. H. Xu, S. J. Li, H. P. Liang, C. F. Ji, C. X. Yu, B. W. Zhu, and X. P. Lin. 2019. Relationships between bacterial community and metabolites of sour meat at different temperature during the fermentation. International Journal of Food Microbiology 307:108286. doi: 10.1016/j.ijfoodmicro.2019.108286.
  • Macori, G, and P. D. Cotter. 2018. Novel insights into the microbiology of fermented dairy foods. Current Opinion in Biotechnology 49:172–8. doi: 10.1016/j.copbio.2017.09.002.
  • Maiuolo, J., M. Gliozzi, V. Musolino, C. Carresi, F. Scarano, S. Nucera, M. Scicchitano, F. Oppedisano, F. Bosco, S. Ruga, et al. 2021. The contribution of gut microbiota–brain axis in the development of brain disorders. Frontiers in Neuroscience 15:616883. doi: 10.3389/fnins.2021.616883.
  • Marco, M. L., D. Heeney, S. Binda, C. J. Cifelli, P. D. Cotter, B. Foligné, M. Gänzle, R. Kort, G. Pasin, A. Pihlanto, et al. 2017. Health benefits of fermented foods: Microbiota and beyond. Current Opinion in Biotechnology 44:94–102. doi: 10.1016/j.copbio.2016.11.010.
  • Marco, M. L., M. E. Sanders, M. Gänzle, M. C. Arrieta, P. D. Cotter, L. De Vuyst, C. Hill, W. Holzapfel, S. Lebeer, D. Merenstein, et al. 2021. The international scientific association for probiotics and prebiotics (ISAPP) consensus statement on fermented foods. Nature Reviews Gastroenterology & Hepatology 18 (3):196–13. doi: 10.1038/s41575-020-00390-5.
  • Marx, W., A. Scholey, J. Firth, N. M. D’Cunha, M. Lane, M. Hockey, M. M. Ashton, J. F. Cryan, A. O’Neil, N. Naumovski, et al. 2020. Prebiotics, probiotics, fermented foods and cognitive outcomes: A meta-analysis of randomized controlled trials. Neuroscience and Biobehavioral Reviews 118:472–84. doi: 10.1016/j.neubiorev.2020.07.036.
  • Marzano, M., B. Fosso, C. Manzari, F. Grieco, M. Intranuovo, G. Cozzi, G. Mulè, G. Scioscia, G. Valiente, A. Tullo, et al. 2016. Complexity and dynamics of the winemaking bacterial communities in berries, musts, and wines from Apulian grape cultivars through time and space. PLoS One 11 (6):e0157383. doi: 10.1371/journal.pone.0157383.
  • Marzban, F., G. Azizi, S. Afraei, R. Sedaghat, M. H. Seyedzadeh, A. Razavi, and A. Mirshafiey. 2015. Kombucha tea ameliorates experimental autoimmune encephalomyelitis in mouse model of multiple sclerosis. Food and Agricultural Immunology 26 (6):782–93. doi: 10.1080/09540105.2015.1036353.
  • Mayer, E. A., K. Tillisch, and A. Gupta. 2015. Gut/brain axis and the microbiota. The Journal of Clinical Investigation 125 (3):926–38. doi: 10.1172/JCI76304.
  • Mohajeri, M. H., R. J. Brummer, R. A. Rastall, R. K. Weersma, H. J. Harmsen, M. Faas, and M. Eggersdorfer. 2018. The role of the microbiome for human health: From basic science to clinical applications. European Journal of Nutrition 57 (Suppl 1):1–14. doi: 10.1007/s00394-018-1703-4.
  • Mohedano, M., P. López, G. Spano, and P. Russo. 2015. Controlling the formation of biogenic amines in fermented foods. In Advances in Fermented Foods and Beverages 273–310. doi: 10.1016/B978-1-78242-015-6.00012-8.
  • Mozaffarian, D., T. Hao, E. B. Rimm, W. C. Willett, and F. B. Hu. 2011. Changes in diet and lifestyle and long-term weight gain in women and men. New England Journal of Medicine 364 (25):2392–404. doi: 10.1056/NEJMoa1014296.
  • Nagashima, Y., T. Kondo, M. Sakata, J. Koh, and H. Ito. 2016. Effects of soybean ingestion on pharmacokinetics of levodopa and motor symptoms of Parkinson’s disease: In relation to the effects of Mucuna pruriens. Journal of the Neurological Sciences 361:229–34. doi: 10.1016/j.jns.2016.01.005.
  • Nielsen, E. S., E. Garnås, K. J. Jensen, L. H. Hansen, P. S. Olsen, C. Ritz, L. Krych, and D. S. Nielsen. 2018. Lacto-fermented sauerkraut improves symptoms in IBS patients independent of product pasteurisation: A pilot study. Food & Function 9 (10):5323–35. doi: 10.1039/C8FO00968F.
  • O’Connor, P. M., R. P. Ross, C. Hill, and P. D. Cotter. 2015. Antimicrobial antagonists against food pathogens: A bacteriocin perspective. Current Opinion in Food Science 2:51–7. doi: 10.1016/j.cofs.2015.01.004.
  • Ohsawa, K., F. Nakamura, N. Uchida, S. Mizuno, and H. Yokogoshi. 2018. Lactobacillus helveticus-fermented milk containing lactononadecapeptide (NIPPLTQTPVVVPPFLQPE) improves cognitive function in healthy middle-aged adults: A randomised, double-blind, placebo-controlled trial . International Journal of Food Sciences and Nutrition 69 (3):369–76. doi: 10.1080/09637486.2017.1365824.
  • Ohsawa, K., N. Uchida, K. Ohki, Y. Nakamura, and H. Yokogoshi. 2015. Lactobacillus helveticus–fermented milk improves learning and memory in mice. Nutritional Neuroscience 18 (5):232–40. doi: 10.1179/1476830514Y.0000000122.
  • Oleskin, A. V, and B. A. Shenderov. 2019. Probiotics and psychobiotics: The role of microbial neurochemicals. Probiotics and Antimicrobial Proteins 11 (4):1071–85. doi: 10.1007/s12602-019-09583-0.
  • Ozawa, M., T. Ninomiya, T. Ohara, Y. Doi, K. Uchida, T. Shirota, K. Yonemoto, T. Kitazono, and Y. Kiyohara. 2013. Dietary patterns and risk of dementia in an elderly Japanese population: The hisayama study. The American Journal of Clinical Nutrition 97 (5):1076–82. doi: 10.3945/ajcn.112.045575.
  • Pasolli, E., F. De Filippis, I. E. Mauriello, F. Cumbo, A. M. Walsh, J. Leech, P. D. Cotter, N. Segata, and D. Ercolini. 2020. Large-scale genome-wide analysis links lactic acid bacteria from food with the gut microbiome. Nature Communications 11 (1):1–12. doi: 10.1038/s41467-020-16438-8.
  • Pes, G. M., F. Tolu, M. P. Dore, G. P. Sechi, A. Errigo, A. Canelada, and M. Poulain. 2015. Male longevity in Sardinia, a review of historical sources supporting a causal link with dietary factors. European Journal of Clinical Nutrition 69 (4):411–8. doi: 10.1038/ejcn.2014.230.
  • Pflaum, T., T. Hausler, C. Baumung, S. Ackermann, T. Kuballa, J. Rehm, and D. W. Lachenmeier. 2016. Carcinogenic compounds in alcoholic beverages: An update. Archives of Toxicology 90 (10):2349–67. doi: 10.1007/s00204-016-1770-3.
  • Pignataro, D., S. Francia, F. Zanetta, G. Brenna, S. Brandini, A. Olivieri, A. Torroni, G. Biamonti, and A. Montecucco. 2017. A missense MT-ND5 mutation in differentiated Parkinson disease cytoplasmic hybrid induces ROS-dependent DNA damage response amplified by Drosha. Scientific Reports 7 (1):1–14. doi: 10.1038/s41598-017-09910-x.
  • Pistollato, F., R. C. Iglesias, R. Ruiz, S. Aparicio, J. Crespo, L. D. Lopez, P. P. Manna, F. Giampieri, and M. Battino. 2018. Nutritional patterns associated with the maintenance of neurocognitive functions and the risk of dementia and Alzheimer’s disease: A focus on human studies. Pharmacological Research 131:32–43. doi: 10.1016/j.phrs.2018.03.012.
  • Plé, C., J. Breton, C. Daniel, and B. Foligné. 2015. Maintaining gut ecosystems for health: Are transitory food bugs stowaways or part of the crew? International Journal of Food Microbiology 213:139–43. doi: 10.1016/j.ijfoodmicro.2015.03.015.
  • Pluta, R., M. Ułamek-Kozioł, S. Januszewski, and S. J. Czuczwar. 2020. Gut microbiota and pro/prebiotics in Alzheimer’s disease. Aging 12 (6):5539–50. doi: 10.18632/aging.102930.
  • Praagman, J., G. W. Dalmeijer, Y. T. van der Schouw, S. S. Soedamah-Muthu, W. M. Monique Verschuren, H. Bas Bueno-de-Mesquita, J. M. Geleijnse, and J. W. J. Beulens. 2015. The relationship between fermented food intake and mortality risk in the European Prospective Investigation into cancer and nutrition-Netherlands cohort. The British Journal of Nutrition 113 (3):498–506. doi: 10.1017/S0007114514003766.
  • Ropars, J., M. López-Villavicencio, A. Snirc, S. Lacoste, and T. Giraud. 2017. Blue cheese-making has shaped the population genetic structure of the mould Penicillium roqueforti. Plos One 12 (3):e0171387. doi: 10.1371/journal.pone.0171387.
  • Şanlier, N., B. B. Gökcen, and A. C. Sezgin. 2019. Health benefits of fermented foods. Critical Reviews in Food Science and Nutrition 59 (3):506–27. doi: 10.1080/10408398.2017.1383355.
  • Savaiano, D. A, and R. W. Hutkins. 2021. Yogurt, cultured fermented milk, and health: A systematic review. Nutrition Reviews 79 (5):599–614. doi: 10.1093/nutrit/nuaa013.
  • Schmidt, K., P. J. Cowen, C. J. Harmer, G. Tzortzis, S. Errington, and P. W. Burnet. 2015. Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers. Psychopharmacology 232 (10):1793–801. doi: 10.1007/s00213-014-3810-0.
  • Selhub, E. M., A. C. Logan, and A. C. Bested. 2014. Fermented foods, microbiota, and mental health: Ancient practice meets nutritional psychiatry. Journal of Physiological Anthropology 33 (1):2–12. doi: 10.1186/1880-6805-33-2.
  • Sen, T., C. R. Cawthon, B. T. Ihde, A. Hajnal, P. M. DiLorenzo, B. Claire, and K. Czaja. 2017. Diet-driven microbiota dysbiosis is associated with vagal remodeling and obesity. Physiology & Behavior 173:305–17. doi: 10.1016/j.physbeh.2017.02.027.
  • Silva, Y. P., A. Bernardi, and R. L. Frozza. 2020. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Frontiers in Endocrinology 11:25. doi: 10.3389/fendo.2020.00025.
  • Singh, V., S. Roth, G. Llovera, R. Sadler, D. Garzetti, B. Stecher, M. Dichgans, and A. Liesz. 2016. Microbiota dysbiosis controls the neuroinflammatory response after stroke. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 36 (28):7428–40. doi: 10.1523/JNEUROSCI.1114-16.2016.
  • Sirilun, S., B. S. Sivamaruthi, P. Kesika, S. Peerajan, and C. Chaiyasut. 2017. Lactic acid bacteria mediated fermented soybean as a potent nutraceutical candidate. Asian Pacific Journal of Tropical Biomedicine 7 (10):930–6. doi: 10.1016/j.apjtb.2017.09.007.
  • Sivamaruthi, B. S., P. Kesika, and C. Chaiyasut. 2018. Impact of fermented foods on human cognitive function: A review of outcome of clinical trials. Scientia Pharmaceutica 86 (2):22. doi: 10.3390/scipharm86020022.
  • Sheng, L., and L. Wang. 2021. The microbial safety of fish and fish products: Recent advances in understanding its significance, contamination sources, and control strategies Comprehensive Reviews in Food Science and Food Safety 20 (1):738–786.
  • Sjamsuridzal, W., M. Khasanah, R. Febriani, Y. Vebliza, A. Oetari, I. Santoso, and I. Gandjar. 2021. The effect of the use of commercial tempeh starter on the diversity of Rhizopus tempeh in Indonesia. Scientific Reports 11 (1):1–10. doi: 10.1038/s41598-021-03308-6.
  • Steinkraus, K. H. 2018. Introduction to indigenous fermented foods. Handbook of indigenous fermented foods. Boca Raton: CRC Press. 1–6. doi: 10.1201/9780203752821.
  • Stiemsma, L. T., R. E. Nakamura, J. G. Nguyen, and K. B. Michels. 2020. Does consumption of fermented foods modify the human gut microbiota? The Journal of Nutrition 150 (7):1680–92. doi: 10.1093/jn/nxaa077.
  • Stilling, R. M., M. Van de Wouw, G. Clarke, C. Stanton, T. G. Dinan, and J. F. Cryan. 2016. The neuropharmacology of butyrate: The bread and butter of the microbiota-gut-brain axis? Neurochemistry International 99:110–32. doi: 10.1016/j.neuint.2016.06.011.
  • Suarsana, I. N., I. H. Utama, and I. M. Kardena. 2020. Tempe extract reduces cell damage in the liver and kidneys after intensive physical exercise in rats. Veterinary World 13 (8):1510–6. doi: 10.14202/vetworld.2020.1510
  • Surya, R, and A. Romulo. 2020. Tempeh extract protects HepG2 cells against oxidative stress-induced cell death. Journal of Physics: Conference Series 1655 (1):012110. doi: 10.1088/1742-6596/1655/1/012110.
  • Syrokou, M. K., S. Tziompra, E.-E. Psychogiou, S.-D. Mpisti, S. Paramithiotis, L. Bosnea, M. Mataragas, P. N. Skandamis, and E. H. Drosinos. 2021. Technological and safety attributes of lactic acid bacteria and yeasts isolated from spontaneously fermented Greek wheat sourdoughs. Microorganisms 9 (4):671. doi: 10.3390/microorganisms9040671.
  • Takata, K., T. Tomita, T. Okuno, M. Kinoshita, T. Koda, J. A. Honorat, M. Takei, K. Hagihara, T. Sugimoto, H. Mochizuki, et al. 2015. Dietary yeasts reduce inflammation in central nerve system via microflora. Annals of Clinical and Translational Neurology 2 (1):56–66. doi: 10.1002/acn3.153.
  • Takewaki, D., W. Suda, W. Sato, L. Takayasu, N. Kumar, K. Kimura, N. Kaga, T. Mizuno, S. Miyake, M. Hattori, et al. 2020. Alterations of the gut ecological and functional microenvironment in different stages of multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America 117 (36):22402–12. doi: 10.1073/pnas.2011703117.
  • Tamang, J. P., P. D. Cotter, A. Endo, N. S. Han, R. Kort, S. Q. Liu, B. Mayo, N. Westerik, and R. Hutkins. 2020. Fermented foods in a global age: East meets West. Comprehensive Reviews in Food Science and Food Safety 19 (1):184–217. doi: 10.3389/fmicb.2016.00578.
  • Tamang, J., D. Shin, S. Jung, and S. Chae. 2016. Functional properties of microorganisms in fermented foods. Frontiers in Microbiology 7:578. doi: 10.3389/fmicb.2016.00578.
  • Tillisch, K., J. Labus, L. Kilpatrick, Z. Jiang, J. Stains, B. Ebrat, D. Guyonnet, S. Legrain-Raspaud, B. Trotin, B. Naliboff, et al. 2013. Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology 144 (7):1394–401. doi: 10.1053/j.gastro.2013.02.04.
  • Ton, A. M. M., B. P. Campagnaro, G. A. Alves, R. Aires, L. Z. Côco, C. M. Arpini, T. Guerra E Oliveira, M. Campos-Toimil, S. S. Meyrelles, T. M. C. Pereira, et al. 2020. Oxidative stress and dementia in Alzheimer’s patients: Effects of synbiotic supplementation. Oxidative Medicine and Cellular Longevity 2020:2638703. Article ID 2638703, pages, 2020. doi: 10.1155/2020/2638703.
  • Tseng, W.-T., Y.-W. Hsu, and T.-M. Pan. 2016. The ameliorative effect of Monascus purpureus NTU 568-fermented rice extracts on 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells and the rat model of Parkinson’s disease. Food & Function 7 (2):752–62. doi: 10.1039/c5fo00976f.
  • Umbrello, G, and S. Esposito. 2016. Microbiota and neurologic diseases: Potential effects of probiotics. Journal of Translational Medicine 14 (1):1–11. doi: 10.1186/s12967-016-1058-7.
  • Unno, T., J. H. Choi, H. G. Hur, M. J. Sadowsky, Y. T. Ahn, C. S. Huh, G. B. Kim, and C. J. Cha. 2015. Changes in human gut microbiota influenced by probiotic fermented milk ingestion. Journal of Dairy Science 98 (6):3568–76. doi: 10.1039/c5fo00976f.
  • Veiga, P., N. Pons, A. Agrawal, R. Oozeer, D. Guyonnet, R. Brazeilles, J.-M. Faurie, J. E. T. van Hylckama Vlieg, L. A. Houghton, P. J. Whorwell, et al. 2014. Changes of the human gut microbiome induced by a fermented milk product. Scientific Reports 4:6328. doi: 10.1038/srep06328.
  • Vogt, N. M., R. L. Kerby, K. A. Dill-McFarland, S. J. Harding, A. P. Merluzzi, S. C. Johnson, C. M. Carlsson, S. Asthana, H. Zetterberg, K. Blennow, et al. 2017. Gut microbiome alterations in Alzheimer’s disease. Scientific Reports 7 (1):1–11. doi: 10.1038/s41598-017-13601-y.
  • Waise, T. Z., K. Toshinai, F. Naznin, C. NamKoong, A. S. M. Moin, H. Sakoda, and M. Nakazato. 2015. One-day high-fat diet induces inflammation in the nodose ganglion and hypothalamus of mice. Biochemical and Biophysical Research Communications 464 (4):1157–62. doi: 10.1016/j.bbrc.2015.07.097.
  • Walker, E. F., H. D. Trotman, B. D. Pearce, J. Addington, K. S. Cadenhead, B. A. Cornblatt, R. Heinssen, D. H. Mathalon, D. O. Perkins, L. J. Seidman, et al. 2013. Cortisol levels and risk for psychosis: Initial findings from the North American prodrome longitudinal study. Biological Psychiatry 74 (6):410–7. doi: 10.1016/j.biopsych.2013.02.016.
  • Walsh, A. M., F. Crispie, K. Kilcawley, O. O’Sullivan, M. G. O’Sullivan, M. J. Claesson, and P. D. Cotter. 2016. Microbial succession and flavor production in the fermented dairy beverage kefir. mSystems 1 (5):4. doi: 10.1128/mSystems.00052-16.
  • Wang, Y. Q., C. S. Li, L. H. Li, X. Q. Yang, Y. Y. Wu, Y. Q. Zhao, and Y. Wei. 2018. Effect of bacterial community and free amino acids on the content of biogenic amines during fermentation of Yu-lu, a Chinese fermented fish sauce. Journal of Aquatic Food Product Technology 27 (4):496–507. doi: 10.1080/10498850.2018.1450573.
  • Wang, Y. Q., C. S. Li, Y. Q. Zhao, L. H. Li, X. Q. Yang, Y. Y. Wu, S. J. Chen, J. W. Cen, S. L. Yang, and D. Q. Yang. 2020. Novel insight into the formation mechanism of volatile flavor in Chinese fish sauce (Yu-lu) based on molecular sensory and metagenomics analyses. Food Chemistry 323:126839. doi: 10.1016/j.foodchem.2020.126839.
  • Wilburn, J. R, and E. P. Ryan. 2016. Fermented foods in health promotion and disease prevention, in fermented foods in health and disease: An overview. Academic Press 1–6. doi: 10.1016/B978-0-12-802309-9.00001-7.
  • Yamamoto, B., Y. Suzuki, T. Yonezu, N. Mizushima, N. Watanabe, T. Sato, S. Inoue, and S. Inokuchi. 2018. Cha-Koji, comprising green tea leaves fermented with Aspergillus luchuensis var kawachii kitahara, increases regulatory T cell production in mice and humans. Bioscience, Biotechnology, and Biochemistry 82 (5):885–92. doi: 10.1080/09168451.2018.1443789.
  • Yang, H. J., D. Y. Kwon, H. J. Kim, M. J. Kim, D. Y. Jung, H. J. Kang, D. S. Kim, S. Kang, N. R. Moon, B. K. Shin, et al. 2015. Fermenting soybeans with Bacillus licheniformis potentiates their capacity to improve cognitive function and glucose homeostaisis in diabetic rats with experimental Alzheimer’s type dementia. European Journal of Nutrition 54 (1):77–88. doi: 10.1007/s00394-014-0687-y.
  • Yang, K., C. Wang, and T. Sun. 2019. The roles of intracellular chaperone proteins, sigma receptors, in Parkinson’s disease (PD) and Major depressive disorder (MDD)). Frontiers in Pharmacology 10:528. doi: 10.3389/fphar.2019.00528.
  • Yang, Y. J, and B. S. Sheu. 2012. Probiotics-containing yogurts suppress Helicobacter pylori load and modify immune response and intestinal microbiota in the Helicobacter pylori-infected children: Yogurt benefits to gut microbiota and immunity. Helicobacter 17 (4):297–304. doi: 10.1111/j.1523-5378.2012.00941.x.
  • Yilmaz, I., M. E. Dolar, and H. Ozpinar. 2019. Effect of administering kefir on the changes in fecal microbiota and symptoms of inflammatory bowel disease: A randomized controlled trial. The Turkish Journal of Gastroenterology: The Official Journal of Turkish Society of Gastroenterology 30 (3):242–53. doi: 10.5152/tjg.2018.18227.
  • Yin, J., S. Liao, Y. He, S. Wang, G. Xia, F. Liu, J. Zhu, C. You, Q. Chen, L. Zhou, et al. 2015. Dysbiosis of gut microbiota with reduced trimethylamine‐N‐oxide level in patients with large‐artery atherosclerotic stroke or transient ischemic attack. Journal of the American Heart Association 4 (11) doi: 10.5152/tjg.2018.18227.
  • Yousefi, B., P. Kokhaei, F. Mehranfar, A. Bahar, A. Abdolshahi, A. Emadi, and M. Eslami. 2022. The role of the host microbiome in autism and neurodegenerative disorders and effect of epigenetic procedures in the brain functions. Neuroscience & Biobehavioral Reviews 132:998–1009. doi: 10.1016/j.neubiorev.2021.10.046.
  • Yu, L., X. Han, S. Cen, H. Duan, S. Feng, Y. Xue, F. Tian, J. Zhao, H. Zhang, Q. Zhai, et al. 2020. Beneficial effect of GABA-rich fermented milk on insomnia involving regulation of gut microbiota. Microbiological Research 233:126409. doi: 10.1016/j.micres.2020.126409.
  • Yu, Y., F. Raka, and K. Adeli. 2019. The role of the gut microbiota in lipid and lipoprotein metabolism. Journal of Clinical Medicine 8 (12):2227. doi: 10.3390/jcm8122227.
  • Zang, J. H., Y. S. Xu, W. S. Xia, D. W. Yu, P. Gao, Q. X. Jiang, and F. Yang. 2018. Dynamics and diversity of microbial community succession during fermentation of Suan Yu, a Chinese traditional fermented fish, determined by high throughput sequencing. Food Research International 111:565–73. doi: 10.1016/j.foodres.2018.05.076.
  • Zang, J., Y. Xu, W. Xia, J. M. Regenstein, D. Yu, F. Yang, and Q. Jiang. 2020. Correlations between microbiota succession and flavor formation during fermentation of Chinese low-salt fermented common carp (Cyprinus carpio L.) inoculated with mixed starter cultures. Food Microbiology 90:103487. doi: 10.1016/j.fm.2020.103487.
  • Zhao, Y., P. Dua, and W. Lukiw. 2015. Microbial sources of amyloid and relevance to amyloidogenesis and Alzheimer’s disease (AD)). Journal of Alzheimer’s Disease & Parkinsonism 5 (1):177. doi: 10.4172/2161-0460.1000177.
  • Zhou, J., M. Chen, S. Wu, X. Liao, J. Wang, Q. Wu, M. Zhuang, and Y. Ding. 2020. A review on mushroom-derived bioactive peptides: Preparation and biological activities. Food Research International (Ottawa, Ont.) 134:109230. doi: 10.1016/j.foodres.2020.109230.
  • Zmora, N., G. Zilberman-Schapira, J. Suez, U. Mor, M. Dori-Bachash, S. Bashiardes, E. Kotler, M. Zur, D. Regev- Lehavi, B. R. Brik, et al. 2018. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell 174 (6):1388–405. and doi: 10.1016/j.cell.2018.08.04.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.