774
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Novel graphene oxide/polymer composite membranes for the food industry: structures, mechanisms and recent applications

, &

References

  • Abraham, J., K. S. Vasu, C. D. Williams, K. Gopinadhan, Y. Su, C. T. Cherian, J. Dix, E. Prestat, S. J. Haigh, I. V. Grigorieva, et al. 2017. Tunable sieving of ions using graphene oxide membranes. Nature Nanotechnology 12 (6):546–50. doi: 10.1038/nnano.2017.21.
  • Abuabdou, S. M. A., M. J. K. Bashir, N. Choon Aun, and S. Sethupathi. 2018. Applicability of anaerobic membrane bioreactors for landfill leachate treatment: Review and opportunity. IOP Conference Series: Earth and Environmental Science 140 (1):012033. doi: 10.1088/1755-1315/140/1/012033.
  • Ahankari, S. S., A. R. Subhedar, S. S. Bhadauria, and A. Dufresne. 2021. Nanocellulose in food packaging: A review. Carbohydrate Polymers 255:117479. doi: 10.1016/j.carbpol.2020.117479.
  • Ahmad, H., Z. Huang, P. Kanagaraj, and C. Liu. 2020. Separation and preconcentration of arsenite and other heavy metal ions using graphene oxide laminated with protein molecules. Journal of Hazardous Materials 384:121479.
  • Ajani, C. K., Z. W. Zhu, and D.-W. Sun. 2022. In situ investigation of cellular water transport and morphological changes during vacuum cooling of steamed breads. Food Chemistry, 381:132211. doi: 10.1016/j.foodchem.2022.132211.
  • Akin, O., F. Temelli, and S. Köseoğlu. 2012. Membrane applications in functional foods and nutraceuticals. Critical Reviews in Food Science and Nutrition 52 (4):347–71. doi: 10.1080/10408398.2010.500240.
  • Akther, N., Z. Yuan, Y. Chen, S. Lim, S. Phuntsho, N. Ghaffour, H. Matsuyama, and H. Shon. 2020. Influence of graphene oxide lateral size on the properties and performances of forward osmosis membrane. Desalination 484:114421. doi: 10.1016/j.desal.2020.114421.
  • Al Aani, S., T. N. Mustafa, and N. Hilal. 2020. Ultrafiltration membranes for wastewater and water process engineering: A comprehensive statistical review over the past decade. Journal of Water Process Engineering 35:101241. doi: 10.1016/j.jwpe.2020.101241.
  • Anand, A., B. Unnikrishnan, J.-Y. Mao, H.-J. Lin, and C.-C. Huang. 2018. Graphene-based nanofiltration membranes for improving salt rejection, water flux and antifouling — A review. Desalination 429:119–33. doi: 10.1016/j.desal.2017.12.012.
  • Anis, S. F., B. S. Lalia, R. Hashaikeh, and N. Hilal. 2022. Titanium coating on ultrafiltration inorganic membranes for fouling control. Separation and Purification Technology 282:119997. doi: 10.1016/j.seppur.2021.119997.
  • Arfat, Y. A., J. Ahmed, M. Ejaz, and M. Mullah. 2018. Polylactide/graphene oxide nanosheets/clove essential oil composite films for potential food packaging applications. International Journal of Biological Macromolecules 107 (Pt A):194–203.
  • Arriagada, P., H. Palza, P. Palma, M. Flores, and P. Caviedes. 2018. Poly(lactic acid) composites based on graphene oxide particles with antibacterial behavior enhanced by electrical stimulus and biocompatibility. Journal of Biomedical Materials Research. Part A 106 (4):1051–60.
  • Ayyaru, S., J. Choi, and Y.-H. Ahn. 2018. Biofouling reduction in a MBR by the application of a lytic phage on a modified nanocomposite membrane. Environmental Science: Water Research & Technology 4 (10):1624–38.
  • Begum, S., A. Pramanik, D. Davis, S. Patibandla, K. Gates, Y. Gao, and P. C. Ray. 2020. 2D and heterostructure nanomaterial based strategies for combating drug-resistant bacteria. ACS Omega 5 (7):3116–30.
  • Bhattacharjee, C., V. K. Saxena, and S. Dutta. 2017. Fruit juice processing using membrane technology: A review. Innovative Food Science & Emerging Technologies 43:136–53. doi: 10.1016/j.ifset.2017.08.002.
  • Bianco, A., H.-M. Cheng, T. Enoki, Y. Gogotsi, R. H. Hurt, N. Koratkar, T. Kyotani, M. Monthioux, C. R. Park, J. M. D. Tascon, et al. 2013. All in the graphene family — A recommended nomenclature for two-dimensional carbon materials. Carbon 65:1–6. doi: 10.1016/j.carbon.2013.08.038.
  • Chen, J., H. Peng, X. Wang, F. Shao, Z. Yuan, and H. Han. 2014. Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale 6 (3):1879–89. doi: 10.1039/c3nr04941h.
  • Chen, X.-L., L.-F. Ai, Y.-Q. Cao, Q.-X. Nian, Y.-Q. Jia, Y.-L. Hao, M.-M. Wang, and X.-S. Wang. 2019. Rapid determination of sulfonamides in chicken muscle and milk using efficient graphene oxide-based monolith on-line solid-phase extraction coupled with liquid chromatography–tandem mass spectrometry. Food Analytical Methods 12 (1):271–81. doi: 10.1007/s12161-018-1358-z.
  • Coleman, M, and X. J. Tang. 2015. Diffusive transport of two charge equivalent and structurally similar ruthenium complex ions through graphene oxide membranes. Nano Research 8 (4):1128–38. doi: 10.1007/s12274-014-0593-x.
  • Díez-Betriu, X., F. J. Mompeán, C. Munuera, J. Rubio-Zuazo, R. Menéndez, G. R. Castro, and A. de Andrés. 2014. Graphene-oxide stacking and defects in few-layer films: Impact of thermal and chemical reduction. Carbon 80:40–9. doi: 10.1016/j.carbon.2014.08.016.
  • Dimiev, A, and S. Eigler. 2016. Graphene oxide: Fundamentals and applications. Chichester, UK: John Wiley & Sons, Ltd.
  • Ding, R., H. Zhang, Y. Li, J. Wang, B. Shi, H. Mao, J. Dang, and J. Liu. 2015. Graphene oxide-embedded nanocomposite membrane for solvent resistant nanofiltration with enhanced rejection ability. Chemical Engineering Science 138:227–38. doi: 10.1016/j.ces.2015.08.019.
  • Eigler, S, and A. Hirsch. 2014. Chemistry with graphene and graphene oxide-challenges for synthetic chemists. Angewandte Chemie (International ed. in English) 53 (30):7720–38.
  • Erickson, K., R. Erni, Z. Lee, N. Alem, W. Gannett, and A. Zettl. 2010. Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Advanced Materials (Deerfield Beach, Fla.) 22 (40):4467–72.
  • Fang, C., J. Sun, B. Zhang, Y. Sun, L. Zhu, and H. Matsuyama. 2018. Preparation of positively charged composite nanofiltration membranes by quaternization crosslinking for precise molecular and ionic separations. Journal of Colloid and Interface Science 531:168–80. doi: 10.1016/j.jcis.2018.07.034.
  • Fang, Q., X. Zhou, W. Deng, Z. Zheng, and Z. Liu. 2016. Freestanding bacterial cellulose-graphene oxide composite membranes with high mechanical strength for selective ion permeation. Scientific Reports 6:33185.
  • Fei, F., L. Cseri, G. Szekely, and C. F. Blanford. 2018. Robust covalently cross-linked polybenzimidazole/graphene oxide membranes for high-flux organic solvent nanofiltration. ACS Applied Materials & Interfaces 10 (18):16140–7. doi: 10.1021/acsami.8b03591.
  • François, P., F. d F. Andreia, N. Siamak, and E. Menachem. Nano, E. J. A. 2015. Antimicrobial properties of graphene oxide nanosheets: Why size matters. ACS Nano 9 (7):7226–36.
  • Giwa, A, and S. W. Hasan. 2020. Novel polyethersulfone-functionalized graphene oxide (PES-fGO) mixed matrix membranes for wastewater treatment. Separation and Purification Technology 241:116735. doi: 10.1016/j.seppur.2020.116735.
  • Gogoi, A., T. J. Konch, K. Raidongia, and K. Anki Reddy. 2018. Water and salt dynamics in multilayer graphene oxide (GO) membrane: Role of lateral sheet dimensions. Journal of Membrane Science 563:785–93. doi: 10.1016/j.memsci.2018.06.031.
  • Guan, K., J. Shen, G. Liu, J. Zhao, H. Zhou, and W. Jin. 2017. Spray-evaporation assembled graphene oxide membranes for selective hydrogen transport. Separation and Purification Technology 174:126–35. doi: 10.1016/j.seppur.2016.10.012.
  • Guo, J., H. Bao, Y. Zhang, X. Shen, J.-K. Kim, J. Ma, and L. Shao. 2021. Unravelling intercalation-regulated nanoconfinement for durably ultrafast sieving graphene oxide membranes. Journal of Membrane Science 619:118791. doi: 10.1016/j.memsci.2020.118791.
  • Guo, X, and N. Mei. 2014. Assessment of the toxic potential of graphene family nanomaterials. Journal of Food and Drug Analysis 22 (1):105–15.
  • Gurunathan, S., J. W. Han, A. A. Dayem, V. Eppakayala, M.-R. Park, D.-N. Kwon, and J.-H. Kim. 2013. Antibacterial activity of dithiothreitol reduced graphene oxide. Journal of Industrial and Engineering Chemistry 19 (4):1280–8. doi: 10.1016/j.jiec.2012.12.029.
  • Gurzęda, B., A. Subrati, P. Florczak, Z. Kabacińska, T. Buchwald, L. Smardz, B. Peplińska, S. Jurga, and P. Krawczyk. 2020. Two-step synthesis of well-ordered layered graphite oxide with high oxidation degree. Applied Surface Science 507:145049. doi: 10.1016/j.apsusc.2019.145049.
  • Han Lyn, F., C. P. Tan, R. M. Zawawi, and Z. A. Nur Hanani. 2021. Physicochemical properties of chitosan/graphene oxide composite films and their effects on storage stability of palm-oil based margarine. Food Hydrocolloids 117:106707. doi: 10.1016/j.foodhyd.2021.106707.
  • He, H. R., D.-W. Sun, H. B. Pu, and L. J. Huang. 2020. Bridging Fe3O4@Au nanoflowers and Au@Ag nanospheres with aptamer for ultrasensitive SERS detection of aflatoxin B1. Food Chemistry, 324:126832. doi: 10.1016/j.foodchem.2020.126832.
  • Hong, S., C. Constans, M. V. Surmani Martins, Y. C. Seow, J. A. Guevara Carrio, and S. Garaj. 2017. Scalable graphene-based membranes for ionicsieving with ultrahigh charge selectivity. Nano Letters 17 (2):728–32.
  • Hou, Y., S. Lv, H. Hu, X. Wu, and L. Liu. 2021. Enhanced performance of PVDF composite ultrafiltration membrane via degradation of collagen-modified graphene oxide. Applied Sciences 11 (23):11513. doi: 10.3390/app112311513.
  • Hu, P., B. Huang, Q. Miao, H. Wang, L. Liu, W. Tai, T. Liu, Z. Li, S. Chen, and L. Qian. 2019. Ion transport behavior through thermally reduced graphene oxide membrane for precise ion separation. Crystals 9 (4):214. doi: 10.3390/cryst9040214.
  • Hu, R, and H. Zhu. 2018. Graphene-based membranes for organic solvent nanofiltration. Science China Materials 61 (3):429–31. doi: 10.1007/s40843-017-9179-x.
  • Hu, Y., M. Yue, F. Yuan, L. Yang, C. Chen, and D. Sun. 2021. Bio-inspired fabrication of highly permeable and anti-fouling ultrafiltration membranes based on bacterial cellulose for efficient removal of soluble dyes and insoluble oils. Journal of Membrane Science 621:118982. doi: 10.1016/j.memsci.2020.118982.
  • Huang, J. H., X. Q. Cheng, Y. D. Wu, Y. Q. Zhang, S. W. Li, C. H. Lau, and L. Shao. 2021. Critical operation factors and proposed testing protocol of nanofiltration membranes for developing advanced membrane materials. Advanced Composites and Hybrid Materials 4 (4):1092–101. doi: 10.1007/s42114-021-00334-w.
  • Huang, L. J., D.-W. Sun, Z. W. Zhu, H. B. Pu, and Q. Y. Wei. 2021. Reproducible, shelf-stable, and bioaffinity SERS nanotags inspired by multivariate polyphenolic chemistry for bacterial identification. Analytica Chimica Acta, 1167:338570. doi: 10.1016/j.aca.2021.338570.
  • Hussain, A., H. B. Pu, and D.-W. Sun. 2020b. Cysteamine modified core-shell nanoparticles for rapid assessment of oxamyl and thiacloprid pesticides in milk using SERS. Journal of Food Measurement and Characterization, 14 (4):2021–9. doi: 10.1007/s11694-020-00448-7.
  • Hussain, A., H. B. Pu, B. X. Hu, and D.-W. Sun. 2020a. Au@Ag-TGANPs based SERS for facile screening of thiabendazole and ferbam in liquid milk. Spectrochimica Acta Part A: Molecular Biomolecular Spectroscopy, 245:118908. doi: 10.1016/j.saa.2020.118908.
  • Jayan, H., H. B. Pu, and D.-W. Sun. 2021. Recent developments in Raman spectral analysis of microbial single cells: Techniques and applications. Critical Reviews in Food Science and Nutrition. doi: 10.1080/10408398.2021.1945534.
  • Jafarian, F., A.-K. Bordbar, A. Razmjou, and A. Zare. 2020. The fabrication of a high performance enzymatic hybrid membrane reactor (EHMR) containing immobilized candida rugosa lipase (CRL) onto graphene oxide nanosheets-blended polyethersulfone membrane. Journal of Membrane Science 613:118435. doi: 10.1016/j.memsci.2020.118435.
  • Jamroz, E., P. Kulawik, and P. Kopel. 2019. The effect of nanofillers on the functional properties of biopolymer-based films: A review. Polymers 11 (4):675. doi: 10.3390/polym11040675.
  • Jang, J., Y. T. Nam, D. Kim, Y.-J. Kim, D. W. Kim, and H.-T. Jung. 2020. Turbostratic nanoporous carbon sheet membrane for ultrafast and selective nanofiltration in viscous green solvents. Journal of Materials Chemistry A 8 (17):8292–9. doi: 10.1039/D0TA00804D.
  • Jiao, X., Y. Qiu, L. Zhang, and X. Zhang. 2017. Comparison of the characteristic properties of reduced graphene oxides synthesized from natural graphites with different graphitization degrees. RSC Advances 7 (82):52337–44. doi: 10.1039/C7RA10809E.
  • Joshi, R. K., P. Carbone, F. C. Wang, V. G. Kravets, Y. Su, I. V. Grigorieva, H. A. Wu, A. K. Geim, and R. R. J. S. Nair. 2014. Precise and ultrafast molecular sieving through graphene oxide membranes. Science (New York, N.Y.) 343 (6172):752–4.
  • Kaleekkal, N. J., A. Thanigaivelan, M. Durga, R. Girish, D. Rana, P. Soundararajan, and D. J. I. Mohan. 2015. Graphene oxide nanocomposite incorporated poly (ether imide) mixed matrix membranes for in vitro evaluation of its efficacy in blood purification applications. Industrial & Engineering Chemistry Research 54 (32):7899–913. doi: 10.1021/acs.iecr.5b01655.
  • Kan, W., R. Jing, S. Hua, J. Zhang, W. Yan, S. Guo, and D. Cui. 2011. Biocompatibility of graphene oxide. Nanoscale Research Letters 6 (1):8–
  • Kim, H. W., H. W. Yoon, S.-M. Yoon, B. M. Yoo, B. K. Ahn, Y. H. Cho, H. J. Shin, H. Yang, U. Paik, S. Kwon, et al. 2013. Selective gas transport through few-layered graphene and graphene oxide membranes. Science (New York, N.Y.) 342 (6154):91–5.
  • Kim, J., S. E. Lee, S. Seo, J. Y. Woo, and C.-S. Han. 2019. Near-complete blocking of multivalent anions in graphene oxide membranes with tunable interlayer spacing from 3.7 to 8.0 angstrom. Journal of Membrane Science 592:117394. doi: 10.1016/j.memsci.2019.117394.
  • Kolbeck, S., H. Kienberger, K. Kleigrewe, M. Hilgarth, and R. F. Vogel. 2021. Effect of high levels of CO2 and O2 on membrane fatty acid profile and membrane physiology of meat spoilage bacteria. European Food Research and Technology 247 (4):999–1011. doi: 10.1007/s00217-020-03681-y.
  • Kozawa, D., Y. Miyauchi, S. Mouri, and K. Matsuda. 2013. Exploring the origin of blue and ultraviolet fluorescence in graphene oxide. The Journal of Physical Chemistry Letters 4 (12):2035–40. doi: 10.1021/jz400930f.
  • Kumar, P., P. Huo, R. Zhang, and B. Liu. 2019. Antibacterial properties of graphene-based nanomaterials. Nanomaterials 9 (5):737. doi: 10.3390/nano9050737.
  • Kwon, B., N. Park, and J. Cho. 2010. Effects of a dynamic membrane formed with polyethylene glycol on the ultrafiltration of natural organic matter. Frontiers of Environmental Science & Engineering in China 4 (2):172–82. doi: 10.1007/s11783-010-0002-y.
  • Lee, T, and B. S. Kim. 2020. Two-dimensional designer nanochannels for controllable ion transport in graphene oxide nanomembranes with tunable sheet dimensions. ACS Applied Materials & Interfaces 12 (11):13116–26. doi: 10.1021/acsami.9b20398.
  • Li, B., Y. Cui, S. Japip, Z. Thong, and T.-S. Chung. 2018. Graphene oxide (GO) laminar membranes for concentrating pharmaceuticals and food additives in organic solvents. Carbon 130:503–14. doi: 10.1016/j.carbon.2018.01.040.
  • Li, C., X. Li, L. Qin, W. Wu, Q. Meng, C. Shen, and G. Zhang. 2019a. Membrane photo-bioreactor coupled with heterogeneous Fenton fluidized bed for high salinity wastewater treatment: Pollutant removal, photosynthetic bacteria harvest and membrane anti-fouling analysis. The Science of the Total Environment 696:133953. doi: 10.1016/j.scitotenv.2019.133953.
  • Li, C., J. Yang, L. Zhang, S. Li, Y. Yuan, X. Xiao, X. Fan, and C. Song. 2020. Carbon-based membrane materials and applications in water and wastewater treatment: A review. Environmental Chemistry Letters 19 (2):1–19.
  • Li, D. M., Z. W. Zhu, and D.-W. Sun. 2020. Visualization of the in situ distribution of contents and hydrogen bonding states of cellular level water in apple tissues by confocal Raman microscopy. Analyst, 145 (3):897–907. doi: 10.1039/c9an01743g.
  • Li, D. M., Z. W. Zhu, and D.-W. Sun. 2021. Quantification of hydrogen bonding strength of water in saccharide aqueous solutions by confocal Raman microscopy. Journal of Molecular Liquids, 342:117498. doi: 10.1016/j.molliq.2021.117498.
  • Li, H., Z. Song, X. Zhang, Y. Huang, S. Li, Y. Mao, H. J. Ploehn, Y. Bao, and M. Yu. 2013. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science 342 (6154):95–8. doi: 10.1126/science.1236686.
  • Li, K., S. Jin, J. Li, and H. Chen. 2019b. Improvement in antibacterial and functional properties of mussel-inspired cellulose nanofibrils/gelatin nanocomposites incorporated with graphene oxide for active packaging. Industrial Crops and Products 132:197–212. doi: 10.1016/j.indcrop.2019.02.011.
  • Li, M., S. K. Cushing, X. Zhou, S. Guo, and N. Wu. 2012. Fingerprinting photoluminescence of functional groups in graphene oxide. Journal of Materials Chemistry 22 (44):23374. doi: 10.1039/c2jm35417a.
  • Li, Y., Z. Tang, W. Wang, X. Huang, Y. Lv, F. Qian, Y. Cheng, and H. Wang. 2021. Improving air barrier, water vapor permeability properties of cellulose paper by layer-by-layer assembly of graphene oxide. Carbohydrate Polymers 253:117227.
  • Lim, S. K., K. Goh, T.-H. Bae, and R. Wang. 2017. Polymer-based membranes for solvent-resistant nanofiltration: A review. Chinese Journal of Chemical Engineering 25 (11):1653–75. doi: 10.1016/j.cjche.2017.05.009.
  • Lin, H., S. Dangwal, R. Liu, S.-J. Kim, Y. Li, and J. Zhu. 2018. Reduced wrinkling in GO membrane by grafting basal-plane groups for improved gas and liquid separations. Journal of Membrane Science 563:336–44. doi: 10.1016/j.memsci.2018.05.073.
  • Lin, H., Y. Li, and J. Zhu. 2020. Cross-linked GO membranes assembled with GO nanosheets of differently sized lateral dimensions for organic dye and chromium separation. Journal of Membrane Science 598:117789. doi: 10.1016/j.memsci.2019.117789.
  • Lin, X., Y. Ni, and S. Kokot. 2013. A novel electrochemical sensor for the analysis of beta-agonists: The poly(acid chrome blue K)/graphene oxide-nafion/glassy carbon electrode. Journal of Hazardous Materials 260:508–17.
  • Liu, S., T. H. Zeng, M. Hofmann, E. Burcombe, J. Wei, R. Jiang, J. Kong, and Y. Chen. 2011. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS Nano 5 (9):6971–80. doi: 10.1021/nn202451x.
  • Liu, Y., J. Guan, Y. Su, R. Zhang, J. Cao, M. He, J. Yuan, F. Wang, X. You, and Z. Jiang. 2019. Graphene oxide membranes with an ultra-large interlayer distance through vertically grown covalent organic framework nanosheets. Journal of Materials Chemistry A 7 (44):25458–66. doi: 10.1039/C9TA09685J.
  • Liu, Z., J. T. Robinson, X. Sun, and H. Dai. 2008. PEGylated nano-graphene oxide for delivery of water insoluble cancer drugs. Journal of the American Chemical Society 130 (33):10876–7. doi: 10.1021/ja803688x.
  • Liu, Z., W. Wang, X. Ju, R. Xie, and L. Chu. 2017. Graphene-based membranes for molecular and ionic separations in aqueous environments. Chinese Journal of Chemical Engineering 25 (11):1598–605. doi: 10.1016/j.cjche.2017.05.008.
  • Lu, B.-Y., G.-Y. Zhu, C.-H. Yu, G.-Y. Chen, C.-L. Zhang, X. Zeng, Q.-M. Chen, and Q. Peng. 2021. Functionalized graphene oxide nanosheets with unique three-in-one properties for efficient and tunable antibacterial applications. Nano Research 14 (1):185–90. doi: 10.1007/s12274-020-3064-6.
  • Luan, B., T. Huynh, L. Zhao, and R. Zhou. 2015. Potential toxicity of graphene to cell functions via disrupting protein-protein interactions. ACS Nano 9 (1):663–9.
  • Luque-Alled, J. M., A. Abdel-Karim, M. Alberto, S. Leaper, M. Perez-Page, K. Huang, A. Vijayaraghavan, A. S. El-Kalliny, S. M. Holmes, and P. Gorgojo. 2020. Polyethersulfone membranes: From ultrafiltration to nanofiltration via the incorporation of APTS functionalized-graphene oxide. Separation and Purification Technology 230:115836. doi: 10.1016/j.seppur.2019.115836.
  • Lv, J., G. Zhang, H. Zhang, and F. Yang. 2018. Graphene oxide-cellulose nanocrystal (GO-CNC) composite functionalized PVDF membrane with improved antifouling performance in MBR: Behavior and mechanism. Chemical Engineering Journal 352:765–73. doi: 10.1016/j.cej.2018.07.088.
  • Mahalingam, D. K., G. Falca, L. Upadhya, E. Abou-Hamad, N. Batra, S. Wang, V. Musteata, P. M. da Costa, and S. P. Nunes. 2020. Spray-coated graphene oxide hollow fibers for nanofiltration. Journal of Membrane Science 606:118006. doi: 10.1016/j.memsci.2020.118006.
  • Modi, A, and J. Bellare. 2019. Efficient separation of biological macromolecular proteins by polyethersulfone hollow fiber ultrafiltration membranes modified with Fe3O4 nanoparticles-decorated carboxylated graphene oxide nanosheets. International Journal of Biological Macromolecules 135:798–807.
  • Moustafa, H., M. Morsy, M. A. Ateia, and F. M. Abdel-Haleem. 2021. Ultrafast response humidity sensors based on polyvinyl chloride/graphene oxide nanocomposites for intelligent food packaging. Sensors and Actuators A: Physical 331:112918. doi: 10.1016/j.sna.2021.112918.
  • Nagarajan, S., D. Abessolo Ondo, S. Gassara, M. Bechelany, S. Balme, P. Miele, N. Kalkura, and C. Pochat-Bohatier. 2018. Porous gelatin membrane obtained from pickering emulsions stabilized by graphene oxide. Langmuir: The ACS Journal of Surfaces and Colloids 34 (4):1542–9.
  • Nair, R. R., H. A. Wu, P. N. Jayaram, I. V. Grigorieva, and A. K. Geim. 2012. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science (New York, N.Y.) 335 (6067):442–4.
  • Ni, L., Y. Zhu, J. Ma, M. Wu, H. Wang, Z. Jiang, and Y. Wang. 2021. Improved anti-biofouling performance of CdS/g-C3N4/rGO modified membranes based on in situ visible light photocatalysis in anammox membrane bioreactor. Journal of Membrane Science 620:118861. doi: 10.1016/j.memsci.2020.118861.
  • Nie, L., K. Goh, Y. Wang, J. Lee, Y. Huang, E. Karahan, K. Zhou, M. Guiver, and T.-H. Bae. 2020. Realizing small-flake graphene oxide membranes for ultrafast size-dependent organic solvent nanofiltration. Science Advances 6 (17):eaaz9184.
  • Norahim, N., K. Faungnawakij, A. T. Quitain, and C. Klaysom. 2019. Composite membranes of graphene oxide for CO2/CH4 separation. Journal of Chemical Technology & Biotechnology 94 (9):2783–91. doi: 10.1002/jctb.5999.
  • Omerovic, N., M. Djisalov, K. Zivojevic, M. Mladenovic, J. Vunduk, I. Milenkovic, N. Z. Knezevic, I. Gadjanski, and J. Vidic. 2021. Antimicrobial nanoparticles and biodegradable polymer composites for active food packaging applications. Comprehensive Reviews in Food Science and Food Safety 20 (3):2428–54. doi: 10.1111/1541-4337.12727.
  • Paci, J. T., T. Belytschko, and G. C. Schatz. 2007. Computational studies of the structure, behavior upon heating, and mechanical properties of graphite oxide. The Journal of Physical Chemistry C 111 (49):18099–111. doi: 10.1021/jp075799g.
  • Pan, N., Y. Liu, X. Fan, Z. Jiang, X. Ren, and J. Liang. 2017. Preparation and characterization of antibacterial graphene oxide functionalized with polymeric N-halamine. Journal of Materials Science 52 (4):1996–2006. doi: 10.1007/s10853-016-0488-1.
  • Park, S. C., T. H. Lee, G. H. Moon, B. S. Kim, J. M. Roh, Y. H. Cho, H. W. Kim, J. Jang, H. B. Park, and Y. S. Kang. 2019. Sub-5 nm graphene oxide nanofilm with exceptionally high H+/V selectivity for vanadium redox flow battery. ACS Applied Energy Materials 2 (7):4590–6. doi: 10.1021/acsaem.9b00474.
  • Park, S. M., and S. Lee. 2019. Influence of hydraulic pressure on performance deterioration of direct contact membrane distillation (DCMD) process. Membranes 9 (3):37–16. doi: 10.3390/membranes9030037.
  • Patil, R., H. Patel, S. B. Pillai, P. K. Jha, P. Bahadur, and S. Tiwari. 2020. Influence of surface oxygen clusters upon molecular stacking of paclitaxel over graphene oxide sheets. Materials Science and Engineering: C 116:111232. doi: 10.1016/j.msec.2020.111232.
  • Pei, J., S. Gao, S. Sarp, H. Wang, X. Chen, J. Yu, T. Yue, W. Youravong, and Z. Li. 2021. Emerging forward osmosis and membrane distillation for liquid food concentration: A review. Comprehensive Reviews in Food Science and Food Safety 20 (2):1910–36. doi: 10.1111/1541-4337.12691.
  • Pereira, N. R. L., B. Lopes, I. V. Fagundes, F. M. de Moraes, F. D. P. Morisso, G. O. C. Parma, K. M. Zepon, and R. F. Magnago. 2022. Bio-packaging based on cellulose acetate from banana pseudostem and containing Butia catarinensis extracts. International Journal of Biological Macromolecules 194:32–41. doi: 10.1016/j.ijbiomac.2021.11.179.
  • Pienpinijtham, P., S. Vantasin, U. R. O. Wong, Y. Kitahama, S. Ekgasit, and Y. Ozaki. 2018. Local structural changes in graphene oxide layers induced by silver nanoparticles. Physical Chemistry Chemical Physics : PCCP 20 (33):21498–505.
  • Pourmoslemi, S., S. Shokouhi, and R. Mahjub. 2021. Investigation of antibacterial activity of polyvinyl alcohol packaging films composed of silver oxide nanoparticles, graphene oxide and tragacanth gum using Box–Behnken design. Packaging Technology and Science 34 (10):613–22. doi: 10.1002/pts.2599.
  • Qi, W., Z. Xue, W. Yuan, and H. Wang. 2014. Layer-by-layer assembled graphene oxide composite films for enhanced mechanical properties and fibroblast cell affinity. Journal of Materials Chemistry. B 2 (3):325–31.
  • Rao, J., Z. Lv, G. Chen, X. Hao, Y. Guan, and F. Peng. 2021. Fabrication of flexible composite film based on xylan from pulping process for packaging application. International Journal of Biological Macromolecules 173:285–92.
  • Ritt, C. L., T. Stassin, D. M. Davenport, R. M. DuChanois, I. Nulens, Z. Yang, A. Ben-Zvi, N. Segev-Mark, M. Elimelech, C. Y. Tang, et al. 2022. The open membrane database: Synthesis-structure-performance relationships of reverse osmosis membranes. Journal of Membrane Science 641:119927. doi: 10.1016/j.memsci.2021.119927.
  • Rosnan, N. A., Y. H. Teow, and A. W. Mohammad. 2018. The effect of ZnO loading for the enhancement of PSF/ZnO-GO mixed matrix membrane performance. Sains Malaysiana 47 (9):2035–45. doi: 10.17576/jsm-2018-4709-11.
  • Saraswat, V., R. M. Jacobberger, J. S. Ostrander, C. L. Hummell, A. J. Way, J. Wang, M. T. Zanni, and M. S. Arnold. 2018. Invariance of water permeance through size-differentiated graphene oxide laminates. ACS Nano 12 (8):7855–65.
  • Shao, L., X. J. Chang, Y. L. Zhang, Y. F. Huang, Y. H. Yao, and Z. H. Guo. 2013. Graphene oxide cross-linked chitosan nanocomposite membrane. Applied Surface Science, 280:989–92. doi: 10.1016/j.apsusc.2013.04.112.
  • Shen, J., G. Liu, K. Huang, W. Jin, K. R. Lee, and N. Xu. 2015. Membranes with fast and selective gas-transport channels of laminar graphene oxide for efficient CO2 capture. Angewandte Chemie (International ed. in English) 54 (2):578–82.
  • Shen, J., M. Zhang, G. Liu, K. Guan, and W. Jin. 2016. Size effects of graphene oxide on mixed matrix membranes for CO2 separation. AIChE Journal 62 (8):2843–52. doi: 10.1002/aic.15260.
  • Shen, X.-J., S. Yang, J.-X. Shen, J.-L. Ma, Y.-Q. Wu, X.-L. Zeng, and S.-Y. Fu. 2019. Improved mechanical and antibacterial properties of silver-graphene oxide hybrid/polylactid acid composites by in-situ polymerization. Industrial Crops and Products 130:571–9. doi: 10.1016/j.indcrop.2019.01.018.
  • Silva-Leyton, R., R. Quijada, R. Bastías, N. Zamora, F. Olate-Moya, and H. Palza. 2019. Polyethylene/graphene oxide composites toward multifunctional active packaging films. Composites Science and Technology 184:107888. doi: 10.1016/j.compscitech.2019.107888.
  • Song, L., W. Zeng, A. Li, C. Pan, and L. Pan. 2022. Automated multi-plug filtration cleanup method for analysis of 48 pesticide residues in green tea using liquid chromatography-tandem mass spectrometry. Food Control. 131:108436. doi: 10.1016/j.foodcont.2021.108436.
  • Struchkov, N. S., E. V. Alexandrov, A. V. Romashkin, G. O. Silakov, and M. K. Rabchinskii. 2020. Uniform graphene oxide films fabrication via spray-coating for sensing application. Fullerenes, Nanotubes and Carbon Nanostructures 28 (3):214–20. doi: 10.1080/1536383X.2019.1686623.
  • Sui, X., Z. Yuan, Y. Yu, K. Goh, and Y. Chen. 2020. 2D material based advanced membranes for separations in organic solvents. Small 16 (50):2003400. doi: 10.1002/smll.202003400.
  • Sun, D.-W., L. J. Huang, H. B. Pu, and J. Ma. 2021. Introducing reticular chemistry into agrochemistry. Chemical Society Reviews, 50 (2):1070–110. doi: 10.1039/c9cs00829b.
  • Sun, L. J. 2019. Structure and synthesis of graphene oxide. Chinese Journal of Chemical Engineering 27 (10):2251–60. doi: 10.1016/j.cjche.2019.05.003.
  • Sun, X., Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai. 2008. Nano-graphene oxide for cellular imaging and drug delivery. Nano Research 1 (3):203–12.
  • Sung, S. J., T. Kim, J. Park, S. H. So, J. Choi, S. J. Yang, and C. R. Park. 2017. Influence of the physicochemical characteristics of reduced graphene oxides on the gas permeability of the barrier films for organic electronics. Chemical Communications (Cambridge, England) 53 (49):6573–6.
  • Suter, J. L., R. C. Sinclair, and P. V. Coveney. 2020. Principles governing control of aggregation and dispersion of graphene and graphene oxide in polymer melts. Advanced Materials 32 (36):2003213. doi: 10.1002/adma.202003213.
  • Tian, Y., P. Z. Zhang, Z. W. Zhu, and D.-W. Sun. 2020. Development of a single/dual-frequency orthogonal ultrasound-assisted rapid freezing technique and its effects on quality attributes of frozen potatoes. Journal of Food Engineering, 286:110112. doi: 0.1016/j.jfoodeng.2020.110112.
  • Usman, F., J. O. Dennis, E. M. Mkawi, Y. Al-Hadeethi, F. Meriaudeau, T. L. Ferrell, O. Aldaghri, and A. Sulieman. 2020. Investigation of acetone vapour sensing properties of a ternary composite of doped polyaniline, reduced graphene oxide and chitosan using surface plasmon resonance biosensor. Polymers 12 (11):2750. doi: 10.3390/polym12112750.
  • Usman, F., J. O. Dennis, K. C. Seong, A. Yousif Ahmed, F. Meriaudeau, O. B. Ayodele, A. R. Tobi, A. A. S. Rabih, and A. Yar. 2019. Synthesis and characterisation of a ternary composite of polyaniline, reduced graphene-oxide and chitosan with reduced optical band gap and stable aqueous dispersibility. Results in Physics 15:102690. doi: 10.1016/j.rinp.2019.102690.
  • Vasseghian, Y., E. N. Dragoi, F. Almomani, and V. T. Le. 2022. Graphene derivatives in bioplastic: A comprehensive review of properties and future perspectives. Chemosphere 286 (Pt 3):131892.
  • Vilvert, J. C., S. T. de Freitas, M. A. R. Ferreira, D. Leite, F. K. G. dos Santos, D. Costa, and E. M. M. Aroucha. 2022. Chitosan and graphene oxide-based biodegradable bags: An eco-friendly and effective packaging alternative to maintain postharvest quality of ‘Palmer’ mango. LWT 154:112741. doi: 10.1016/j.lwt.2021.112741.
  • Wahid, F., L. H. Huang, X. Q. Zhao, W. C. Li, Y. Y. Wang, S. R. Jia, and C. Zhong. 2021. Bacterial cellulose and its potential for biomedical applications. Biotechnology Advances 53:107856.
  • Wahid, F., X.-J. Zhao, S.-R. Jia, H. Bai, and C. Zhong. 2020. Nanocomposite hydrogels as multifunctional systems for biomedical applications: Current state and perspectives. Composites Part B: Engineering 200:108208. doi: 10.1016/j.compositesb.2020.108208.
  • Wang, K. Q., D.-W. Sun, H. B. Pu, and Q. Y. Wei. 2020a. Polymer multilayers enabled stable and flexible Au@Ag nanoparticle array for nondestructive SERS detection of pesticide residues. Talanta, 223 (2):121782. doi: 10.1016/j.talanta.2020.121782.
  • Wang, K. Q., D.-W. Sun, H. B. Pu, and Q. Y. Wei. 2020b. Two-dimensional Au@Ag nanodot array for sensing dual-fungicides in fruit juices with surface-enhanced Raman spectroscopy technique. Food Chemistry 310:125923. doi: 10.1016/j.foodchem.2019.125923.
  • Wang, W., J. Sun, Y. Zhang, Y. Zhang, G. Hong, R. M. Moutloali, B. B. Mamba, F. Li, J. Ma, and L. Shao. 2022. Mussel-inspired tannic acid/polyethyleneimine assembling positively-charged membranes with excellent cation permselectivity. The Science of the Total Environment 817:153051.
  • Wang, X., Y. Zhao, E. Tian, J. Li, and Y. Ren. 2018. Graphene oxide-based polymeric membranes for water treatment. Advanced Materials Interfaces 5 (15):1701427. doi: 10.1002/admi.201701427.
  • Wang, Z., H. Yu, J. Xia, F. Zhang, F. Li, Y. Xia, and Y. Li. 2012. Novel GO-blended PVDF ultrafiltration membranes. Desalination 299:50–4. doi: 10.1016/j.desal.2012.05.015.
  • Wick, P., A. E. Louw-Gaume, M. Kucki, H. F. Krug, K. Kostarelos, B. Fadeel, K. A. Dawson, A. Salvati, E. Vazquez, L. Ballerini, et al. 2014. Classification framework for graphene-based materials. Angewandte Chemie (International ed. in English) 53 (30):7714–8.
  • Wu, L. L., H. B. Pu, L. J. Huang, and D.-W. Sun. 2020. Plasmonic nanoparticles on metal-organic framework: A versatile SERS platform for adsorptive detection of new coccine and orange II dyes in food. Food Chemistry, 328:127105. doi: 10.1016/j.foodchem.2020.127105.
  • Wu, W., Y. Shi, G. Liu, X. Fan, and Y. Yu. 2020a. Recent development of graphene oxide based forward osmosis membrane for water treatment: A critical review. Desalination 491:114452. doi: 10.1016/j.desal.2020.114452.
  • Wu, W., X. Zhang, L. Qin, X. Li, Q. Meng, C. Shen, and G. Zhang. 2020b. Enhanced MPBR with polyvinylpyrrolidone-graphene oxide/PVDF hollow fiber membrane for efficient ammonia nitrogen wastewater treatment and high-density Chlorella cultivation. Chemical Engineering Journal 379:122368. doi: 10.1016/j.cej.2019.122368.
  • Xi, Y.-H., Z. Liu, J. Ji, Y. Wang, Y. Faraj, Y. Zhu, R. Xie, X.-J. Ju, W. Wang, X. Lu, et al. 2018. Graphene-based membranes with uniform 2D nanochannels for precise sieving of mono-/multi-valent metal ions. Journal of Membrane Science 550:208–18. doi: 10.1016/j.memsci.2017.12.057.
  • Xia, M. Y., Y. Xie, C. H. Yu, G. Y. Chen, Y. H. Li, T. Zhang, and Q. Peng. 2019. Graphene-based nanomaterials: The promising active agents for antibiotics-independent antibacterial applications. Journal of Controlled Release : Official Journal of the Controlled Release Society 307:16–31.
  • Xie, Y. Y., X. H. Hu, Y. W. Zhang, F. Wahid, L. Q. Chu, S. R. Jia, and C. Zhong. 2020. Development and antibacterial activities of bacterial cellulose/graphene oxide-CuO nanocomposite films. Carbohydrate Polymers 229:115456.
  • Yang, E., M.-H. Ham, H. B. Park, C.-M. Kim, J-h. Song, and I. S. Kim. 2018. Tunable semi-permeability of graphene-based membranes by adjusting reduction degree of laminar graphene oxide layer. Journal of Membrane Science 547:73–9. doi: 10.1016/j.memsci.2017.10.039.
  • Yang, H., D. H. Bremner, L. Tao, H. Li, J. Hu, and L. Zhu. 2016a. Carboxymethyl chitosan-mediated synthesis of hyaluronic acid-targeted graphene oxide for cancer drug delivery. Carbohydrate Polymers 135:72–8.
  • Yang, K., T. Pan, S. Hong, K. Zhang, X. Zhu, and B. Chen. 2020. Ultrathin graphene oxide membrane with constructed tent-shaped structures for efficient and tunable molecular sieving. Environmental Science: Nano 7 (8):2373–84.
  • Yang, Q., Y. Su, C. Chi, C. T. Cherian, K. Huang, V. G. Kravets, F. C. Wang, J. C. Zhang, A. Pratt, A. N. Grigorenko, et al. 2017. Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation. Nature Materials 16 (12):1198–202.
  • Yang, X. N., D. D. Xue, J. Y. Li, M. Liu, S. R. Jia, L. Q. Chu, F. Wahid, Y. M. Zhang, and C. Zhong. 2016b. Improvement of antimicrobial activity of graphene oxide/bacterial cellulose nanocomposites through the electrostatic modification. Carbohydrate Polymers 136:1152–60. doi: 10.1016/j.carbpol.2015.10.020.
  • Yang, Z., C. Sun, L. Wang, H. Chen, J. He, and Y. Chen. 2017b. Novel Poly(l-lactide)/graphene oxide films with improved mechanical flexibility and antibacterial activity. Journal of Colloid and Interface Science 507:344–52. doi: 10.1016/j.jcis.2017.08.013.
  • Yoo, B. M., H. J. Shin, H. W. Yoon, and H. B. Park. 2014. Graphene and graphene oxide and their uses in barrier polymers. Journal of Applied Polymer Science 131 (1). doi: 10.1002/app.39628.
  • You, J., B. Oh, H. J. Jin, and Y. S. J. M. R. Yun. 2020. Improvement in barrier properties using a large lateral size of exfoliated graphene oxide. Macromolecular Research 28 (8):709–5. doi: 10.1007/s13233-020-8089-x.
  • Yu, C. H., G. Y. Chen, M. Y. Xia, Y. Xie, Y. Q. Chi, Z. Y. He, C. L. Zhang, T. Zhang, Q. M. Chen, and Q. Peng. 2020a. Understanding the sheet size-antibacterial activity relationship of graphene oxide and the nano-bio interaction-based physical mechanisms. Colloids and Surfaces. B, Biointerfaces 191:111009. doi: 10.1016/j.colsurfb.2020.111009.
  • Yu, L., Y. Zhang, B. Zhang, J. Liu, H. Zhang, and C. Song. 2013. Preparation and characterization of HPEI-GO/PES ultrafiltration membrane with antifouling and antibacterial properties. Journal of Membrane Science 447:452–62. doi: 10.1016/j.memsci.2013.07.042.
  • Yu, W., L. Sisi, Y. Haiyan, and L. Jie. 2020b. Progress in the functional modification of graphene/graphene oxide: A review. RSC Advances 10 (26):15328–45. doi: 10.1039/D0RA01068E.
  • Yue, H., W. Wei, Z. Yue, B. Wang, N. Luo, Y. Gao, D. Ma, G. Ma, and Z. Su. 2012. The role of the lateral dimension of graphene oxide in the regulation of cellular responses. Biomaterials 33 (16):4013–21.
  • Zhang, C., D. M. Dabbs, L.-M. Liu, I. A. Aksay, R. Car, and A. Selloni. 2015. Combined effects of functional groups, lattice defects, and edges in the infrared spectra of graphene oxide. The Journal of Physical Chemistry C 119 (32):18167–76. doi: 10.1021/acs.jpcc.5b02727.
  • Zhang, R., Y. Wang, D. Ma, S. Ahmed, W. Qin, and Y. Liu. 2019. Effects of ultrasonication duration and graphene oxide and nano-zinc oxide contents on the properties of polyvinyl alcohol nanocomposites. Ultrasonics Sonochemistry 59:104731.
  • Zhang, C. Y., L. J. Huang, H. B. Pu, and D.-W. Sun. 2021. Magnetic surface-enhanced Raman scattering (MagSERS) biosensors for microbial food safety: Fundamentals and applications. Trends in Food Science Technology, 113:366–81. doi: 10.1016/j.tifs.2021.05.007.
  • Zhang, W., N. Grimi, M. Y. Jaffrin, L. Ding, and B. Tang. 2017. A short review on the research progress in alfalfa leaf protein separation technology. Journal of Chemical Technology & Biotechnology 92 (12):2894–900. doi: 10.1002/jctb.5364.
  • Zhang, W. Y., J. Ma, and D.-W. Sun. 2020. Raman spectroscopic techniques for detecting structure and quality of frozen foods: Principles and applications. Critical Reviews in Food Science Nutrition, 61 (16):2623–39. doi: 10.1080/10408398.2020.1828814.
  • Zhu, Z. W., H. H. Cai, D.-W. Sun, and H. W. Wang. 2019. Photocatalytic effects on the quality of pork packed in the package combined with TiO2 coated nonwoven fabrics. Journal of Food Process Engineering, 42 (3):e12993. doi: 10.1111/jfpe.12993.
  • Zinadini, S., V. Vatanpour, A. A. Zinatizadeh, M. Rahimi, Z. Rahimi, and M. Kian. 2015. Preparation and characterization of antifouling graphene oxide/polyethersulfone ultrafiltration membrane: Application in MBR for dairy wastewater treatment. Journal of Water Process Engineering 7:280–94. doi: 10.1016/j.jwpe.2015.07.005.
  • Zou, X., L. Zhang, Z. Wang, and Y. Luo. 2016. Mechanisms of the antimicrobial activities of graphene materials. Journal of the American Chemical Society 138 (7):2064–77.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.