946
Views
8
CrossRef citations to date
0
Altmetric
Review Articles

Hypoglycemic bioactivity of anthocyanins: A review on proposed targets and potential signaling pathways

ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, , , ORCID Icon & ORCID Icon show all

References

  • Adachi, N., I. Kanazawa, K-i. Tanaka, A. Takeno, M. Notsu, S. Tanaka, and T. Sugimoto. 2019. Insulin-like growth factor-I protects against the detrimental effects of advanced glycation end products and high glucose in myoblastic C2C12 cells. Calcified Tissue International 105 (1):89–96. doi: 10.1007/s00223-019-00537-w.
  • Ahren, B. 2019. DPP-4 inhibition and the path to clinical proof. Frontiers in Endocrinology (Lausanne) 10:376. doi: 10.3389/fendo.2019.00376.
  • Alvarado, J. L., A. Leschot, A. Olivera-Nappa, A.-M. Salgado, H. Rioseco, C. Lyon, and P. Vigil. 2016. Delphinidin-rich maqui berry extract (Delphinol (R)) lowers fasting and postprandial glycemia and insulinemia in prediabetic individuals during oral glucose tolerance tests. BioMed Research International 2016:9070537. doi: 10.1155/2016/9070537.
  • Alvarado, J., F. Schoenlau, A. Leschot, A. M. Salgad, and P. Vigil Portales. 2016. Delphinol standardized maqui berry extract significantly lowers blood glucose and improves blood lipid profile in prediabetic individuals in three-month clinical trial. Panminerva Medica 58 (3 Suppl 1):1–6. doi: 10.1155/2016/9070537.
  • Aschner, P., S. Karuranga, S. James, D. Simmons, A. Basit, J. E. Shaw, S. H. Wild, K. Ogurtsova, P. Saeedi, and G. International Diabetes Federation’s Diabetes Epidemiological Guide Writing. 2021. The International Diabetes Federation’s guide for diabetes epidemiological studies. Diabetes Research and Clinical Practice 172:108630. doi: 10.1016/j.diabres.2020.108630.
  • Bakke, J., and F. G. Haj. 2015. Protein-tyrosine phosphatase 1B substrates and metabolic regulation. Seminars in Cell & Developmental Biology 37:58–65. doi: 10.1016/j.semcdb.2014.09.020.
  • Bao, Y. W., H. J. Cui, J. L. Tian, Y. M. Ding, Q. L. Tian, W. J. Zhang, M. S. Wang, Z. H. Zang, X. Y. Sun, D. N. Li, et al. 2022. Novel pH sensitivity and colorimetry-enhanced anthocyanin indicator films by chondroitin sulfate co-pigmentation for shrimp freshness monitoring. Food Control 131:108441. doi: 10.1016/j.foodcont.2021.108441.
  • Barik, S. K., B. Dehury, W. R. Russell, K. M. Moar, M. Cruickshank, L. Scobbie, and N. Hoggard. 2020. Analysis of polyphenolic metabolites from in vitro gastrointestinal digested soft fruit extracts identify malvidin-3-glucoside as an inhibitor of PTP1B. Biochemical Pharmacology 178:114109. doi: 10.1016/j.bcp.2020.114109.
  • Barik, S. K., W. Russell, K. Moar, M. Cruickshank, L. Scobbie, G. Duncan, and N. Hoggard. 2020. The anthocyanins in black currants regulate postprandial hyperglycaemia primarily by inhibiting alpha-glucosidase while other phenolics modulate salivary alpha-amylase, glucose uptake and sugar transporters. The Journal of Nutritional Biochemistry 78. doi: 10.1016/j.jnutbio.2019.108325.
  • Breen, D. M., B. A. Rasmussen, C. D. Cote, V. M. Jackson, and T. K. Lam. 2013. Nutrient-sensing mechanisms in the gut as therapeutic targets for diabetes. Diabetes 62 (9):3005–13. doi: 10.2337/db13-0523.
  • Brereton, M. F., M. Rohm, K. Shimomura, C. Holland, S. Tornovsky-Babeay, D. Dadon, M. Iberl, M. V. Chibalina, S. Lee, B. Glaser, et al. 2016. Hyperglycaemia induces metabolic dysfunction and glycogen accumulation in pancreatic beta-cells. Nature Communications 7:13496. doi: 10.1038/ncomms13496.
  • Burton Freeman, B. M., P. M. Guenther, M. Oh, D. Stuart, and H. H. Jensen. 2018. Assessing the consumption of berries and associated factors in the United States using the National Health and Nutrition Examination Survey (NHANES), 2007-2012. Food & Function 9 (2):1009–16. doi: 10.1039/c7fo01650f.
  • Byrne, C. D., and G. Targher. 2015. NAFLD: A multisystem disease. Journal of Hepatology 62 (1 Suppl):S47–S64. doi: 10.1016/j.jhep.2014.12.012.
  • Calvano, A., K. Izuora, E. C. Oh, J. L. Ebersole, T. J. Lyons, and A. Basu. 2019. Dietary berries, insulin resistance and type 2 diabetes: An overview of human feeding trials. Food & Function 10 (10):6227–43. doi: 10.1039/c9fo01426h.
  • Casedas, G., F. Les, M. P. Gomez-Serranillos, C. Smith, and V. Lopez. 2017. Anthocyanin profile, antioxidant activity and enzyme inhibiting properties of blueberry and cranberry juices: A comparative study. Food & Function 8 (11):4187–93. doi: 10.1039/c7fo01205e.
  • Casedas, G., F. Les, E. Gonzalez-Burgos, P. Gomez-Serranillos, C. Smith, and V. Lopez. 2019. Cyanidin-3-O-glucoside inhibits different enzymes involved in central nervous system pathologies and type-2 diabetes. South African Journal of Botany 120:241–6. doi: 10.1016/j.sajb.2018.07.001.
  • Castro-Acosta, M. L., L. Smith, R. J. Miller, D. I. McCarthy, J. A. Farrimond, and W. L. Hall. 2016. Drinks containing anthocyanin-rich blackcurrant extract decrease postprandial blood glucose, insulin and incretin concentrations. The Journal of Nutritional Biochemistry 38:154–61. doi: 10.1016/j.jnutbio.2016.09.002.
  • Chambers, A. P., J. E. Sorrell, A. Haller, K. Roelofs, C. R. Hutch, K. S. Kim, R. Gutierrez-Aguilar, B. Li, D. J. Drucker, D. A. D’Alessio, et al. 2017. The role of pancreatic preproglucagon in glucose homeostasis in mice. Cell Metabolism 25 (4):927–34 e923. doi: 10.1016/j.cmet.2017.02.008.
  • Cheng, Z., X. Si, H. Tan, Z. H. Zang, J. L. Tian, C. Shu, X. Y. Sun, Z. Y. Li, Q. Jiang, X. J. Meng, et al. 2021. Cyanidin-3-O-glucoside and its phenolic metabolites ameliorate intestinal diseases via modulating intestinal mucosal immune system: Potential mechanisms and therapeutic strategies. Critical Reviews in Food Science and Nutrition 1–19. doi: 10.1080/10408398.2021.1966381.
  • Chen, Z. Q., W. W. Li, Q. W. Guo, L. L. Xu, R. K. Santhanam, X. D. Gao, Y. Chen, C. L. Wang, P. Panichayupakaranant, and H. X. Chen. 2019. Anthocyanins from dietary black soybean potentiate glucose uptake in L6 rat skeletal muscle cells via up-regulating phosphorylated Akt and GLUT4. Journal of Functional Foods 52:663–9. doi: 10.1016/j.jff.2018.11.049.
  • Chen, A. X., and T. Thynne. 2016. Sodium-glucose co-transporter 2 inhibitors: A review of their use in older people with type 2 diabetes mellitus. Journal of Pharmacy Practice and Research 46 (4):377–83. doi: 10.1002/jppr.1296.
  • Chen, Z., C. Wang, Y. Pan, X. Gao, and H. Chen. 2018. Hypoglycemic and hypolipidemic effects of anthocyanins extract from black soybean seed coat in high fat diet and streptozotocin-induced diabetic mice. Food & Function 9 (1):426–39. doi: 10.1039/C7FO00983F.
  • Chen, Z., R. Zhang, W. Shi, L. Li, H. Liu, Z. Liu, and L. Wu. 2019. The multifunctional benefits of naturally occurring delphinidin and its glycosides. Journal of Agricultural and Food Chemistry 67 (41):11288–306. doi: 10.1021/acs.jafc.9b05079.
  • Choi, K. H., H. A. Lee, M. H. Park, and J. S. Han. 2017. Cyanidin-3-rutinoside increases glucose uptake by activating the PI3K/Akt pathway in 3T3-L1 adipocytes. Environmental Toxicology and Pharmacology 54:1–6. doi: 10.1016/j.etap.2017.06.007.
  • Choi, K. H., H. A. Lee, M. H. Park, and J.-S. Han. 2016. Mulberry (Morus alba L.) fruit extract containing anthocyanins improves glycemic control and insulin sensitivity via activation of AMP-activated protein kinase in diabetic C57BL/Ksj-db/db Mice. Journal of Medicinal Food 19 (8):737–45. doi: 10.1089/jmf.2016.3665.
  • Cipriano, d., H. Kim, C. Fang, V. P. Venancio, S. U. Mertens-Talcott, and S. T. Talcott. 2022. In vitro digestion, absorption and biological activities of acylated anthocyanins from purple sweet potatoes (Ipomoea batatas). Food Chemistry 374:131076. doi: 10.1016/j.foodchem.2021.131076.
  • Cui, H. J., X. Si, J. L. Tian, Y. X. Lang, N. X. Gao, H. Tan, Y. Y. Bian, Z. H. Zang, Q. Jiang, Y. W. Bao, et al. 2022. Anthocyanins-loaded nanocomplexes comprising casein and carboxymethyl cellulose: Stability, antioxidant capacity, and bioaccessibility. Food Hydrocolloids. 122:107073. doi: 10.1016/j.foodhyd.2021.107073.
  • da Costa, G. F., I. B. Santos, G. F. de Bem, V. S. C. Cordeiro, C. A. da Costa, L. de Carvalho, D. T. Ognibene, A. C. Resende, and R. S. de Moura. 2017. The beneficial effect of anthocyanidin-rich Vitis vinifera L. grape skin extract on metabolic changes induced by high-fat diet in mice involves antiinflammatory and antioxidant actions. Phytotherapy Research: PTR 31 (10):1621–32. doi: 10.1002/ptr.5898.
  • Daveri, E., E. Cremonini, A. Mastaloudis, S. N. Hester, S. M. Wood, A. L. Waterhouse, M. Anderson, C. G. Fraga, and P. I. Oteiza. 2018. Cyanidin and delphinidin modulate inflammation and altered redox signaling improving insulin resistance in high fat-fed mice. Redox Biology 18:16–24. doi: 10.1016/j.redox.2018.05.012.
  • Davidson, J. A. 2019. SGLT2 inhibitors in patients with type 2 diabetes and renal disease: Overview of current evidence. Postgraduate Medicine 131 (4):251–60. doi: 10.1080/00325481.2019.1601404.
  • Davis, C. S., J. W. Fleming, and L. E. Warrington. 2014. Sodium glucose co-transporter 2 inhibitors: A novel approach to the management of type 2 diabetes mellitus. Journal of the American Association of Nurse Practitioners 26 (7):356–63. doi: 10.1002/2327-6924.12135.
  • De Silva, A. B. K. H, and H. P. V. Rupasinghe. 2020. Polyphenols composition and anti-diabetic properties in vitro of haskap (Lonicera caerulea L.) berries in relation to cultivar and harvesting date. Journal of Food Composition and Analysis 88:103402. doi: 10.1016/j.jfca.2019.103402.
  • Deacon, C. F. 2019. Physiology and pharmacology of DPP-4 in glucose homeostasis and the treatment of type 2 diabetes. Frontiers in Endocrinology 10:80. doi: 10.3389/fendo.2019.00080.
  • DeVries, J. H., and J. Rosenstock. 2017. DPP-4 inhibitor-related pancreatitis: Rare but Real!. Diabetes Care 40 (2):161–3. doi: 10.2337/dci16-0035.
  • Edirisinghe, I., B. Burton-Freeman, N. P. Seeram, and B. Shukkitt-Hale. 2016. Anti-diabetic actions of Berry polyphenols – Review on proposed mechanisms of action. Journal of Berry Research 6 (2):237–50. doi: 10.3233/JBR-160137.
  • Fallah, A. A., E. Sarmast, and T. Jafari. 2020. Effect of dietary anthocyanins on biomarkers of glycemic control and glucose metabolism: A systematic review and meta-analysis of randomized clinical trials. Food Research International 137. doi: 10.1016/j.foodres.2020.109379
  • Fan, J., M. H. Johnson, M. A. Lila, G. Yousef, and E. G. de Mejia. 2013. Berry and citrus phenolic compounds inhibit dipeptidyl peptidase IV: Implications in diabetes management. Evidence-Based Complementary and Alternative Medicine 2013:1–13. doi: 10.1155/2013/479505.
  • Foretz, M., B. Guigas, and B. Viollet. 2019. Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes mellitus. Nature Reviews Endocrinology 15 (10):569–89. doi: 10.1038/s41574-019-0242-2.
  • Gowd, V., Z. Jia, and W. Chen. 2017. Anthocyanins as promising molecules and dietary bioactive components against diabetes – A review of recent advances. Trends in Food Science & Technology 68:1–13. doi: 10.1016/j.tifs.2017.07.015.
  • Gregg, E. W., N. Sattar, and M. K. Ali. 2016. The changing face of diabetes complications. The Lancet. Diabetes & Endocrinology 4 (6):537–47. doi: 10.1016/S2213-8587(16)30010-9.
  • Guo, H. H., and W. H. Ling. 2015. The update of anthocyanins on obesity and type 2 diabetes: Experimental evidence and clinical perspectives. Reviews in Endocrine & Metabolic Disorders 16 (1):1–13. doi: 10.1007/s11154-014-9302-z.
  • Guo, H., W. Ling, Q. Wang, C. Liu, Y. Hu, and M. Xia. 2008. Cyanidin 3-glucoside protects 3T3-L1 adipocytes against H2O2- or TNF-alpha-induced insulin resistance by inhibiting c-Jun NH2-terminal kinase activation. Biochemical Pharmacology 75 (6):1393–401. doi: 10.1016/j.bcp.2007.11.016.
  • Guo, X., B. Yang, J. Tan, J. Jiang, and D. Li. 2016. Associations of dietary intakes of anthocyanins and berry fruits with risk of type 2 diabetes mellitus: A systematic review and meta-analysis of prospective cohort studies. European Journal of Clinical Nutrition 70 (12):1360–7. doi: 10.1038/ejcn.2016.142.
  • Habener, J. F., and V. Stanojevic. 2017. Pancreas and not gut mediates the GLP-1-induced glucoincretin effect. Cell Metabolism 25 (4):757–8. doi: 10.1016/j.cmet.2017.03.020.
  • Harding, J. L., M. E. Pavkov, D. J. Magliano, J. E. Shaw, and E. W. Gregg. 2019. Global trends in diabetes complications: A review of current evidence. Diabetologia 62 (1):3–16. doi: 10.1007/s00125-018-4711-2.
  • He, J., L. Chen, and H. Li. 2019. Progress in the discovery of naturally occurring anti-diabetic drugs and in the identification of their molecular targets. Fitoterapia 134:270–89. doi: 10.1016/j.fitote.2019.02.033.
  • He, J., and M. M. Giusti. 2010. Anthocyanins: Natural colorants with health-promoting properties. Annual Review of Food Science and Technology 1:163–187.
  • He, R., Z. Yu, R. Zhang, and Z. Zhang. 2014. Protein tyrosine phosphatases as potential therapeutic targets. Acta Pharmacologica Sinica 35 (10):1227–46. doi: 10.1038/aps.2014.80.
  • Herrera Balandrano, D., C. Zhi, R. Hutabarat, T. Beta, J. Feng, M. Kaiyang, L. Dajing, and H. Wuyang. 2021. Hypoglycemic and hypolipidemic effects of blueberry anthocyanins by AMPK activation: In vitro and in vivo studies. Redox Biology 46: 102100. doi: 10.1016/j.redox.2021.102100.
  • Hidalgo, J., C. Flores, M. A. Hidalgo, M. Perez, A. Yañez, L. Quiñones, D. D. Caceres, and R. A. Burgos. 2014. Delphinol® standardized maqui berry extract reduces postprandial blood glucose increase in individuals with impaired glucose regulation by novel mechanism of sodium glucose cotransporter inhibition. Panminerva Medica 56 (2 Suppl 3):1–7.
  • Huang, Y., E. Park, I. Edirisinghe, and B. M. Burton-Freeman. 2016. Maximizing the health effects of strawberry anthocyanins: Understanding the influence of the consumption timing variable. Food & Function 7 (12):4745–52. doi: 10.1039/C6FO00995F.
  • Hwang, Y. P., J. H. Choi, E. H. Han, H. G. Kim, J. H. Wee, K. O. Jung, K. H. Jung, K. I. Kwon, T. C. Jeong, Y. C. Chung, et al. 2011. Purple sweet potato anthocyanins attenuate hepatic lipid accumulation through activating adenosine monophosphate-activated protein kinase in human HepG2 cells and obese mice. Nutrition Research (New York, N.Y.) 31 (12):896–906. doi: 10.1016/j.nutres.2011.09.026.
  • Iizuka, Y., A. Ozeki, T. Tani, and T. Tsuda. 2018. Blackcurrant extract ameliorates hyperglycemia in type 2 diabetic mice in association with increased basal secretion of glucagon-like peptide-1 and activation of AMP-activated protein kinase. Journal of Nutritional Science and Vitaminology 64 (4):258–64. doi: 10.3177/jnsv.64.258.
  • Inaguma, T., J. Han, and H. Isoda. 2011. Improvement of insulin resistance by Cyanidin 3-glucoside, anthocyanin from black beans through the up-regulation of GLUT4 gene expression. BMC Proceedings 5 (Suppl 8):P21. doi: 10.1186/1753-6561-5-s8-p21.
  • Jiang, X. W., X. S. Li, C. J. Zhu, J. X. Sun, L. M. Tian, W. Chen, and W. B. Bai. 2019. The target cells of anthocyanins in metabolic syndrome. Critical Reviews in Food Science and Nutrition 59 (6):921–46. doi: 10.1080/10408398.2018.1491022.
  • Jiang, T., X. Shuai, J. Li, N. Yang, L. Deng, S. Li, Y. He, H. Guo, Y. Li, and J. He. 2020. Protein-bound anthocyanin compounds of purple sweet potato ameliorate hyperglycemia by regulating hepatic glucose metabolism in high-fat diet/streptozotocin-induced ­diabetic mice. Journal of Agricultural and Food Chemistry 68 (6):1596–608. doi: 10.1021/acs.jafc.9b06916.
  • Jiang, X., X. Tang, P. Zhang, G. Liu, and H. Guo. 2014. Cyanidin-3-O-β-glucoside protects primary mouse hepatocytes against high glucose-induced apoptosis by modulating mitochondrial dysfunction and the PI3K/Akt pathway. Biochemical Pharmacology 90 (2):135–44. doi: 10.1016/j.bcp.2014.04.018.
  • Johnson, M. H., and E. G. de Mejia. 2016. Phenolic compounds from fermented berry beverages modulated gene and protein expression to increase insulin secretion from pancreatic beta-cells in vitro. Journal of Agricultural and Food Chemistry 64 (12):2569–81. doi: 10.1021/acs.jafc.6b00239.
  • Joshi, T., A. K. Singh, P. Haratipour, A. N. Sah, A. K. Pandey, R. Naseri, V. Juyal, and M. H. Farzaei. 2019. Targeting AMPK signaling pathway by natural products for treatment of diabetes mellitus and its complications. Journal of Cellular Physiology 234 (10):17212–31. doi: 10.1002/jcp.28528.
  • Kammerer, D. R., J. Kammerer, R. Valet, and R. Carle. 2014. Recovery of polyphenols from the by-products of plant food processing and application as valuable food ingredients. Food Research International 65:2–12. doi: 10.1016/j.foodres.2014.06.012.
  • Kato, M., T. Tani, N. Terahara, and T. Tsuda. 2015. The anthocyanin delphinidin 3-rutinoside stimulates glucagon-like peptide-1 secretion in murine GLUTag cell line via the Ca2+/calmodulin-dependent kinase II pathway. PloS One 10 (5):e0126157. doi: 10.1371/journal.pone.0126157.
  • Khan, A. H., and J. E. Pessin. 2002. Insulin regulation of glucose uptake: A complex interplay of intracellular signalling pathways. Diabetologia 45 (11):1475–83. doi: 10.1007/s00125-002-0974-7.
  • Khoo, H. E., A. Azlan, S. T. Tang, and S. M. Lim. 2017. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & Nutrition Research 61 (1):1361779–21. doi: 10.1080/16546628.2017.1361779.
  • Kianbakht, S., B. Abasi, and F. H. Dabaghian. 2013. Anti-hyperglycemic effect of Vaccinium arctostaphylos in type 2 diabetic patients: A randomized controlled trial. Forschende Komplementärmedizin / Research in Complementary Medicine 20 (1):17–22. doi: 10.1159/000346607.
  • Kokil, G. R., R. N. Veedu, G. A. Ramm, J. B. Prins, and H. S. Parekh. 2015. Type 2 diabetes mellitus: Limitations of conventional therapies and intervention with nucleic acid-based therapeutics. Chemical Reviews 115 (11):4719–43. doi: 10.1021/cr5002832.
  • Kurimoto, Y., Y. Shibayama, S. Inoue, M. Soga, M. Takikawa, C. Ito, F. Nanba, T. Yoshida, Y. Yamashita, H. Ashida, et al. 2013. Black soybean seed coat extract ameliorates hyperglycemia and insulin sensitivity via the activation of AMP-activated protein kinase in diabetic mice. Journal of Agricultural and Food Chemistry 61 (23):5558–64. doi: 10.1021/jf401190y.
  • Les, F., G. Casedas, C. Gomez, C. Moliner, M. S. Valero, and V. Lopez. 2020. The role of anthocyanins as antidiabetic agents: From molecular mechanisms to in vivo and human studies. Journal of Physiology and Biochemistry 77 (1):109–31. doi: 10.1007/s13105-020-00739-z.
  • Li, B., R. R. Fu, H. Tan, Y. Zhang, W. Teng, Z. Y. Li, and J. L. Tian. 2021. Characteristics of the interaction mechanisms of procyanidin B1 and procyanidin B2 with protein tyrosine phosphatase-1B: Analysis by kinetics, spectroscopy methods and molecular docking. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 259:119910. doi: 10.1016/j.saa.2021.119910.
  • Liu, Y., M. Zhang, H. Zhang, X. Qian, L. Luo, and Z. He. 2022. Anthocyanins inhibit airway inflammation by downregulating the NF-kappa B pathway via the miR-138-5p/SIRT1 axis in asthmatic mice. International Archives of Allergy and Immunology 1–13. doi: 10.1159/000520645.
  • Li, D., P. Wang, Y. Luo, M. Zhao, and F. Chen. 2017. Health benefits of anthocyanins and molecular mechanisms: Update from recent decade. Critical Reviews in Food Science and Nutrition 57 (8):1729–41. doi: 10.1080/10408398.2015.1030064.
  • Li, D., Y. Zhang, Y. Liu, R. Sun, and M. Xia. 2015. Purified anthocyanin supplementation reduces dyslipidemia, enhances antioxidant capacity, and prevents insulin resistance in diabetic patients. The Journal of Nutrition 145 (4):742–8. doi: 10.3945/jn.114.205674.
  • Li, H., T. Zheng, F. Lian, T. Xu, W. Yin, and Y. Jiang. 2022. Anthocyanin-rich blueberry extracts and anthocyanin metabolite protocatechuic acid promote autophagy-lysosomal pathway and alleviate neurons damage in in vivo and in vitro models of Alzheimer’s disease. Nutrition (Burbank, Los Angeles County, Calif.) 93111473. doi: 10.1016/j.nut.2021.:.
  • Luna Vital, D. A., and E. G. de Mejia. 2018. Anthocyanins from purple corn activate free fatty acid-receptor 1 and glucokinase enhancing in vitro insulin secretion and hepatic glucose uptake. PLoS One 13:e0200449. doi: 10.1371/journal.pone.0200449.
  • Luna Vital, D., M. Weiss, and E. G. de Mejia. 2017. Anthocyanins from purple corn ameliorated tumor necrosis factor-alpha-induced inflammation and insulin resistance in 3T3-L1 adipocytes via activation of insulin signaling and enhanced GLUT4 translocation. Molecular Nutrition & Food Research 61 (12):1700362. doi: 10.1002/mnfr.201700362.
  • Maurizi, G., L. Della Guardia, A. Maurizi, and A. Poloni. 2018. Adipocytes properties and crosstalk with immune system in obesity-related inflammation. Journal of Cellular Physiology 233 (1):88–97. doi: 10.1002/jcp.25855.
  • McDougall, G. J., and D. Stewart. 2005. The inhibitory effects of berry polyphenols on digestive enzymes. BioFactors (Oxford, England) 23 (4):189–95. doi: 10.1002/biof.5520230403.
  • Milardi, D., E. Gazit, S. E. Radford, Y. Xu, R. U. Gallardo, A. Caflisch, G. T. Westermark, P. Westermark, L. Rosa, and A. Ramamoorthy. 2021. Proteostasis of islet amyloid polypeptide: A molecular perspective of risk factors and protective strategies for type II diabetes. Chemical Reviews 121 (3):1845–93. doi: 10.1021/acs.chemrev.0c00981.
  • Molonia, M. S., C. Occhiuto, C. Muscara, A. Speciale, R. Bashllari, F. Villarroya, A. Saija, F. Cimino, and M. Cristani. 2020. Cyanidin-3-O-glucoside restores insulin signaling and reduces inflammation in hypertrophic adipocytes. Archives of Biochemistry and Biophysics 691:108488. doi: 10.1016/j.abb.2020.108488.
  • Momtaz, S., A. Salek-Maghsoudi, A. H. Abdolghaffari, E. Jasemi, S. Rezazadeh, S. Hassani, M. Ziaee, M. Abdollahi, S. Behzad, and S. M. Nabavi. 2019. Polyphenols targeting diabetes via the AMP-activated protein kinase pathway; future approach to drug discovery. Critical Reviews in Clinical Laboratory Sciences 56 (7):472–92. doi: 10.1080/10408363.2019.1648376.
  • Muscogiuri, G., G. Balercia, L. Barrea, A. Cignarelli, F. Giorgino, J. J. Holst, D. Laudisio, F. Orio, G. Tirabassi, and A. Colao. 2018. Gut: A key player in the pathogenesis of type 2 diabetes? Critical Reviews in Food Science and Nutrition 58 (8):1294–309. doi: 10.1080/10408398.2016.1252712.
  • Nizamutdinova, I. T., Y. C. Jin, J. I. Chung, S. C. Shin, S. J. Lee, H. G. Seo, J. H. Lee, K. C. Chang, and H. J. Kim. 2009. The anti-diabetic effect of anthocyanins in streptozotocin-induced diabetic rats through glucose transporter 4 regulation and prevention of insulin resistance and pancreatic apoptosis. Molecular Nutrition & Food Research 53 (11):1419–29. doi: 10.1002/mnfr.200800526.
  • Norton, L., C. E. Shannon, M. Fourcaudot, C. Hu, N. Wang, W. Ren, J. Song, M. Abdul-Ghani, R. A. DeFronzo, J. Ren, et al. 2017. Sodium-glucose co-transporter (SGLT) and glucose transporter (GLUT) expression in the kidney of type 2 diabetic subjects. Diabetes, Obesity & Metabolism 19 (9):1322–6. doi: 10.1111/dom.13003.
  • Proenca, C., D. Ribeiro, M. Freitas, F. Carvalho, and E. Fernandes. 2021a. A comprehensive review on the antidiabetic activity of flavonoids targeting PTP1B and DPP-4: A structure-activity relationship analysis. Critical Reviews in Food Science and Nutrition 1–57. doi: 10.1080/10408398.2021.1872483.
  • Proenca, C., D. Ribeiro, M. Freitas, and E. Fernandes. 2021b. Flavonoids as potential agents in the management of type 2 diabetes through the modulation of alpha-amylase and alpha-glucosidase activity: A review. Critical Reviews in Food Science and Nutrition 1–71. doi: 10.1080/10408398.2020.1862755.
  • Qin, W., W. Ying, B. Hamaker, and G. Zhang. 2021. Slow digestion-oriented dietary strategy to sustain the secretion of GLP-1 for improved glucose homeostasis. Comprehensive Reviews in Food Science and Food Safety 20 (5):5173–96. doi: 10.1111/1541-4337.12808.
  • Rashwan, A. K., N. Karim, Y. Xu, J. Xie, H. Cui, M. R. Mozafari, and W. Chen. 2021. Potential micro-/nano-encapsulation systems for improving stability and bioavailability of anthocyanins: An updated review. Critical Reviews in Food Science and Nutrition 1–24. doi: 10.1080/10408398.2021.1987858.
  • Rehman, M. B., B. V. Tudrej, J. Soustre, M. Buisson, P. Archambault, D. Pouchain, H. Vaillant-Roussel, F. Gueyffier, J. L. Faillie, M. C. Perault-Pochat, et al. 2017. Efficacy and safety of DPP-4 inhibitors in patients with type 2 diabetes: Meta-analysis of placebo-controlled randomized clinical trials. Diabetes & Metabolism 43 (1):48–58. doi: 10.1016/j.diabet.2016.09.005.
  • Rines, A. K., K. Sharabi, C. D. J. Tavares, and P. Puigserver. 2016. Targeting hepatic glucose metabolism in the treatment of type 2 diabetes. Nature Reviews. Drug Discovery 15 (11):786–804. doi: 10.1038/nrd.2016.151.
  • Rorsman, P., and M. Braun. 2013. Regulation of insulin secretion in human pancreatic islets. Annual Review of Physiology 75:155–79. doi: 10.1146/annurev-physiol-030212-183754.
  • Różańska, D., and B. Regulska-Ilow. 2018. The significance of anthocyanins in the prevention and treatment of type 2 diabetes. Advances in Clinical and Experimental Medicine: Official Organ Wroclaw Medical University 27 (1):135–42. doi: 10.17219/acem/64983.
  • Scazzocchio, B., R. Varì, C. Filesi, M. D’Archivio, C. Santangelo, C. Giovannini, A. Iacovelli, G. Silecchia, G. L. Volti, F. Galvano, et al. 2011. Cyanidin-3-O-beta-glucoside and protocatechuic acid exert insulin-like effects by upregulating PPARgamma activity in human omental adipocytes. Diabetes 60 (9):2234–44. doi: 10.2337/db10-1461.
  • Scazzocchio, B., R. Vari, C. Filesi, I. Del Gaudio, M. D’Archivio, C. Santangelo, A. Iacovelli, F. Galvano, F. R. Pluchinotta, C. Giovannini, et al. 2015. Protocatechuic acid activates key components of insulin signaling pathway mimicking insulin activity. Molecular Nutrition & Food Research 59 (8):1472–81. doi: 10.1002/mnfr.201400816.
  • Seymour, E. M., I. I. Tanone, D. E. Urcuyo-Llanes, S. K. Lewis, A. Kirakosyan, M. G. Kondoleon, P. B. Kaufman, and S. F. Bolling. 2011. Blueberry intake alters skeletal muscle and adipose tissue peroxisome proliferator-activated receptor activity and reduces insulin resistance in obese rats. Journal of Medicinal Food 14 (12):1511–8. doi: 10.1089/jmf.2010.0292.
  • Solverson, P. M., T. R. Henderson, H. Debelo, M. G. Ferruzzi, D. J. Baer, and J. A. Novotny. 2019. An anthocyanin-rich mixed-berry intervention may improve insulin sensitivity in a randomized trial of overweight and obese adults. Nutrients 11 (12):2876. doi: 10.3390/nu11122876.
  • Stote, K., A. Corkum, M. Sweeney, N. Shakerley, T. Kean, and K. Gottschall-Pass. 2019. Postprandial effects of blueberry (Vaccinium angustifolium) consumption on glucose metabolism, gastrointestinal hormone response, and perceived appetite in healthy adults: A randomized, placebo-controlled crossover trial. Nutrients 11 (1):202. doi: 10.3390/nu11010202.
  • Su, H., L. Xie, Y. Xu, H. Ke, T. Bao, Y. Li, and W. Chen. 2020. Pelargonidin-3-O-glucoside derived from wild raspberry exerts antihyperglycemic effect by inducing autophagy and modulating gut microbiota. Journal of Agricultural and Food Chemistry 68 (46):13025–37. doi: 10.1021/acs.jafc.9b03338.
  • Sun, L. J., F. J. Warren, and M. J. Gidley. 2019. Natural products for glycaemic control: Polyphenols as inhibitors of alpha-amylase. Trends in Food Science & Technology 91:262–73. doi: 10.1016/j.tifs.2019.07.009.
  • Szkudelski, T., and K. Szkudelska. 2015. Resveratrol and diabetes: From animal to human studies. Biochimica et Biophysica Acta 1852 (6):1145–54. doi: 10.1016/j.bbadis.2014.10.013.
  • Takikawa, M., S. Inoue, F. Horio, and T. Tsuda. 2010. Dietary anthocyanin-rich bilberry extract ameliorates hyperglycemia and insulin sensitivity via activation of AMP-activated protein kinase in diabetic mice. The Journal of Nutrition 140 (3):527–33. doi: 10.3945/jn.109.118216.
  • Tani, T., S. Nishikawa, M. Kato, and T. Tsuda. 2017. Delphinidin 3-rutinoside-rich blackcurrant extract ameliorates glucose tolerance by increasing the release of glucagon-like peptide-1 secretion. Food Science & Nutrition 5 (4):929–33. doi: 10.1002/fsn3.478.
  • Thomas, M. C., and D. Z. I. Cherney. 2018. The actions of SGLT2 inhibitors on metabolism, renal function and blood pressure. Diabetologia 61 (10):2098–107. doi: 10.1007/s00125-018-4669-0.
  • Tian, J. L., X. J. Liao, Y. H. Wang, X. Si, C. Shu, E. S. Gong, X. Xie, X. L. Ran, and B. Li. 2019. Identification of cyanidin-3-arabinoside extracted from blueberry as a selective protein tyrosine phosphatase 1B inhibitor. Journal of Agricultural and Food Chemistry 67 (49):13624–34. doi: 10.1021/acs.jafc.9b06155.
  • Tian, J. L., X. Si, C. Shu, Y. H. Wang, H. Tan, Z. H. Zang, W. J. Zhang, X. Xie, Y. Chen, and B. Li. 2022. Synergistic effects of combined anthocyanin and metformin treatment for hyperglycemia in vitro and in vivo. Journal of Agricultural and Food Chemistry 70 (4):1182–95. doi: 10.1021/acs.jafc.1c07799.
  • Tian, J. L., X. Si, Y. H. Wang, E. S. Gong, X. Xie, Y. Zhang, B. Li, and C. Shu. 2021. Bioactive flavonoids from Rubus corchorifolius inhibit α-glucosidase and α-amylase to improve postprandial hyperglycemia. Food Chemistry 341 (Pt 1):128149. doi: 10.1016/j.foodchem.2020.128149.
  • Tomas, A., B. Jones, and C. Leech. 2020. New insights into beta-cell GLP-1 receptor and cAMP signaling. Journal of Molecular Biology 432 (5):1347–66. doi: 10.1016/j.jmb.2019.08.009.
  • Torronen, R., E. Sarkkinen, T. Niskanen, N. Tapola, K. Kilpi, and L. Niskanen. 2012. Postprandial glucose, insulin and glucagon-like peptide 1 responses to sucrose ingested with berries in healthy subjects. British Journal of Nutrition 107 (10):1445–51. doi: 10.1017/S0007114511004557.
  • Turrini, E., L. Ferruzzi, and C. Fimognari. 2017. Possible effects of dietary anthocyanins on diabetes and insulin resistance. Current Drug Targets 18 (6):629–40. doi: 10.2174/1389450116666151001105230.
  • U.S. Department of Agriculture and U.S. Department of Health and Human Services. 2020. Dietary Guidelines for Americans, 2020–2025. 9th ed. Accessed December, 2020. https://dietaryguidelines.gov/
  • U.S. Department of Agriculture, Agricultural Research Service. 2013. USDA Database for the Flavonoid content of selected foods, Release 3.1 Dec. 2013 with revisions May 2014. Accessed May, 2014. https://www.ars.usda.gov/ARSUserFiles/80400525/Data/Flav/Flav_R03-1.pdf.
  • U.S. Department of Health and Human Services Food and Drug Administration. 2005. Guidance for Industry Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult Healthy Volunteers. Accessed July, 2005. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/estimating-maximum-safe-starting-dose-initial-clinical-trials-therapeutics-adult-healthy-volunteers
  • Victoria-Campos, C. I., d. Ornelas-Paz, N. E. Rocha-Guzman, J. A. Gallegos-Infante, M. L. Failla, J. D. Perez-Martinez, C. Rios-Velasco, and V. Ibarra-Junquera. 2022. Gastrointestinal metabolism and bioaccessibility of selected anthocyanins isolated from commonly consumed fruits. Food Chemistry 383:132451. doi: 10.1016/j.foodchem.2022.132451.
  • Wang, C., Z. Chen, S. Li, Y. Zhang, S. Jia, J. Li, Y. Chi, Y. Miao, Y. Guan, and J. Yang. 2014. Hepatic overexpression of ATP synthase β subunit activates PI3K/Akt pathway to ameliorate hyperglycemia of diabetic mice. Diabetes 63 (3):947–59. doi: 10.2337/db13-1096.
  • Wang, Z., L. Sun, Z. Fang, T. Nisar, L. Zou, D. Li, and Y. Guo. 2021. Lycium ruthenicum Murray anthocyanins effectively inhibit α-glucosidase activity and alleviate insulin resistance. Food Bioscience 41:100949. doi: 10.1016/j.fbio.2021.100949.
  • Wang, X., and L. Zhao. 2016. Calycosin ameliorates diabetes-induced cognitive impairments in rats by reducing oxidative stress via the PI3K/Akt/GSK-3β signaling pathway. Biochemical and Biophysical Research Communications 473 (2):428–34. doi: 10.1016/j.bbrc.2016.03.024.
  • Williamson, G. 2013. Possible effects of dietary polyphenols on sugar absorption and digestion. Molecular Nutrition & Food Research 57 (1):48–57. doi: 10.1002/mnfr.201200511.
  • Wu, X., G. R. Beecher, J. M. Holden, D. B. Haytowitz, S. E. Gebhardt, and R. L. Prior. 2006. Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. Journal of Agricultural and Food Chemistry 54 (11):4069–75. doi: 10.1021/jf060300l.
  • Xiao, T., Z. Guo, B. Sun, and Y. Zhao. 2017. Identification of anthocyanins from four kinds of berries and their inhibition activity to α-glycosidase and protein tyrosine phosphatase 1B by HPLC-FT-ICR MS/MS. Journal of Agricultural and Food Chemistry 65 (30):6211–21. doi: 10.1021/acs.jafc.7b02550.
  • Xiao, D., L. Zhu, I. Edirisinghe, J. Fareed, Y. Brailovsky, and B. Burton-Freeman. 2019. Attenuation of postmeal metabolic indices with red raspberries in individuals at risk for diabetes: A randomized controlled trial. Obesity 27 (4):542–50. doi: 10.1002/oby.22406.
  • Xie, L., J. Mo, J. Ni, Y. Xu, H. Su, J. Xie, and W. Chen. 2020. Structure-based design of human pancreatic amylase inhibitors from the natural anthocyanin database for type 2 diabetes. Food & Function 11 (4):2910–23. doi: 10.1039/c9fo02885d.
  • Xie, L., H. Su, C. Sun, X. Zheng, and W. Chen. 2018. Recent advances in understanding the anti-obesity activity of anthocyanins and their biosynthesis in microorganisms. Trends in Food Science & Technology 72:13–24. doi: 10.1016/j.tifs.2017.12.002.
  • Xu, Y., L. Xie, J. Xie, Y. Liu, and W. Chen. 2018. Pelargonidin-3-O-rutinoside as a novel α-glucosidase inhibitor for improving postprandial hyperglycemia . Chemical Communications (Cambridge, England) 55 (1):39–42. doi: 10.1039/c8cc07985d.
  • Xue, H., X. Chen, K. Chen, Y. You, H. Xu, X. Sun, and L. Wenhua. 2019. Anthocyanin improves glucose homeostasis in obese mice via beneficial regulation of intestinal microbiota and barrier function. Current Developments in Nutrition 3 (Supplement_1). doi: 10.1093/cdn/nzz031.OR34-08-19.
  • Yan, F., J. Zhang, L. Zhang, and X. Zheng. 2016. Mulberry anthocyanin extract regulates glucose metabolism by promotion of glycogen synthesis and reduction of gluconeogenesis in human HepG2 cells. Food & Function 7 (1):425–33. doi: 10.1039/c5fo00841g.
  • Yang, Y., J-l. Zhang, and Q. Zhou. 2020. Targets and mechanisms of dietary anthocyanins to combat hyperglycemia and hyperuricemia: A comprehensive review. Critical Reviews in Food Science and Nutrition 62 (4):1119–43. doi: 10.1080/10408398.2020.1835819.
  • Yao, Y., W. Sang, M. Zhou, and G. Ren. 2010. Antioxidant and alpha-glucosidase inhibitory activity of colored grains in China. Journal of Agricultural and Food Chemistry 58 (2):770–4. doi: 10.1021/jf903234c.
  • Yaspelkis, B. B.3rd. 2006. Resistance training improves insulin signaling and action in skeletal muscle. Exercise and Sport Sciences Reviews 34 (1):42–6. doi: 10.1097/00003677-200601000-00009.
  • Yin, X., Z. Xu, Z. Zhang, L. Li, Q. Pan, F. Zheng, and H. Li. 2017. Association of PI3K/AKT/mTOR pathway genetic variants with type 2 diabetes mellitus in Chinese. Diabetes Research and Clinical Practice 128:127–35. doi: 10.1016/j.diabres.2017.04.002.
  • Yu, C. D., Q. J. Xu, and R. B. Chang. 2020. Vagal sensory neurons and gut-brain signaling. Current Opinion in Neurobiology 62:133–40. doi: 10.1016/j.conb.2020.03.006.
  • Zhang, P., Y. Li, S. Chong, S. Yan, R. Yu, R. Chen, J. Si, and X. Zhang. 2022. Identification and quantitative analysis of anthocyanins composition and their stability from different strains of Hibiscus syriacus L. flowers. Industrial Crops and Products 177:114457. doi: 10.1016/j.indcrop.2021.114457.
  • Zhang, L., S. Pang, B. Deng, L. Qian, J. Chen, J. Zou, J. Zheng, L. Yang, C. Zhang, X. Chen, et al. 2012. High glucose induces renal mesangial cell proliferation and fibronectin expression through JNK/NF-κB/NADPH oxidase/ROS pathway, which is inhibited by resveratrol. The International Journal of Biochemistry & Cell Biology 44 (4):629–38. doi: 10.1016/j.biocel.2012.01.001.
  • Zhao, D., B. Sheng, Y. Wu, H. Li, D. Xu, Y. Nian, S. Mao, C. Li, X. Xu, and G. Zhou. 2019. Comparison of free and bound advanced glycation end products in food: A review on the possible influence on human health. Journal of Agricultural and Food Chemistry 67 (51):14007–18. doi: 10.1021/acs.jafc.9b05891.
  • Żyżelewicz, D., M. Zakłos-Szyda, J. Juśkiewicz, M. Bojczuk, J. Oracz, G. Budryn, K. Miśkiewicz, W. Krysiak, Z. Zduńczyk, and A. Jurgoński. 2016. Cocoa bean (Theobroma cacao L.) phenolic extracts as PTP1B inhibitors, hepatic HepG2 and pancreatic beta-TC3 cell cytoprotective agents and their influence on oxidative stress in rats. Food Research International 89:946–57. doi: 10.1016/j.foodres.2016.01.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.