1,605
Views
5
CrossRef citations to date
0
Altmetric
Review Articles

High-amylose starch: Structure, functionality and applications

, , , , , , , , & ORCID Icon show all

References

  • Abe, N., H. Asai, H. Yago, N. F. Oitome, R. Itoh, N. Crofts, Y. Nakamura, and N. Fujita. 2014. Relationships between starch synthase I and branching enzyme isozymes determined using double mutant rice lines. BMC Plant Biology 14 (1):80. doi: 10.1186/1471-2229-14-80.
  • Ai, Y., K. A. Cichy, J. B. Harte, J. D. Kelly, and P. K. Ng. 2016. Effects of extrusion cooking on the chemical composition and functional properties of dry common bean powders. Food Chemistry 211:538–45. doi: 10.1016/j.foodchem.2016.05.095.
  • Ai, Y., J. Hasjim, and J. L. Jane. 2013. Effects of lipids on enzymatic hydrolysis and physical properties of starch. Carbohydrate Polymers 92 (1):120–7. doi: 10.1016/j.carbpol.2012.08.092.
  • Ai, Y., and J.-l. Jane. 2018. Chapter 3 - Understanding starch structure and functionality. In Starch in food, ed. M. Sjöö and L. Nilsson, 2nd ed., 151–78. Cambridge, United Kingdom: Woodhead Publishing.
  • Aravind, N., M. Sissons, C. M. Fellows, J. Blazek, and E. P. Gilbert. 2013. Optimisation of resistant starch II and III levels in durum wheat pasta to reduce in vitro digestibility while maintaining processing and sensory characteristics. Food Chemistry 136 (2):1100–9. doi: 10.1016/j.foodchem.2012.08.035.
  • Ares, G., R. Baixauli, T. Sanz, P. Varela, and A. Salvador. 2009. New functional fibre in milk puddings: Effect on sensory properties and consumers’ acceptability. LWT - Food Science and Technology 42 (3):710–6. doi: 10.1016/j.lwt.2008.10.004.
  • Arp, C. G., M. J. Correa, and C. Ferrero. 2018. High-amylose resistant starch as a functional ingredient in breads: A technological and microstructural approach. Food and Bioprocess Technology 11 (12):2182–93. doi: 10.1007/s11947-018-2168-4.
  • Arp, C. G., M. J. Correa, and C. Ferrero. 2020. Kinetic study of staling in breads with high-amylose resistant starch. Food Hydrocolloids 106:105879. doi: 10.1016/j.foodhyd.2020.105879.
  • Balet, S., A. Guelpa, G. Fox, and M. Manley. 2019. Rapid Visco Analyser (RVA) as a tool for measuring starch-related physiochemical properties in cereals: A review. Food Analytical Methods 12 (10):2344–60. doi: 10.1007/s12161-019-01581-w.
  • Bertoft, E. 2017. Understanding starch structure: Recent progress. Agronomy 7 (3):56–84. doi: 10.3390/agronomy7030056.
  • Bertoft, E., G. A. Annor, X. Shen, P. Rumpagaporn, K. Seetharaman, and B. R. Hamaker. 2016. Small differences in amylopectin fine structure may explain large functional differences of starch. Carbohydrate Polymers 140:113–21. doi: 10.1016/j.carbpol.2015.12.025.
  • Bertuzzi, M. A., J. C. Gottifredi, and M. Armada. 2012. Mechanical properties of a high amylose content corn starch based film, gelatinized at low temperature. Brazilian Journal of Food Technology 15 (3):219–27. doi: 10.1590/S1981-67232012005000015.
  • Birt, D., T. Boylston, S. Hendrich, J.-L. Jane, J. Hollis, L. Li, J. McClelland, S. Moore, G. Phillips, M. Rowling, et al. 2013. Resistant starch: Promise for improving human health. Advances in Nutrition (Bethesda, MD) 4 (6):587–601. doi: 10.3945/an.113.004325.
  • Blazek, J., and E. P. Gilbert. 2011. Application of small-angle X-ray and neutron scattering techniques to the characterisation of starch structure: A review. Carbohydrate Polymers 85 (2):281–93. doi: 10.1016/j.carbpol.2011.02.041.
  • Blennow, A. 2018. Chapter 4 - Starch bioengineering. In Starch in food, ed. M. Sjöö and L. Nilsson, 2nd ed., 179–222. Cambridge, United Kingdom: Woodhead Publishing.
  • Blennow, A., M. Hansen, A. Schulz, K. Jørgensen, A. M. Donald, and J. Sanderson. 2003. The molecular deposition of transgenically modified starch in the starch granule as imaged by functional microscopy. Journal of Structural Biology 143 (3):229–41. doi: 10.1016/j.jsb.2003.08.009.
  • Blennow, A., S. L. Jensen, S. S. Shaik, K. Skryhan, M. Carciofi, P. B. Holm, K. H. Hebelstrup, and V. Tanackovic. 2013. Future cereal starch bioengineering: Cereal ancestors encounter gene technology and designer enzymes. Cereal Chemistry Journal 90 (4):274–87. doi: 10.1094/CCHEM-01-13-0010-FI.
  • Blennow, A., K. Skryhan, V. Tanackovic, S. L. Krunic, S. S. Shaik, M. S. Andersen, H. G. Kirk, and K. L. Nielsen. 2020. Non-GMO potato lines, synthesizing increased amylose and resistant starch, are mainly deficient in isoamylase debranching enzyme. Plant Biotechnology Journal 18 (10):2096–108. doi: 10.1111/pbi.13367.
  • Boyer, C. D., and J. Preiss. 1981. Evidence for independent genetic control of the multiple forms of maize endosperm branching enzymes and starch synthases. Plant Physiology 67 (6):1141–5. doi: 10.1104/pp.67.6.1141.
  • Bresciani, A., D. Giordano, F. Vanara, M. Blandino, and A. Marti. 2021. The effect of the amylose content and milling fractions on the physico-chemical features of co-extruded snacks from corn. Food Chemistry 343:128503. doi: 10.1016/j.foodchem.2020.128503.
  • Butardo, V. M., M. A. Fitzgerald, A. R. Bird, M. J. Gidley, B. M. Flanagan, O. Larroque, A. P. Resurreccion, H. K. C. Laidlaw, S. A. Jobling, M. K. Morell, et al. 2011. Impact of down-regulation of starch branching enzyme IIb in rice by artificial microRNA- and hairpin RNA-mediated RNA silencing. Journal of Experimental Botany 62 (14):4927–41. doi: 10.1093/jxb/err188.
  • Cai, C., L. Lin, J. Man, L. Zhao, Z. Wang, and C. Wei. 2014b. Different structural properties of high-amylose maize starch fractions varying in granule size. Journal of Agricultural and Food Chemistry 62 (48):11711–21. doi: 10.1021/jf503865e.
  • Cai, C., L. Zhao, J. Huang, Y. Chen, and C. Wei. 2014a. Morphology, structure and gelatinization properties of heterogeneous starch granules from high-amylose maize. Carbohydrate Polymers 102:606–14.
  • Carciofi, M., A. Blennow, S. L. Jensen, S. S. Shaik, A. Henriksen, A. Buleon, P. B. Holm, and K. H. Hebelstrup. 2012. Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules. BMC Plant Biology 12:223. doi: 10.1186/1471-2229-12-223.
  • Case, S. E., T. Capitani, J. K. Whaley, Y. C. Shi, P. Trzasko, R. Jeffcoat, and H. B. Goldfarb. 1998. Physical properties and gelation behavior of a low-amylopectin maize starch and other high-amylose maize starches. Journal of Cereal Science 27 (3):301–14. doi: 10.1006/jcrs.1997.0164.
  • Cerqueira, F. M., A. L. Photenhauer, R. M. Pollet, H. A. Brown, and N. M. Koropatkin. 2020. Starch digestion by gut bacteria: Crowdsourcing for carbs. Trends in Microbiology 28 (2):95–108.
  • Chao, C., S. Huang, J. Yu, L. Copeland, S. Wang, and S. Wang. 2020. Molecular mechanisms underlying the formation of starch-lipid complexes during simulated food processing: A dynamic structural analysis. Carbohydrate Polymers 244:116464. doi: 10.1016/j.carbpol.2020.116464.
  • Cheetham, N. W. H., and L. Tao. 1997. The effects of amylose content on the molecular size of amylose, and on the distribution of amylopectin chain length in maize starches. Carbohydrate Polymers 33 (4):251–61. doi: 10.1016/S0144-8617(97)00033-7.
  • Cheetham, N. W. H., and L. Tao. 1998. Variation in crystalline type with amylose content in maize starch granules: An X-ray powder diffraction study. Carbohydrate Polymers 36 (4):277–84. doi: 10.1016/S0144-8617(98)00007-1.
  • Chen, L., F. Ren, Z. Zhang, Q. Tong, and M. M. Rashed. 2015. Effect of pullulan on the short-term and long-term retrogradation of rice starch. Carbohydrate Polymers 115:415–21. doi: 10.1016/j.carbpol.2014.09.006.
  • Chen, M.-H., C. J. Bergman, A. M. McClung, J. D. Everette, and R. E. Tabien. 2017. Resistant starch: Variation among high amylose rice varieties and its relationship with apparent amylose content, pasting properties and cooking methods. Food Chemistry 234:180–9.
  • Chen, P., K. Wang, Q. Kuang, S. Zhou, D. Wang, and X. Liu. 2016. Understanding how the aggregation structure of starch affects its gastrointestinal digestion rate and extent. International Journal of Biological Macromolecules 87:28–33. doi: 10.1016/j.ijbiomac.2016.01.119.
  • Chen, P., L. Yu, G. Simon, E. Petinakis, K. Dean, and L. Chen. 2009. Morphologies and microstructures of cornstarches with different amylose–amylopectin ratios studied by confocal laser scanning microscope. Journal of Cereal Science 50 (2):241–7. doi: 10.1016/j.jcs.2009.06.001.
  • Chen, P., L. Yu, G. P. Simon, X. Liu, K. Dean, and L. Chen. 2011. Internal structures and phase-transitions of starch granules during gelatinization. Carbohydrate Polymers 83 (4):1975–83. doi: 10.1016/j.carbpol.2010.11.001.
  • Chen, X., X. Du, P. Chen, L. Guo, Y. Xu, and X. Zhou. 2017. Morphologies and gelatinization behaviours of high-amylose maize starches during heat treatment. Carbohydrate Polymers 157:637–42. doi: 10.1016/j.carbpol.2016.10.024.
  • Christine, G., R. Sylvia, A. Horst, and D. Gregor. 1993. Crystalline parts of three different conformations detected in native and enzymatically degraded starches. Starch - Stärke 45 (9):309–14.
  • Craig, J., J. R. Lloyd, K. Tomlinson, L. Barber, A. Edwards, T. L. Wang, C. Martin, C. L. Hedley, and A. M. Smith. 1998. Mutations in the gene encoding starch synthase II profoundly alter amylopectin structure in pea embryos. The Plant Cell 10 (3):413–26. doi: 10.1105/tpc.10.3.413.
  • DeMartino, P., and D. W. Cockburn. 2020. Resistant starch: Impact on the gut microbiome and health. Current Opinion in Biotechnology 61:66–71.
  • Dhital, S., V. M. Butardo, Jr., S. A. Jobling, and M. J. Gidley. 2015. Rice starch granule amylolysis–Differentiating effects of particle size, morphology, thermal properties and crystalline polymorph. Carbohydrate Polymers 115:305–16.
  • Dhital, S., F. J. Warren, P. J. Butterworth, P. R. Ellis, and M. J. Gidley. 2017. Mechanisms of starch digestion by α-amylase-structural basis for kinetic properties. Critical Reviews in Food Science and Nutrition 57 (5):875–92. doi: 10.1080/10408398.2014.922043.
  • Edwards, A., D. C. Fulton, C. M. Hylton, S. A. Jobling, M. Gidley, U. Rössner, C. Martin, and A. M. Smith. 1999. A combined reduction in activity of starch synthases II and III of potato has novel effects on the starch of tubers. The Plant Journal 17 (3):251–61. doi: 10.1046/j.1365-313X.1999.00371.x.
  • Ek, P., B.-J. Gu, S. R. Saunders, K. Huber, and G. M. Ganjyal. 2021. Exploration of physicochemical properties and molecular interactions between cellulose and high-amylose cornstarch during extrusion processing. Current Research in Food Science 4:588–97. doi: 10.1016/j.crfs.2021.07.001.
  • Flipse, E., C. Keetels, E. Jacobsen, and R. Visser. 1996. The dosage effect of the wildtype GBSS allele is linear for GBSS activity but not for amylose content: Absence of amylose has a distinct influence on the physico-chemical properties of starch. TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik 92 (1):121–7. doi: 10.1007/BF00222961.
  • Fuentes-Zaragoza, E., M. J. Riquelme-Navarrete, E. Sánchez-Zapata, and J. A. Pérez-Álvarez. 2010. Resistant starch as functional ingredient: A review. Food Research International 43 (4):931–42. doi: 10.1016/j.foodres.2010.02.004.
  • Giuberti, G., A. Gallo, P. Fortunati, and F. Rossi. 2016. Influence of high‐amylose maize starch addition on in vitro starch digestibility and sensory characteristics of cookies. Starch - Stärke 68 (5–6):469–75. doi: 10.1002/star.201500228.
  • Glaring, M. A., C. B. Koch, and A. Blennow. 2006. Genotype-Specific Spatial Distribution of Starch Molecules in the Starch Granule: A Combined CLSM and SEM approach. Biomacromolecules 7 (8):2310–20. doi: 10.1021/bm060216e.
  • Goldstein, A., G. Annor, J.-L. Putaux, K. H. Hebelstrup, A. Blennow, and E. Bertoft. 2016. Impact of full range of amylose contents on the architecture of starch granules*. International Journal of Biological Macromolecules 89:305–18. doi: 10.1016/j.ijbiomac.2016.04.053.
  • Gong, B., L. Cheng, R. G. Gilbert, and C. Li. 2019. Distribution of short to medium amylose chains are major controllers of in vitro digestion of retrograded rice starch. Food Hydrocolloids 96:634–43. doi: 10.1016/j.foodhyd.2019.06.003.
  • Guan, S., P. Wang, H. Liu, G. Liu, Y. Ma, and L. Zhao. 2011. Production of high-amylose maize lines using RNA interference in sbe2a. African Journal of Biotechnology 10 (68):15229–37. doi: 10.5897/AJB11.943.
  • Guo, J., L. Tan, and L. Kong. 2021. Impact of dietary intake of resistant starch on obesity and associated metabolic profiles in human: A systematic review of the literature. Critical Reviews in Food Science and Nutrition 61 (6):889–905. doi: 10.1080/10408398.2020.1747391.
  • He, M., C. Qiu, Z. Liao, Z. Sui, and H. Corke. 2018. Impact of cooking conditions on the properties of rice: Combined temperature and cooking time. International Journal of Biological Macromolecules 117:87–94. doi: 10.1016/j.ijbiomac.2018.05.139.
  • Hebelstrup, K. H., D. Sagnelli, and A. Blennow. 2015. The future of starch bioengineering: GM microorganisms or GM plants? Frontiers in Plant Science 6:247. doi: 10.3389/fpls.2015.00247.
  • Hesso, N., A. Le-Bail, C. Loisel, S. Chevallier, B. Pontoire, D. Queveau, and P. Le-Bail. 2015. Monitoring the crystallization of starch and lipid components of the cake crumb during staling. Carbohydrate Polymers 133:533–8. doi: 10.1016/j.carbpol.2015.07.056.
  • Hofvander, P., M. Andersson, C. T. Larsson, and H. Larsson. 2004. Field performance and starch characteristics of high-amylose potatoes obtained by antisense gene targeting of two branching enzymes. Plant Biotechnology Journal 2 (4):311–20. doi: 10.1111/j.1467-7652.2004.00073.x.
  • Huang, J., L. Lin, J. Wang, Z. Wang, Q. Liu, and C. Wei. 2016. In vitro digestion properties of heterogeneous starch granules from high-amylose rice. Food Hydrocolloids 54:10–22. doi: 10.1016/j.foodhyd.2015.09.016.
  • Huang, J., Z. Shang, J. Man, Q. Liu, C. Zhu, and C. Wei. 2015. Comparison of molecular structures and functional properties of high-amylose starches from rice transgenic line and commercial maize. Food Hydrocolloids 46:172–9. doi: 10.1016/j.foodhyd.2014.12.019.
  • Itoh, K., H. Ozaki, K. Okada, H. Hori, Y. Takeda, and T. Mitsui. 2003. Introduction of Wx transgene into rice wx mutants leads to both high- and low-amylose rice. Plant & Cell Physiology 44 (5):473–80. doi: 10.1093/pcp/pcg068.
  • Jackson, D., R. Waniska, and L. W. Rooney. 1989. Differential water solubility of corn and sorghum starches as characterized by high-performance size-exclusion chromatography. Cereal Chemistry 66 (3):228–32.
  • Jane, J.-l. 2009. Chapter 6 - Structural features of starch granules II. In Starch, ed. J. BeMiller and R. Whistler, 3rd ed., 193–236. San Diego: Academic Press.
  • Jane, J. L., and J. F. Robyt. 1984. Structure studies of amylose V complexes and retrograded amylose by action of alpha amylase, a new method for preparing amylodextrins. Carbohydrate Research 132 (1):105–18. doi: 10.1016/0008-6215(84)85068-5.
  • Jenkins, P. J., and A. M. Donald. 1995. The influence of amylose on starch granule structure. International Journal of Biological Macromolecules 17 (6):315–21. doi: 10.1016/0141-8130(96)81838-1.
  • Jeong, D., J. H. Lee, and H.-J. Chung. 2021. Effect of molecular structure on phase transition behavior of rice starch with different amylose contents. Carbohydrate Polymers 259:117712. doi: 10.1016/j.carbpol.2021.117712.
  • Jiang, H. X., M. Campbell, M. Blanco, and J. L. Jane. 2010. Characterization of maize amylose-extender (ae) mutant starches: Part II. Structures and properties of starch residues remaining after enzymatic hydrolysis at boiling-water temperature. Carbohydrate Polymers 80 (1):1–12. doi: 10.1016/j.carbpol.2009.10.060.
  • Kasemsuwan, T., J. Jane, P. Schnable, P. Stinard, and D. Robertson. 1995. Characterization of the dominant mutant amylose-extender (Ae1-5180) maize starch. Cereal Chemistry 72 (5):457–64.
  • Kim, H. R., J. S. Hong, A.-R. Ryu, and H.-D. Choi. 2020. Combination of rice varieties and cooking methods resulting in a high content of resistant starch. Cereal Chemistry 97 (1):149–57. doi: 10.1002/cche.10221.
  • Kim, H.-Y., J.-l. Jane, and B. Lamsal. 2017. Hydroxypropylation improves film properties of high amylose corn starch. Industrial Crops and Products 95:175–83. doi: 10.1016/j.indcrop.2016.10.025.
  • Koch, K. 2018. Chapter 19 - Starch-based films. In Starch in food, ed. M. Sjöö and L. Nilsson, 2nd ed., 747–67. Cambridge, United Kingdom: Woodhead Publishing.
  • Kokawa, M., Y. Suzuki, Y. Suzuki, M. Yoshimura, V. Trivittayasil, M. Tsuta, and J. Sugiyama. 2017. Viscoelastic properties and bubble structure of rice-gel made from high-amylose rice and its effects on bread. Journal of Cereal Science 73:33–9. doi: 10.1016/j.jcs.2016.11.008.
  • Kozhevnikov, G. O., V. A. Protserov, L. A. Wasserman, N. E. Pavlovskaya, L. V. Golischkin, V. N. Milyaev, and V. P. Yuryev. 2001. Changes of thermodynamic and structural properties of wrinkled pea starches (Z‐301 and Paramazent varieties) during biosynthesis. Starch - Stärke 53 (5):201–10. doi: 10.1002/1521-379X(200105)53:5<201::AID-STAR201>3.0.CO;2-Q.
  • Kozlov, S. S., A. Blennow, A. V. Krivandin, and V. P. Yuryev. 2007. Structural and thermodynamic properties of starches extracted from GBSS and GWD suppressed potato lines. International Journal of Biological Macromolecules 40 (5):449–60. doi: 10.1016/j.ijbiomac.2006.11.001.
  • Kozlov, S. S., A. V. Krivandin, O. Shatalova, T. Noda, and E. Bertoft. 2006. Structure of starches extracted from near-isogenic wheat lines: Part 2. Molecular organization of amylopectin clusters (regular). Journal of Thermal Analysis and Calorimetry 86 (2):291–301. doi: 10.1007/s10973-005-7319-y.
  • Li, C., S. Dhital, R. G. Gilbert, and M. J. Gidley. 2020a. High-amylose wheat starch: Structural basis for water absorption and pasting properties. Carbohydrate Polymers 245:116557. doi: 10.1016/j.carbpol.2020.116557.
  • Li, C., B. Gong, T. Huang, and W.-W. Yu. 2021. In vitro digestion rate of fully gelatinized rice starches is driven by molecular size and amylopectin medium-long chains. Carbohydrate Polymers 254:117275. doi: 10.1016/j.carbpol.2020.117275.
  • Li, C., J.-X. Luo, C.-Q. Zhang, and W.-W. Yu. 2020b. Causal relations among starch chain-length distributions, short-term retrogradation and cooked rice texture. Food Hydrocolloids 108:106064. doi: 10.1016/j.foodhyd.2020.106064.
  • Li, C., A. Wu, W. Yu, Y. Hu, E. Li, C. Zhang, and Q. Liu. 2020c. Parameterizing starch chain-length distributions for structure-property relations. Carbohydrate Polymers 241:116390. doi: 10.1016/j.carbpol.2020.116390.
  • Li, H., S. Dhital, B. M. Flanagan, J. Mata, E. P. Gilbert, and M. J. Gidley. 2020. High-amylose wheat and maize starches have distinctly different granule organization and annealing behaviour: A key role for chain mobility. Food Hydrocolloids 105:105820. doi: 10.1016/j.foodhyd.2020.105820.
  • Li, H., S. Dhital, A. J. Slade, W. Yu, R. G. Gilbert, and M. J. Gidley. 2019. Altering starch branching enzymes in wheat generates high-amylose starch with novel molecular structure and functional properties. Food Hydrocolloids 92:51–9. doi: 10.1016/j.foodhyd.2019.01.041.
  • Li, H., M. J. Gidley, and S. Dhital. 2019. High-amylose starches to bridge the “fiber gap”: Development, structure, and nutritional functionality. Comprehensive Reviews in Food Science and Food Safety 18 (2):362–79. doi: 10.1111/1541-4337.12416.
  • Li, H., and R. G. Gilbert. 2018. Starch molecular structure: The basis for an improved understanding of cooked rice texture. Carbohydrate Polymers 195:9–17. doi: 10.1016/j.carbpol.2018.04.065.
  • Li, H.-T., Z. Li, G. P. Fox, M. J. Gidley, and S. Dhital. 2021. Protein-starch matrix plays a key role in enzymic digestion of high-amylose wheat noodle. Food Chemistry 336:127719. doi: 10.1016/j.foodchem.2020.127719.
  • Li, L., H. Jiang, M. Campbell, M. Blanco, and J. L. Jane. 2008. Characterization of maize amylose-extender (ae) mutant starches. Part I: Relationship between resistant starch contents and molecular structures. Carbohydrate Polymers 74 (3):396–404. doi: 10.1016/j.carbpol.2008.03.012.
  • Li, M., S. Dhital, and Y. Wei. 2017. Multilevel structure of wheat starch and its relationship to noodle eating qualities. Comprehensive Reviews in Food Science and Food Safety 16 (5):1042–55. doi: 10.1111/1541-4337.12272.
  • Lin, L., C. Cai, R. G. Gilbert, E. Li, J. Wang, and C. Wei. 2016a. Relationships between amylopectin molecular structures and functional properties of different-sized fractions of normal and high-amylose maize starches. Food Hydrocolloids 52:359–68. doi: 10.1016/j.foodhyd.2015.07.019.
  • Lin, L., D. Guo, J. Huang, X. Zhang, L. Zhang, and C. Wei. 2016b. Molecular structure and enzymatic hydrolysis properties of starches from high-amylose maize inbred lines and their hybrids. Food Hydrocolloids 58:246–54. doi: 10.1016/j.foodhyd.2016.03.001.
  • Lin, L., D. Guo, L. Zhao, X. Zhang, J. Wang, F. Zhang, and C. Wei. 2016c. Comparative structure of starches from high-amylose maize inbred lines and their hybrids. Food Hydrocolloids 52:19–28. doi: 10.1016/j.foodhyd.2015.06.008.
  • Liu, G., Z. Gu, Y. Hong, L. Cheng, and C. Li. 2017. Structure, functionality and applications of debranched starch: A review. Trends in Food Science & Technology 63:70–9. doi: 10.1016/j.tifs.2017.03.004.
  • Liu, G., Z. Gu, Y. Hong, H. Wei, C. Zhang, S. Huang, Y. Chen, Y. Lu, and Y. Li. 2020. Effects of molecular interactions in debranched high amylose starch on digestibility and hydrogel properties. Food Hydrocolloids 101:105498. doi: 10.1016/j.foodhyd.2019.105498.
  • Liu, S., T. Z. Yuan, X. Wang, M. Reimer, C. Isaak, and Y. Ai. 2019. Behaviors of starches evaluated at high heating temperatures using a new model of Rapid Visco Analyzer ‒ RVA 4800. Food Hydrocolloids 94:217–28. doi: 10.1016/j.foodhyd.2019.03.015.
  • Liu, Z., and J. H. Han. 2005. Film-forming characteristics of starches. Journal of Food Science 70 (1):E31–E36. doi: 10.1111/j.1365-2621.2005.tb09034.x.
  • Liu, Z.-D., J. Wang, L. Li, and P. Wu. 2021. Mechanistic insights into the role of starch multi-level structures in functional properties of high-amylose rice cultivars. Food Hydrocolloids. 113:106441. doi: 10.1016/j.foodhyd.2020.106441.
  • Lopez-Rubio, A., B. M. Flanagan, A. K. Shrestha, M. J. Gidley, and E. P. Gilbert. 2008. Molecular rearrangement of starch during in vitro digestion: Toward a better understanding of enzyme resistant starch formation in processed starches. Biomacromolecules 9 (7):1951–8. doi: 10.1021/bm800213h.
  • Luhovyy, B. L., R. C. Mollard, S. Yurchenko, M. F. Nunez, S. Berengut, T. T. Liu, C. E. Smith, C. L. Pelkman, and G. H. Anderson. 2014. The effects of whole grain high-amylose maize flour as a source of resistant starch on blood glucose, satiety, and food intake in young men. Journal of Food Science 79 (12):H2550–H2556. doi: 10.1111/1750-3841.12690.
  • Luo, X., B. Cheng, W. Zhang, Z. Shu, P. Wang, and X. Zeng. 2021. Structural and functional characteristics of Japonica rice starches with different amylose contents. CyTA - Journal of Food 19 (1):532–40. doi: 10.1080/19476337.2021.1927194.
  • Mark, A. M., and C. L. Mehltretter. 1969. Water‐soluble films from partially acetylated high‐amylose corn starch. Starch‐Stärke, 21:92–96. doi:10.1002/STAR.19690210403.
  • Martínez, M. M., and M. Gómez. 2017. Rheological and microstructural evolution of the most common gluten-free flours and starches during bread fermentation and baking. Journal of Food Engineering 197:78–86. doi: 10.1016/j.jfoodeng.2016.11.008.
  • Martínez, M. M., L. Román, and M. Gómez. 2018. Implications of hydration depletion in the in vitro starch digestibility of white bread crumb and crust. Food Chemistry 239:295–303. doi: 10.1016/j.foodchem.2017.06.122.
  • Masatcioglu, T. M., Z. Sumer, and H. Koksel. 2017. An innovative approach for significantly increasing enzyme resistant starch type 3 content in high amylose starches by using extrusion cooking. Journal of Cereal Science 74:95–102. doi: 10.1016/j.jcs.2017.01.015.
  • Matignon, A., and A. Tecante. 2017. Starch retrogradation: From starch components to cereal products. Food Hydrocolloids 68:43–52. doi: 10.1016/j.foodhyd.2016.10.032.
  • Matveev, Y. I., J. J. G. van Soest, C. Nieman, L. A. Wasserman, V. A. Protserov, M. Ezernitskaja, and V. P. Yuryev. 2001. The relationship between thermodynamic and structural properties of low and high amylose maize starches. Carbohydrate Polymers 44 (2):151–60. doi: 10.1016/S0144-8617(00)00211-3.
  • Maziarz, M., M. Sherrard, S. Juma, C. Prasad, V. Imrhan, and P. Vijayagopal. 2013. Sensory characteristics of high-amylose maize-resistant starch in three food products. Food Science & Nutrition 1 (2):117–24. doi: 10.1002/fsn3.15.
  • Meenu, M., and B. Xu. 2019. A critical review on anti-diabetic and anti-obesity effects of dietary resistant starch. Critical Reviews in Food Science and Nutrition 59 (18):3019–31.doi: 10.1080/10408398.2018.1481360.
  • Mihhalevski, A., I. Heinmaa, R. Traksmaa, T. Pehk, A. Mere, and T. Paalme. 2012. Structural changes of starch during baking and staling of rye bread. Journal of Agricultural and Food Chemistry 60 (34):8492–500. doi: 10.1021/jf3021877.
  • Miura, S., N. Koyama, N. Crofts, Y. Hosaka, M. Abe, and N. Fujita. 2021. Generation and starch characterization of non-transgenic BEI and BEIIb double mutant Rice (Oryza sativa) with ultra-high level of resistant starch. Rice (New York, N.Y.) 14 (1):3–16. doi: 10.1186/s12284-020-00441-0.
  • Moorthy, S. N., L. Andersson, A. C. Eliasson, S. Santacruz, and J. Ruales. 2006. Determination of amylose content in different starches using modulated differential scanning calorimetry. Starch - Stärke 58 (5):209–14. doi: 10.1002/star.200500438.
  • Morell, M. K., B. Kosar‐Hashemi, M. Cmiel, M. S. Samuel, P. Chandler, S. Rahman, A. Buleon, I. L. Batey, and Z. Li. 2003. Barley sex6 mutants lack starch synthase IIa activity and contain a starch with novel properties. The Plant Journal: For Cell and Molecular Biology 34 (2):173–85. doi: 10.1046/j.1365-313x.2003.01712.x.
  • Morrison, W. R., R. F. Tester, M. J. Gidley, and J. Karkalas. 1993. Resistance to acid hydrolysis of lipid-complexed amylose and lipid-free amylose in lintnerised waxy and non-waxy barley starches. Carbohydrate Research 245 (2):289–302. doi: 10.1016/0008-6215(93)80078-S.
  • Muscat, D., B. Adhikari, R. Adhikari, and D. S. Chaudhary. 2012. Comparative study of film forming behaviour of low and high amylose starches using glycerol and xylitol as plasticizers. Journal of Food Engineering 109 (2):189–201. doi: 10.1016/j.jfoodeng.2011.10.019.
  • Nada, S. S., W. Zou, C. Li, and R. G. Gilbert. 2017. Parameterizing amylose chain-length distributions for biosynthesis-structure-property relations. Analytical and Bioanalytical Chemistry 409 (29):6813–9. doi: 10.1007/s00216-017-0639-5.
  • Nivelle, M. A., E. Remmerie, G. M. Bosmans, P. Vrinten, T. Nakamura, and J. A. Delcour. 2019. Amylose and amylopectin functionality during baking and cooling of bread prepared from flour of wheat containing unusual starches: A temperature-controlled time domain 1H NMR study. Food Chemistry 295:110–9. doi: 10.1016/j.foodchem.2019.05.049.
  • Okumus, B. N., Z. Tacer-Caba, K. Kahraman, and D. Nilufer-Erdil. 2018. Resistant starch type V formation in brown lentil (Lens culinaris Medikus) starch with different lipids/fatty acids. Food Chemistry 240:550–8. doi: 10.1016/j.foodchem.2017.07.157.
  • Ottenhof, M.-A, and I. A. Farhat. 2004. Starch retrogradation. Biotechnology & Genetic Engineering Reviews 21 (1):215–28. doi: 10.1080/02648725.2004.10648056.
  • Ozturk, S., H. Koksel, K. Kahraman, and P. K. Ng. 2009. Effect of debranching and heat treatments on formation and functional properties of resistant starch from high-amylose corn starches. European Food Research and Technology 229 (1):115–25. doi: 10.1007/s00217-009-1032-1.
  • Pan, T., L. Zhao, L. Lin, J. Wang, Q. Liu, and C. Wei. 2017. Changes in kernel morphology and starch properties of high-amylose brown rice during the cooking process. Food Hydrocolloids 66:227–36. doi: 10.1016/j.foodhyd.2016.11.035.
  • Perera, A., V. Meda, and R. Tyler. 2010. Resistant starch: A review of analytical protocols for determining resistant starch and of factors affecting the resistant starch content of foods. Food Research International 43 (8):1959–74. doi: 10.1016/j.foodres.2010.06.003.
  • Pérez, S., P. M. Baldwin, and D. J. Gallant. 2009. Chapter 5 - Structural Features of Starch Granules I. In Starch (Third Edition), ed. J. BeMiller and R. Whistler, 149–192. Cambridge, United Kingdon: Academic Press, San Diego.
  • Pérez, S., and E. Bertoft. 2010. The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review. Starch - Stärke 62 (8):389–420. doi: 10.1002/star.201000013.
  • Peroni-Okita, F. H. G., A. P. Gunning, A. Kirby, R. A. Simão, C. A. Soares, and B. R. Cordenunsi. 2015. Visualization of internal structure of banana starch granule through AFM. Carbohydrate Polymers 128:32–40. doi: 10.1016/j.carbpol.2015.04.019.
  • Peymanpour, G., M. Marcone, S. Ragaee, I. Tetlow, C. C. Lane, K. Seetharaman, and E. Bertoft. 2016. On the molecular structure of the amylopectin fraction isolated from “high-amylose” ae maize starches. International Journal of Biological Macromolecules 91:768–77. doi: 10.1016/j.ijbiomac.2016.06.029.
  • Pongjanta, J., A. Utaipattanaceep, O. Naivikul, and K. Piyachomkwan. 2009. Debranching enzyme concentration effected on physicochemical properties and α-amylase hydrolysis rate of resistant starch type III from amylose rice starch. Carbohydrate Polymers 78 (1):5–9. doi: 10.1016/j.carbpol.2009.03.037.
  • Putseys, J. A., L. Lamberts, and J. A. Delcour. 2010. Amylose-inclusion complexes: Formation, identity and physico-chemical properties. Journal of Cereal Science 51 (3):238–47. doi: 10.1016/j.jcs.2010.01.011.
  • Qi, Q., Y. Hong, Y. Zhang, Z. Gu, L. Cheng, Z. Li, and C. Li. 2021. Effect of cassava starch structure on scalding of dough and baking expansion ability. Food Chemistry 352:129350. doi: 10.1016/j.foodchem.2021.129350.
  • Qin, Y., H. Zhang, Y. Dai, H. Hou, and H. Dong. 2019. Effect of alkali treatment on structure and properties of high amylose corn starch film. Materials 12 (10):1705. doi: 10.3390/ma12101705.
  • Regina, A., P. Berbezy, B. Kosar-Hashemi, S. Li, M. Cmiel, O. Larroque, A. R. Bird, S. M. Swain, C. Cavanagh, S. A. Jobling, et al. 2015. A genetic strategy generating wheat with very high amylose content. Plant Biotechnology Journal 13 (9):1276–86. doi: 10.1111/pbi.12345.
  • Regina, A., A. Bird, D. Topping, S. Bowden, J. Freeman, T. Barsby, B. Kosar-Hashemi, Z. Li, S. Rahman, and M. Morell. 2006. High-amylose wheat generated by RNA interference improves indices of large-bowel health in rats. Proceedings of the National Academy of Sciences of the United States of America 103 (10):3546–51. doi: 10.1073/pnas.0510737103.
  • Reyniers, S., N. De Brier, N. Ooms, S. Matthijs, A. Piovesan, P. Verboven, K. Brijs, R. G. Gilbert, and J. A. Delcour. 2020. Amylose molecular fine structure dictates water‐oil dynamics during deep‐frying and the caloric density of potato crisps. Nature Food 1 (11):736–45. doi: 10.1038/s43016-020-00180-x.
  • Richardson, P. H., R. Jeffcoat, and Y. C. Shi. 2000. High-amylose starches: From biosynthesis to their use as food ingredients. MRS Bulletin 25 (12):20–4. doi: 10.1557/mrs2000.249.
  • Roman, L., M. P. Reguilon, M. Gomez, and M. M. Martinez. 2020. Intermediate length amylose increases the crumb hardness of rice flour gluten-free breads. Food Hydrocolloids 100:105451. doi: 10.1016/j.foodhyd.2019.105451.
  • Rompothi, O., P. Pradipasena, K. Tananuwong, A. Somwangthanaroj, and T. Janjarasskul. 2017. Development of non-water soluble, ductile mung bean starch based edible film with oxygen barrier and heat sealability. Carbohydrate Polymers 157:748–56.
  • Sagnelli, D., K. H. Hebelstrup, E. Leroy, A. Rolland-Sabaté, S. Guilois, J. J. Kirkensgaard, K. Mortensen, D. Lourdin, and A. Blennow. 2016. Plant-crafted starches for bioplastics production. Carbohydrate Polymers 152:398–408. doi: 10.1016/j.carbpol.2016.07.039.
  • Sajilata, M. G., R. S. Singhal, and P. R. Kulkarni. 2006. Resistant starch - A review. Comprehensive Reviews in Food Science and Food Safety 5 (1):1–17. doi: 10.1111/j.1541-4337.2006.tb00076.x.
  • Satoh, H., A. Nishi, K. Yamashita, Y. Takemoto, Y. Tanaka, Y. Hosaka, A. Sakurai, N. Fujita, and Y. Nakamura. 2003. Starch-branching enzyme I-deficient mutation specifically affects the structure and properties of starch in rice endosperm. Plant Physiology 133 (3):1111–21. doi: 10.1104/pp.103.021527.
  • Schirmer, M., A. Höchstötter, M. Jekle, E. Arendt, and T. Becker. 2013. Physicochemical and morphological characterization of different starches with variable amylose/amylopectin ratio. Food Hydrocolloids 32 (1):52–63. doi: 10.1016/j.foodhyd.2012.11.032.
  • Seneviratne, H. D., and C. G. Biliaderis. 1991. Action of α-amylases on amylose-lipid complex superstructures. Journal of Cereal Science 13 (2):129–43. doi: 10.1016/S0733-5210(09)80030-1.
  • Sestili, F., E. Botticella, G. Proietti, M. Janni, R. D’Ovidio, and D. Lafiandra. 2012. Amylose content is not affected by overexpression of the Wx‐B1 gene in durum wheat. Plant Breeding 131 (6):700–6. doi: 10.1111/j.1439-0523.2012.02004.x.
  • Shafqat, A., A. Tahir, A. Mahmood, A. B. Tabinda, A. Yasar, and A. Pugazhendhi. 2020. A review on environmental significance carbon foot prints of starch based bio-plastic: A substitute of conventional plastics. Biocatalysis and Agricultural Biotechnology 27:101540. doi: 10.1016/j.bcab.2020.101540.
  • Shi, Y. C., T. Capitani, P. Trzasko, and R. Jeffcoat. 1998. Molecular structure of a low-amylopectin starch and other high-amylose maize starches. Journal of Cereal Science 27 (3):289–99. doi: 10.1006/jcrs.1997.9998.
  • Sifuentes-Nieves, I., G. Neira-Velázquez, E. Hernández-Hernández, E. Barriga-Castro, C. Gallardo-Vega, G. Velazquez, and G. Mendez-Montealvo. 2019. Influence of gelatinization process and HMDSO plasma treatment on the chemical changes and water vapor permeability of corn starch films. International Journal of Biological Macromolecules 135:196–202. doi: 10.1016/j.ijbiomac.2019.05.116.
  • Singh, A., P. Raigond, M. K. Lal, B. Singh, N. Thakur, S. S. Changan, D. Kumar, and S. Dutt. 2020. Effect of cooking methods on glycemic index and in vitro bioaccessibility of potato (Solanum tuberosum L.) carbohydrates. LWT 127:109363. doi: 10.1016/j.lwt.2020.109363.
  • Song, Y., X. Li, and Y. Zhong. 2019. Optimization of butter, xylitol, and high-amylose maize flour on developing a low-sugar cookie. Food Science & Nutrition 7 (11):3414–24. doi: 10.1002/fsn3.1160.
  • Stenmarck, Â., C. Jensen, T. Quested, G. Moates, M. Buksti, B. Cseh, S. Juul, A. Parry, A. Politano, and B. Redlingshofer. 2016. Estimates of European food waste levels. Stockholm, Sweden: IVL Swedish Environmental Research Institute.
  • Sun, B., Y. Tian, L. Chen, and Z. Jin. 2017. Effect of acid-ethanol treatment and debranching on the structural characteristics and digestible properties of maize starches with different amylose contents. Food Hydrocolloids 69:229–35. doi: 10.1016/j.foodhyd.2017.01.040.
  • Sun, Y., G. Jiao, Z. Liu, X. Zhang, J. Li, X. Guo, W. Du, J. Du, F. Francis, Y. Zhao, et al. 2017a. Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Frontiers in Plant Science 8 (298):298–15. doi: 10.3389/fpls.2017.00298.
  • Tao, K., C. Li, W. Yu, R. G. Gilbert, and E. Li. 2019a. How amylose molecular fine structure of rice starch affects functional properties. Carbohydrate Polymers 204:24–31. doi: 10.1016/j.carbpol.2018.09.078.
  • Tao, K., W. Yu, S. Prakash, and R. G. Gilbert. 2019b. High-amylose rice: Starch molecular structural features controlling cooked rice texture and preference. Carbohydrate Polymers 219:251–60. doi: 10.1016/j.carbpol.2019.05.031.
  • Tappiban, P., Y. Ying, Y. Pang, S. Sraphet, N. Srisawad, D. R. Smith, P. Wu, K. Triwitayakorn, and J. Bao. 2020. Gelatinization, pasting and retrogradation properties and molecular fine structure of starches from seven cassava cultivars. International Journal of Biological Macromolecules 150:831–8. doi:10.1016/j.ijbiomac.2020.02.119.
  • Tester, R. F., and W. R. Morrison. 1992. Swelling and gelatinization of cereal starches. III. Some properties of waxy and normal nonwaxy barley starches. Cereal Chemistry 69 (6):654–8.
  • Tong, C., S. Ahmed, Y. Pang, X. Zhou, and J. Bao. 2018. Fine structure and gelatinization and pasting properties relationships among starches from pigmented potatoes. Food Hydrocolloids 83:45–52. doi: 10.1016/j.foodhyd.2018.04.036.
  • Tukomane, T., and S. Varavinit. 2008. Classification of rice starch amylose content from rheological changes of starch paste after cold recrystallization. Starch - Stärke 60 (6):292–7. doi: 10.1002/star.200700672.
  • Tziotis, A., K. Seetharaman, K. Wong, J. D. Klucinec, J. Jane, and P. J. White. 2004. Structural properties of starch fractions isolated from normal and mutant corn genotypes using different methods. Cereal Chemistry Journal 81 (5):611–20. doi: 10.1094/CCHEM.2004.81.5.611.
  • Umemoto, T., T. Horibata, N. Aoki, M. Hiratsuka, M. Yano, and N. Inouchi. 2008. Effects of variations in starch synthase on starch properties and eating quality of rice. Plant Production Science 11 (4):472–80. doi: 10.1626/pps.11.472.
  • Vamadevan, V., and E. Bertoft. 2018. Impact of different structural types of amylopectin on retrogradation. Food Hydrocolloids 80:88–96. doi: 10.1016/j.foodhyd.2018.01.029.
  • Vamadevan, V., and E. Bertoft. 2020. Observations on the impact of amylopectin and amylose structure on the swelling of starch granules. Food Hydrocolloids 103:105663. doi: 10.1016/j.foodhyd.2020.105663.
  • Vilaplana, F., D. Meng, J. Hasjim, and R. G. Gilbert. 2014. Two-dimensional macromolecular distributions reveal detailed architectural features in high-amylose starches. Carbohydrate Polymers 113:539–51. doi: 10.1016/j.carbpol.2014.07.050.
  • Wang, S., C. Chao, J. Cai, B. Niu, L. Copeland, and S. Wang. 2020. Starch-lipid and starch-lipid-protein complexes: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety 19 (3):1056–79. doi: 10.1111/1541-4337.12550.
  • Wang, S., C. Li, L. Copeland, Q. Niu, and S. Wang. 2015. Starch retrogradation: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety 14 (5):568–85. doi: 10.1111/1541-4337.12143.
  • Wang, S., H. Xu, and H. Luan. 2020. Multiscale Structures of Starch Granules. In Starch structure, functionality and application in foods, ed. S. Wang, 41–55. Singapore: Springer Singapore.
  • Wang, S., P. Khamchanxana, F. Zhu, C. Zhu, and J. Pan. 2017a. Textural and sensory attributes of steamed bread fortified with high‐amylose maize starch. Journal of Texture Studies 48 (1):3–8. doi: 10.1111/jtxs.12208.
  • Wang, W., P. Song, R. Wang, R. Zhang, Q. Guo, H. Hou, and H. Dong. 2018. Effects of cationization of high amylose maize starch on the performance of starch/montmorillonite nano-biocomposites. Industrial Crops and Products 117:333–9. doi: 10.1016/j.indcrop.2018.03.004.
  • Wang, Y., Y. Li, H. Zhang, H. Zhai, Q. Liu, and S. He. 2017. A soluble starch synthase I gene, IbSSI, alters the content, composition, granule size and structure of starch in transgenic sweet potato. Scientific Reports 7 (1):2315. doi: 10.1038/s41598-017-02481-x.
  • Witt, T., M. J. Gidley, and R. G. Gilbert. 2010. Starch digestion mechanistic information from the time evolution of molecular size distributions. Journal of Agricultural and Food Chemistry 58 (14):8444–52. doi: 10.1021/jf101063m.
  • Wei, C., B. Xu, F. Qin, H. Yu, C. Chen, X. Meng, L. Zhu, Y. Wang, M. Gu, and Q. Liu. 2010. C-type starch from high-amylose rice resistant starch granules modified by antisense RNA inhibition of starch branching enzyme. Journal of Agricultural and Food Chemistry 58 (12):7383–8. doi: 10.1021/jf100385m.
  • Xu, J., A. Blennow, X. Li, L. Chen, and X. Liu. 2020. Gelatinization dynamics of starch in dependence of its lamellar structure, crystalline polymorphs and amylose content. Carbohydrate Polymers 229:115481. doi: 10.1016/j.carbpol.2019.115481.
  • Xu, J., Z. Li, Y. Zhong, Q. Zhou, Q. Lv, L. Chen, A. Blennow, and X. Liu. 2021a. The effects of molecular fine structure on rice starch granule gelatinization dynamics as investigated by in situ small-angle X-ray scattering. Food Hydrocolloids 121:107014. doi: 10.1016/j.foodhyd.2021.107014.
  • Xu, J., D. Sagnelli, M. Faisal, A. Perzon, V. Taresco, M. Mais, C. V. Giosafatto, K. Hebelstrup, P. Ulvskov, B. Jørgensen, et al. 2021b. Amylose/cellulose nanofiber composites for all-natural, fully biodegradable and flexible bioplastics. Carbohydrate Polymers 253:117277. doi: 10.1016/j.carbpol.2020.117277.
  • Yamamori, M., M. Kato, M. Yui, and M. Kawasaki. 2006. Resistant starch and starch pasting properties of a starch synthase IIa-deficient wheat with apparent high amylose. Australian Journal of Agricultural Research 57 (5):531–5. doi: 10.1071/AR05176.
  • Yang, J., F. Xie, W. Wen, L. Chen, X. Shang, and P. Liu. 2016. Understanding the structural features of high-amylose maize starch through hydrothermal treatment. International Journal of Biological Macromolecules 84:268–74. doi: 10.1016/j.ijbiomac.2015.12.033.
  • Ye, J., X. Hu, S. Luo, W. Liu, J. Chen, Z. Zeng, and C. Liu. 2018. Properties of starch after extrusion: A review. Starch - Stärke 70 (11–12):1700110. doi: 10.1002/star.201700110.
  • Yılmaz, G., R. O. Jongboom, H. Feil, C. van Dijk, and W. E. Hennink. 2004. Permeation of volatile compounds through starch films. Biomacromolecules 5 (2):650–6. doi: 10.1021/bm034493m.
  • Yu, W., H. Li, W. Zou, K. Tao, J. Zhu, and R. G. Gilbert. 2019. Using starch molecular fine structure to understand biosynthesis-structure-property relations. Trends in Food Science & Technology 86:530–6. doi: 10.1016/j.tifs.2018.08.003.
  • Yu, W., K. Tao, and R. G. Gilbert. 2018. Improved methodology for analyzing relations between starch digestion kinetics and molecular structure. Food Chemistry 264:284–92. doi: 10.1016/j.foodchem.2018.05.049.
  • Yuryev, V. P., A. V. Krivandin, V. I. Kiseleva, L. A. Wasserman, N. K. Genkina, J. Fornal, W. Blaszczak, and A. Schiraldi. 2004. Structural parameters of amylopectin clusters and semi-crystalline growth rings in wheat starches with different amylose content. Carbohydrate Research 339 (16):2683–91. doi: 10.1016/j.carres.2004.09.005.
  • Zhang, B., L. Chen, Y. Zhao, and X. Li. 2013. Structure and enzymatic resistivity of debranched high temperature–pressure treated high-amylose corn starch. Journal of Cereal Science 57 (3):348–55. doi: 10.1016/j.jcs.2012.12.006.
  • Zhang, B., S. Dhital, B. M. Flanagan, P. Luckman, P. J. Halley, and M. J. Gidley. 2015. Extrusion induced low-order starch matrices: Enzymic hydrolysis and structure. Carbohydrate Polymers 134:485–96. doi: 10.1016/j.carbpol.2015.07.095.
  • Zhang, Y., W. Liu, C. Liu, S. Luo, T. Li, Y. Liu, D. Wu, and Y. Zuo. 2014. Retrogradation behaviour of high-amylose rice starch prepared by improved extrusion cooking technology. Food Chemistry 158:255–61. doi: 10.1016/j.foodchem.2014.02.072.
  • Zhang, Z., X. Fan, X. Yang, C. Li, R. G. Gilbert, and E. Li. 2020. Effects of amylose and amylopectin fine structure on sugar-snap cookie dough rheology and cookie quality. Carbohydrate Polymers 241:116371. doi: 10.1016/j.carbpol.2020.116371.
  • Zhao, X., S. Jayarathna, H. Turesson, A.-S. Fält, G. Nestor, M. González, N. Olsson, M. Beganovic, P. Hofvander, R. Andersson, et al. 2021. Amylose starch with no detectable branching developed through DNA-free CRISPR-Cas9 mediated mutagenesis of two starch branching enzymes in potato. Scientific Reports 11 (1):4311. doi: 10.1038/s41598-021-83462-z.
  • Zhao, Q., Y. Ye, Z. Han, L. Zhou, X. Guan, G. Pan, M.-A.-U. Asad, and F. Cheng. 2020. SSIIIa-RNAi suppression associated changes in rice grain quality and starch biosynthesis metabolism in response to high temperature. Plant Science 294:110443. doi: 10.1016/j.plantsci.2020.110443.
  • Zhong, Y., W. Liang, H. Pu, A. Blennow, X. Liu, and D. Guo. 2019. Short-time microwave treatment affects the multi-scale structure and digestive properties of high-amylose maize starch. International Journal of Biological Macromolecules 137:870–7. doi: 10.1016/j.ijbiomac.2019.07.025.
  • Zhong, Y., X. Li, T. Lan, Y. Li, L. Liu, J. Qu, R. Zhang, W. Liang, J. Xue, X. Liu, et al. 2018a. Effects of different thermal treatment methods on preparation and physical properties of high amylose maize starch based films. International Journal of Food Engineering 14 (4):20170284. doi: 10.1515/ijfe-2017-0284.
  • Zhong, Y., L. Liu, J. Qu, A. Blennow, A. R. Hansen, Y. Wu, D. Guo, and X. Liu. 2020a. Amylose content and specific fine structures affect lamellar structure and digestibility of maize starches. Food Hydrocolloids. 108:105994. doi: 10.1016/j.foodhyd.2020.105994.
  • Zhong, Y., L. Liu, J. Qu, S. Li, A. Blennow, S. A. Seytahmetovna, X. Liu, and D. Guo. 2020b. The relationship between the expression pattern of starch biosynthesis enzymes and molecular structure of high amylose maize starch. Carbohydrate Polymers 247:116681. doi: 10.1016/j.carbpol.2020.116681.
  • Zhong, Y., Y. Tian, X. Liu, L. Ding, J. J. K. Kirkensgaard, K. Hebelstrup, J.-L. Putaux, and A. Blennow. 2021. Influence of microwave treatment on the structure and functionality of pure amylose and amylopectin systems. Food Hydrocolloids 119:106856. doi: 10.1016/j.foodhyd.2021.106856.
  • Zhong, Y., H. Zhu, W. Liang, X. Li, L. Liu, X. Zhang, H. Yue, J. Xue, X. Liu, and D. Guo. 2018b. High-amylose starch as a new ingredient to balance nutrition and texture of food. Journal of Cereal Science 81:8–14. doi: 10.1016/j.jcs.2018.02.009.
  • Zhou, X., R. Wang, S.-H. Yoo, and S.-T. Lim. 2011. Water effect on the interaction between amylose and amylopectin during retrogradation. Carbohydrate Polymers 86 (4):1671–4. doi: 10.1016/j.carbpol.2011.06.082.
  • Zhu, B., J. Zhan, L. Chen, and Y. Tian. 2020. Amylose crystal seeds: Preparation and their effect on starch retrogradation. Food Hydrocolloids 105:105805. doi: 10.1016/j.foodhyd.2020.105805.
  • Zhu, L., M. Gu, X. Meng, S. C. Cheung, H. Yu, J. Huang, Y. Sun, Y. Shi, and Q. Liu. 2012. High‐amylose rice improves indices of animal health in normal and diabetic rats. Plant Biotechnology Journal 10 (3):353–62. doi: 10.1111/j.1467-7652.2011.00667.x.
  • Zhu, X. 2021. The plastic cycle – An unknown branch of the carbon cycle. Frontiers in Marine Science 7:609243. doi: 10.3389/fmars.2020.609243.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.