1,093
Views
11
CrossRef citations to date
0
Altmetric
Review Articles

Recent developments in off-odor formation mechanism and the potential regulation by starter cultures in dry-cured ham

ORCID Icon, , , , , , , , & show all

References

  • Akimowicz, M, and J. Bucka-Kolendo. 2020. MALDI-TOF MS–application in food microbiology. Acta Biochimica Polonica 67 (3):327–32.
  • Alapont, C., M. C. López-Mendoza, J. V. Gil, and P. V. Martínez-Culebras. 2014. Mycobiota and toxigenic Penicillium species on two Spanish dry-cured ham manufacturing plants. Food Additives & Contaminants: Part A 31 (1):93–104. doi: 10.1080/19440049.2013.849007.
  • Alía, A., J. J. Córdoba, A. Rodríguez, C. García, and M. J. Andrade. 2020. Evaluation of the efficacy of Debaryomyces hansenii as protective culture for controlling Listeria monocytogenes in sliced dry-cured ham. LWT 119:108886. doi: 10.1016/j.lwt.2019.108886.
  • Alía, A., M. J. Andrade, A. Rodríguez, M. Reyes-Prieto, V. Bernáldez, and J. J. Córdoba. 2016. Identification and control of moulds responsible for black spot spoilage in dry-cured ham. Meat Science 122:16–24.
  • Aliño, M., R. Grau, A. Fuentes, and J. M. Barat. 2010. Influence of low-sodium mixtures of salts on the post-salting stage of dry-cured ham process. Journal of Food Engineering 99 (2):198–205. doi: 10.1016/j.jfoodeng.2010.02.020.
  • Andrade, M. J., E. Rodas, A. Durbán, A. Moya, and J. J. Córdoba. 2012. Characterization and control of microbial black spot spoilage in dry-cured Iberian ham. Food Control 23 (1):128–36. doi: 10.1016/j.foodcont.2011.06.023.
  • Andrade, M. J., J. J. Córdoba, B. Sánchez, E. M. Casado, and M. Rodríguez. 2009. Evaluation and selection of yeasts isolated from dry-cured Iberian ham by their volatile compound production. Food Chemistry 113 (2):457–63. doi: 10.1016/j.foodchem.2008.07.080.
  • Andrade, M. J., L. Thorsen, A. Rodríguez, J. J. Córdoba, and L. Jespersen. 2014. Inhibition of ochratoxigenic moulds by Debaryomyces hansenii strains for biopreservation of dry-cured meat products. International Journal of Food Microbiology 170:70–7.
  • Arnau, J., X. Serra, J. Comaposada, P. Gou, and M. Garriga. 2007. Technologies to shorten the drying period of dry-cured meat products. Meat Science 77 (1):81–9.
  • Ashaolu, T. J., I. Khalifa, M. A. Mesak, J. M. Lorenzo, and M. A. Farag. 2021. A comprehensive review of the role of microorganisms on texture change, flavor and biogenic amines formation in fermented meat with their action mechanisms and safety. Critical Reviews in Food Science and Nutrition :1–18. doi: 10.1080/10408398.2021.1929059.
  • Barberis, C., M. Almuzara, O. Join-Lambert, M. S. Ramírez, A. Famiglietti, and C. Vay. 2014. Comparison of the Bruker MALDI-TOF mass spectrometry system and conventional phenotypic methods for identification of Gram-positive rods. PloS One 9 (9):e106303.
  • Biango-Daniels, M. N., and K. T. Hodge. 2018. Sea salts as a potential source of food spoilage fungi. Food Microbiology 69:89–95.
  • Bis-Souza, C. V., F. J. Barba, J. M. Lorenzo, A. L. B. Penna, and A. C. S. Barretto. 2019. New strategies for the development of innovative fermented meat products: A review regarding the incorporation of probiotics and dietary fibers. Food Reviews International 35 (5):467–84. doi: 10.1080/87559129.2019.1584816.
  • Blanco-Lizarazo, C. M., I. Sotelo-Díaz, and A. Llorente-Bousquets. 2016. In vitro modelling of simultaneous interactions of Listeria monocytogenes, Lactobacillus sakei, and Staphylococcus carnosus. Food Science and Biotechnology 25 (1):341–8. doi: 10.1007/s10068-016-0048-0.
  • Blesa, E., M. Alino, J. M. Barat, R. Grau, F. Toldra, and M. J. Pagan. 2008. Microbiology and physico-chemical changes of dry-cured ham during the post-salting stage as affected by partial replacement of NaCl by other salts. Meat Science 78 (1–2):135–42. doi: 10.1016/j.meatsci.2007.07.008.
  • Bokulich, N. A., Z. T. Lewis, K. Boundy-Mills, and D. A. Mills. 2016. A new perspective on microbial landscapes within food production. Current Opinion in Biotechnology 37:182–9.
  • Bosse, R., A. Müller, M. Gibis, A. Weiss, H. Schmidt, and J. Weiss. 2018. Recent advances in cured raw ham manufacture. Critical Reviews in Food Science and Nutrition 58 (4):610–30.
  • Bruna, J. M., E. M. Hierro, L. de la Hoz, D. S. Mottram, M. Fernández, and J. A. Ordóñez. 2001. The contribution of Penicillium aurantiogriseum to the volatile composition and sensory quality of dry fermented sausages. Meat Science 59 (1):97–107. doi: 10.1016/S0309-1740(01)00058-4.
  • Čandek-Potokar, M, and M. Škrlep. 2012. Factors in pig production that impact the quality of dry-cured ham: A review. Animal 6 (2):327–38. doi: 10.1017/S1751731111001625.
  • Carrapiso, A. I., L. Martín, Á. Jurado, and C. García. 2010. Characterisation of the most odour-active compounds of bone tainted dry-cured Iberian ham. Meat Science 85 (1):54–8.
  • Casaburi, A., P. Piombino, G. J. Nychas, F. Villani, and D. Ercolini. 2015. Bacterial populations and the volatilome associated to meat spoilage. Food Microbiology 45 (Pt A):83–102.
  • Casquete, R., M. J. Benito, A. Martín, S. Ruiz-Moyano, E. Aranda, and M. G. Córdoba. 2012. Microbiological quality of salchichón and chorizo, traditional Iberian dry-fermented sausages from two different industries, inoculated with autochthonous starter cultures. Food Control 24 (1-2):191–8. doi: 10.1016/j.foodcont.2011.09.026.
  • Cebrián, E., M. Rodríguez, B. Peromingo, E. Bermúdez, and F. Núñez. 2019. Efficacy of the combined protective cultures of Penicillium chrysogenum and Debaryomyces hansenii for the control of Ochratoxin A hazard in dry-cured ham. Toxins 11 (12):710. doi: 10.3390/toxins11120710.
  • Chen, Q., B. Kong, Q. Han, X. Xia, and L. Xu. 2017. The role of bacterial fermentation in lipolysis and lipid oxidation in Harbin dry sausages and its flavour development. LWT 77:389–96. doi: 10.1016/j.lwt.2016.11.075.
  • Cherkaoui, A., J. Hibbs, S. Emonet, M. Tangomo, M. Girard, P. Francois, and J. Schrenzel. 2010. Comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry methods with conventional phenotypic identification for routine identification of bacteria to the species level. Journal of Clinical Microbiology 48 (4):1169–75. doi: 10.1128/JCM.01881-09.
  • Cocolin, L., P. Dolci, and K. Rantsiou. 2011. Biodiversity and dynamics of meat fermentations: The contribution of molecular methods for a better comprehension of a complex ecosystem. Meat Science 89 (3):296–302.
  • Comi, G, and L. Iacumin. 2013. Ecology of moulds during the pre-ripening and ripening of San Daniele dry cured ham. Food Research International 54 (1):1113–9. doi: 10.1016/j.foodres.2013.01.031.
  • Comi, G., M. Manzano, R. Brichese, and L. Iacumin. 2014. New cause of spoilage in S an D aniele Dry Cured Ham. Journal of Food Safety 34 (4):263–9. doi: 10.1111/jfs.12122.
  • Cordero, M. R., and J. M. Zumalacárregui. 2000. Characterization of Micrococcaceae isolated from salt used for Spanish dry‐cured ham. Letters in Applied Microbiology 31 (4):303–6.
  • Cruxen, C. E., G. D. Funck, L. Haubert, G. da Silva Dannenberg, J. de Lima Marques, F. C. Chaves, W. P. Da Silva, and Â. M. Fiorentini. 2019. Selection of native bacterial starter culture in the production of fermented meat sausages: Application potential, safety aspects, and emerging technologies. Food Research International (Ottawa, Ont.) 122:371–82.
  • Deak, T. 2011. A survey of current taxonomy of common foodborne bacteria: Part II. Gram-positive phyla of Firmicutes and Actinobacteria. Acta Alimentaria 40 (1):95–116.
  • Del Pulgar, J. S., C. García, R. Reina, and A. I. Carrapiso. 2013. Study of the volatile compounds and odor-active compounds of dry-cured Iberian ham extracted by SPME. Food Science and Technology International 19 (3):225–33. doi: 10.1177/1082013212442199.
  • Delgado, J., R. Acosta, A. Rodríguez-Martín, E. Bermúdez, F. Núñez, and M. A. Asensio. 2015. Growth inhibition and stability of PgAFP from Penicillium chrysogenum against fungi common on dry-ripened meat products. International Journal of Food Microbiology 205:23–9.
  • Doeun, D., M. Davaatseren, and M. S. Chung. 2017. Biogenic amines in foods. Food Science and Biotechnology 26 (6):1463–74.
  • Dušková, M., O. Šedo, K. Kšicová, Z. Zdráhal, and R. Karpíšková. 2012. Identification of lactobacilli isolated from food by genotypic methods and MALDI-TOF MS. International Journal of Food Microbiology 159 (2):107–14.
  • Farfour, E., J. Leto, M. Barritault, C. Barberis, J. Meyer, B. Dauphin, A.-S. Le Guern, A. Leflèche, E. Badell, N. Guiso, et al. 2012. Evaluation of the Andromas matrix-assisted laser desorption ionization-time of flight mass spectrometry system for identification of aerobically growing Gram-positive bacilli. Journal of Clinical Microbiology 50 (8):2702–7.
  • Ferone, M., A. Gowen, S. Fanning, and A. G. Scannell. 2020. Microbial detection and identification methods: Bench top assays to omics approaches. Comprehensive Reviews in Food Science and Food Safety 19 (6):3106–29. doi: 10.1111/1541-4337.12618.
  • Ferrara, M., G. Perrone, A. Gallo, F. Epifani, A. Visconti, and A. Susca. 2015. Development of loop-mediated isothermal amplification (LAMP) assay for the rapid detection of Penicillium nordicum in dry-cured meat products. International Journal of Food Microbiology 202:42–7.
  • Flores, M., S. Corral, L. Cano-Garcia, A. Salvador, and C. Belloch. 2015. Yeast strains as potential aroma enhancers in dry fermented sausages. International Journal of Food Microbiology 212:16–24.
  • Fong, F. L. Y., H. El-Nezami, and E. T. P. Sze. 2021. Biogenic amines - Precursors of carcinogens in traditional Chinese fermented food. NFS Journal 23:52–7. doi: 10.1016/j.nfs.2021.04.002.
  • Franciosa, I., V. Alessandria, P. Dolci, K. Rantsiou, and L. Cocolin. 2018. Sausage fermentation and starter cultures in the era of molecular biology methods. International Journal of Food Microbiology 279:26–32.
  • Fraqueza, M. J., M. Laranjo, M. Elias, and L. Patarata. 2021. Microbiological hazards associated with salt and nitrite reduction in cured meat products: Control strategies based on antimicrobial effect of natural ingredients and protective microbiota. Current Opinion in Food Science 38:32–9. doi: 10.1016/j.cofs.2020.10.027.
  • Fulladosa, E., M. Garriga, B. Martín, M. D. Guàrdia, J. A. García-Regueiro, and J. Arnau. 2010. Volatile profile and microbiological characterization of hollow defect in dry-cured ham. Meat Science 86 (3):801–7. doi: 10.1016/j.meatsci.2010.06.025.
  • García, C., A. Martín, M. L. Timón, and J. J. C. órdoba. 2000. Microbial populations and volatile compounds in the ‘bone taint’spoilage of dry-cured ham. Letters in Applied Microbiology 30 (1):61–6.
  • Gugliandolo, C., V. Lentini, A. Spanò, and T. L. Maugeri. 2011. Conventional and molecular methods to detect bacterial pathogens in mussels. Letters in Applied Microbiology 52 (1):15–21.
  • Halász, A., A. Barath, L. Simon-Sarkadi, and W. Holzapfel. 1994. Biogenic amines and their production by microorganisms in food. Trends in Food Science & Technology 5 (2):42–9. doi: 10.1016/0924-2244(94)90070-1.
  • Han, S. K., Y. Hong, H. L. Kwak, E. S. Kim, M. J. Kim, A. Shrivastav, M. H. Oh, and H. Y. Kim. 2014. Identification of lactic acid bacteria in pork meat and pork meat products using SDS‐PAGE, 16 S rRNA gene sequencing and MALDI‐TOF mass spectrometry. Journal of Food Safety 34 (3):224–32. doi: 10.1111/jfs.12117.
  • Hersleth, M., V. Lengard, W. Verbeke, L. Guerrero, and T. Naes. 2011. Consumers’ acceptance of innovations in dry-cured ham: Impact of reduced salt content, prolonged aging time and new origin. Food Quality and Preference 22 (1):31–41. doi: 10.1016/j.foodqual.2010.07.002.
  • Höll, L., J. Behr, and R. F. Vogel. 2016. Identification and growth dynamics of meat spoilage microorganisms in modified atmosphere packaged poultry meat by MALDI-TOF MS. Food Microbiology 60:84–91.
  • Hu, Y., H. Wang, B. Kong, Y. Wang, and Q. Chen. 2021. The succession and correlation of the bacterial community and flavour characteristics of Harbin dry sausages during fermentation. LWT 138:110689. doi: 10.1016/j.lwt.2020.110689.
  • Huan, Y., G. Zhou, G. Zhao, X. Xu, and Z. Peng. 2005. Changes in flavor compounds of dry-cured Chinese Jinhua ham during processing. Meat Science 71 (2):291–9.
  • Iacumin, L., M. Manzano, S. Panseri, L. Chiesa, and G. Comi. 2016. A new cause of spoilage in goose sausages. Food Microbiology 58:56–62.
  • Iacumin, L., S. Milesi, S. Pirani, G. Comi, and L. M. Chiesa. 2011. Ochratoxigenic mold and ochratoxin a in fermented sausages from different areas in northern italy: Occurrence, reduction or prevention with ozonated air. Journal of Food Safety 31 (4):538–45. doi: 10.1111/j.1745-4565.2011.00332.x.
  • Jain, A, and A. Agarwal. 2009. Biofilm production, a marker of pathogenic potential of colonizing and commensal staphylococci. Journal of Microbiological Methods 76 (1):88–92. doi: 10.1016/j.mimet.2008.09.017.
  • Jørgensen, L. V., H. H. Huss, and P. Dalgaard. 2000. The effect of biogenic amine production by single bacterial cultures and metabiosis on cold‐smoked salmon. Journal of Applied Microbiology 89 (6):920–34.
  • Karabagias, I. K. 2018. Volatile profile of raw lamb meat stored at 4 ± 1 °C: The potential of specific aldehyde ratios as indicators of lamb meat quality. Foods 7 (3):40. doi: 10.3390/foods7030040.
  • Kęska, P., J. Stadnik, D. Zielińska, and D. Kołożyn-Krajewska. 2017. Potential of bacteriocins from lab to improve microbial quality of dry-cured and fermented meat products. Acta Scientiarum Polonorum. Technologia Alimentaria 16 (2):119–26.
  • Kuria, J. K. N., R. G. Wahome, M. Jobalamin, and S. M. Kariuki. 2009. Profile of bacteria and fungi on money coins. East African Medical Journal 86 (4):151–4.
  • Landaud, S., S. Helinck, and P. Bonnarme. 2008. Formation of volatile sulfur compounds and metabolism of methionine and other sulfur compounds in fermented food. Applied Microbiology and Biotechnology 77 (6):1191–205.
  • Landete, J. M., S. Ferrer, and I. Pardo. 2007. Biogenic amine production by lactic acid bacteria, acetic bacteria and yeast isolated from wine. Food Control 18 (12):1569–74. doi: 10.1016/j.foodcont.2006.12.008.
  • Laranjo, M., M. E. Potes, and M. Elias. 2019. Role of starter cultures on the safety of fermented meat products. Frontiers in Microbiology 10:853.
  • Law, J. W. F., N. S. Ab Mutalib, K. G. Chan, and L. H. Lee. 2014. Rapid methods for the detection of foodborne bacterial pathogens: Principles, applications, advantages and limitations. Frontiers in Microbiology 5:770.
  • Li, P., H. Luo, B. Kong, Q. Liu, and C. Chen. 2016. Formation of red myoglobin derivatives and inhibition of spoilage bacteria in raw meat batters by lactic acid bacteria and Staphylococcus xylosus. LWT - Food Science and Technology 68:251–7. doi: 10.1016/j.lwt.2015.12.035.
  • Liao, R., Q. Xia, C. Zhou, F. Geng, Y. Wang, Y. Sun, J. He, D. Pan, and J. Cao. 2022. LC-MS/MS-based metabolomics and sensory evaluation characterize metabolites and texture of normal and spoiled dry-cured hams. Food Chemistry 371:131156.
  • Liu, X. S., J. B. Liu, Z. M. Yang, H. L. Song, Y. Liu, and T. T. Zou. 2014. Aroma-active compounds in jinhua ham produced with different fermentation periods. Molecules (Basel, Switzerland) 19 (11):19097–113. doi: 10.3390/molecules191119097.
  • López-Pedrouso, M., C. Pérez-Santaescolástica, D. Franco, J. Carballo, C. Zapata, and J. M. Lorenzo. 2019. Molecular insight into taste and aroma of sliced dry-cured ham induced by protein degradation undergone high-pressure conditions. Food Research International (Ottawa, Ont.) 122:635–42.
  • Lorenzo, J. M., M. C. G. Fontán, A. Cachaldora, I. Franco, and J. Carballo. 2010. Study of the lactic acid bacteria throughout the manufacture of dry-cured lacón (a Spanish traditional meat product). Effect of some additives. Food Microbiology 27 (2):229–35. doi: 10.1016/j.fm.2009.10.003.
  • Lorenzo, J. M., M. C. G. Fontán, M. Gómez, S. Fonseca, I. Franco, and J. Carballo. 2012. Study of the Micrococcaceae and Staphylococcaceae throughout the manufacture of dry-cured Lacón (a Spanish traditional meat product) made without or with additives. Journal of Food Research 1 (1):200–11. doi: 10.5539/jfr.v1n1p200.
  • Losantos, A., C. Sanabria, I. Cornejo, and A. V. Carrascosa. 2000. Characterization of Enterobacteriaceae strains isolated from spoiled dry-cured hams. Food Microbiology 17 (5):505–12. doi: 10.1006/fmic.2000.0350.
  • Lozano-Ojalvo, D., A. Rodríguez, M. Cordero, V. Bernáldez, M. Reyes-Prieto, and J. J. Córdoba. 2015. Characterisation and detection of spoilage mould responsible for black spot in dry-cured fermented sausages. Meat Science 100:283–90.
  • Lv, J., C. Li, S. Li, H. Liang, C. Ji, B. Zhu, and X. Lin. 2019. Effects of temperature on microbial succession and quality of sour meat during fermentation. LWT 114:108391. doi: 10.1016/j.lwt.2019.108391.
  • Majumdar, T., U. Raychaudhuri, and R. Chakraborty. 2015. Detection of food borne pathogens. International Journal of Advanced Biological Research 5 (2):96–107.
  • Malorny, B., C. Lofstrom, M. Wagner, N. Kramer, and J. Hoorfar. 2008. Enumeration of Salmonella bacteria in food and feed samples by real-time PCR for quantitative microbial risk assessment. Applied and Environmental Microbiology 74 (5):1299–304.
  • Martín, A., J. Córdoba, F. Núñez, M. Benito, and M. Asensio. 2004. Contribution of a selected fungal population to proteolysis on dry-cured ham. International Journal of Food Microbiology 94 (1):55–66.
  • Martín, A., J. J. Córdoba, E. Aranda, M. G. Córdoba, and M. A. Asensio. 2006. Contribution of a selected fungal population to the volatile compounds on dry-cured ham. International Journal of Food Microbiology 110 (1):8–18. doi: 10.1016/j.ijfoodmicro.2006.01.031.
  • Martín, A., M. J. Benito, A. Hernández, F. Pérez-Nevado, J. J. Córdoba, and M. G. Córdoba. 2008. Characterisation of microbial deep spoilage in Iberian dry-cured ham. Meat Science 78 (4):475–84.
  • Martín, A., M. J. Benito, E. Aranda, S. Ruiz‐Moyano, J. J. Córdoba, and M. G. Córdoba. 2010. Characterization by volatile compounds of microbial deep spoilage in Iberian dry‐cured ham. Journal of Food Science 75 (6):M360–M365.
  • McGorrin, R. J. 2011. The significance of volatile sulfur compounds in food flavors: An overview. In Volatile sulfur compounds in food, by Michael C. Qian, Xuetong Fan, Kanjana Mahattanatawee, 3–31. Washington, USA: ACS Symposium Series.
  • Montel, M. C., F. Masson, and R. Talon. 1998. Bacterial role in flavour development. Meat Science 49:S111–S123. doi: 10.1016/S0309-1740(98)90042-0.
  • Narváez-Rivas, M., E. Gallardo, and M. León-Camacho. 2012. Analysis of volatile compounds from Iberian hams: A review. Grasasyaceites 63 (4):432–54.
  • Nicolaou, N., Y. Xu, and R. Goodacre. 2012. Detection and quantification of bacterial spoilage in milk and pork meat using MALDI-TOF-MS and multivariate analysis. Analytical Chemistry 84 (14):5951–8.
  • Núñez, F., M. S. Lara, B. Peromingo, J. Delgado, L. Sánchez-Montero, and M. J. Andrade. 2015. Selection and evaluation of Debaryomyces hansenii isolates as potential bioprotective agents against toxigenic penicillia in dry-fermented sausages. Food Microbiology 46:114–20.
  • Odeyemi, O. A., O. O. Alegbeleye, M. Strateva, and D. Stratev. 2020. Understanding spoilage microbial community and spoilage mechanisms in foods of animal origin. Comprehensive Reviews in Food Science and Food Safety 19 (2):311–31. doi: 10.1111/1541-4337.12526.
  • Paarup, T., J. C. Nieto, C. Peláez, and J. I. Reguera. 1999. Microbiological and physico-chemical characterisation of deep spoilage in Spanish dry-cured hams and characterisation of isolated Enterobacteriaceae with regard to salt and temperature tolerance. European Food Research and Technology 209 (5):366–71. doi: 10.1007/s002170050511.
  • Perea-Sanz, L., D. Peris, C. Belloch, and M. Flores. 2019. Debaryomyces hansenii metabolism of sulfur amino acids as precursors of volatile sulfur compounds of interest in meat products. Journal of Agricultural and Food Chemistry 67 (33):9335–43.
  • Pérez-Santaescolástica, C., J. Carballo, E. Fulladosa, J. V. Garcia-Perez, J. Benedito, and J. M. Lorenzo. 2018. Effect of proteolysis index level on instrumental adhesiveness, free amino acids content and volatile compounds profile of dry-cured ham. Food Research International 107:559–66. doi: 10.1016/j.foodres.2018.03.001.
  • Pircher, A., F. Bauer, and P. Paulsen. 2007. Formation of cadaverine, histamine, putrescine and tyramine by bacteria isolated from meat, fermented sausages and cheeses. European Food Research and Technology 226 (1–2):225–31. doi: 10.1007/s00217-006-0530-7.
  • Postollec, F., H. Falentin, S. Pavan, J. Combrisson, and D. Sohier. 2011. Recent advances in quantitative PCR (qPCR) applications in food microbiology. Food Microbiology 28 (5):848–61.
  • Pragalaki, T., J. G. Bloukas, and P. Kotzekidou. 2013. Inhibition of Listeria monocytogenes and Escherichia coli O157:H7 in liquid broth medium and during processing of fermented sausage using autochthonous starter cultures. Meat Science 95 (3):458–64. doi: 10.1016/j.meatsci.2013.05.034.
  • Purriños, L., J. Carballo, and J. M. Lorenzo. 2013. The Influence of Debaryomyces hansenii, Candida deformans and Candida zeylanoides on the aroma formation of dry-cured “lacón. Meat Science 93 (2):344–50. doi: 10.1016/j.meatsci.2012.09.015.
  • Quintilla, R., A. Kolecka, S. Casaregola, H. Daniel, J. Houbraken, M. Kostrzewa, T. Boekhout, and M. Groenewald. 2018. MALDI-TOF MS as a tool to identify foodborne yeasts and yeast-like fungi. International Journal of Food Microbiology 266:109–18. doi: 10.1016/j.ijfoodmicro.2017.11.016.
  • Rastelli, E., G. Giraffa, D. Carminati, G. Parolari, and S. Barbuti. 2005. Identification and characterisation of halotolerant bacteria in spoiled dry-cured hams. Meat Science 70 (2):241–6.
  • Reuter, J. A., D. V. Spacek, and M. P. Snyder. 2015. High-throughput sequencing technologies. Molecular Cell 58 (4):586–97. doi: 10.1016/j.molcel.2015.05.004.
  • Rodrigues, P., C. Santos, A. Venâncio, and N. Lima. 2011. Species identification of Aspergillus section Flavi isolates from Portuguese almonds using phenotypic, including MALDI‐TOF ICMS, and molecular approaches. Journal of Applied Microbiology 111 (4):877–92.
  • Rodríguez, A., M. Rodríguez, A. Martín, J. Delgado, and J. J. Córdoba. 2012. Presence of ochratoxin A on the surface of dry-cured Iberian ham after initial fungal growth in the drying stage. Meat Science 92 (4):728–34.
  • Rodríguez, M., F. Núñez, J. J. Córdoba, M. E. Bermúdez, and M. A. Asensio. 1998. Evaluation of proteolytic activity of micro‐organisms isolated from dry-cured ham. Journal of Applied Microbiology 85 (5):905–12.
  • Rouhi, M., S. Sohrabvandi, and A. M. Mortazavian. 2013. Probiotic fermented sausage: Viability of probiotic microorganisms and sensory characteristics. Critical Reviews in Food Science and Nutrition 53 (4):331–48.
  • Ruiz-Capillas, C, and F. Jiménez-Colmenero. 2005. Biogenic amines in meat and meat products. Critical Reviews in Food Science and Nutrition 44 (7–8):489–599. doi: 10.1080/10408690490489341.
  • Rusmevichientong, P., C. Morales, G. Castorena, R. Sapbamrer, M. Seesen, and P. Siviroj. 2021. Dietary salt-related determinants of hypertension in rural northern Thailand. International Journal of Environmental Research and Public Health 18 (2):377. doi: 10.3390/ijerph18020377.
  • Saelao, S., S. Maneerat, S. Kaewsuwan, H. Rabesona, Y. Choiset, T. Haertlé, and J. M. Chobert. 2017. Inhibition of Staphylococcus aureus in vitro by bacteriocinogenic Lactococcus lactis KTH0-1S isolated from Thai fermented shrimp (Kung-som) and safety evaluation. Archives of Microbiology 199 (4):551–62.
  • Shi, Y., X. Li, and A. Huang. 2019. A metabolomics-based approach investigates volatile flavor formation and characteristic compounds of the Dahe black pig dry-cured ham. Meat Science 158:107904.
  • Shoaib, M., A. Shehzad, H. Raza, S. Niazi, I. M. Khan, W. Akhtar, W. Safdar, and Z. Wang. 2019. A comprehensive review on the prevalence, pathogenesis and detection of Yersinia enterocolitica. RSC Advances 9 (70):41010–21. doi: 10.1039/C9RA06988G.
  • Simoncini, N., A. Pinna, T. Toscani, and R. Virgili. 2015. Effect of added autochthonous yeasts on the volatile compounds of dry-cured hams. International Journal of Food Microbiology 212:25–33. doi: 10.1016/j.ijfoodmicro.2015.06.024.
  • Simoncini, N., R. Virgili, G. Spadola, and P. Battilani. 2014. Autochthonous yeasts as potential biocontrol agents in dry-cured meat products. Food Control 46:160–7. doi: 10.1016/j.foodcont.2014.04.030.
  • Sirini, N., L. S. Frizzo, G. Aleu, L. P. Soto, and M. R. Rosmini. 2021. Use of probiotic microorganisms in the formulation of healthy meat products. Current Opinion in Food Science 38:141–6. doi: 10.1016/j.cofs.2020.11.007.
  • Smit, B. A., W. J. Engels, and G. Smit. 2009. Branched chain aldehydes: Production and breakdown pathways and relevance for flavour in foods. Applied Microbiology and Biotechnology 81 (6):987–99.
  • Stadnik, J, and J. Dolatowski, Z. 2010. Biogenic amines in meat and fermented meat products. ACTA Scientiarum Polonorum Technologia Alimentaria 9 (3):251–63.
  • Thomas, C., F. Mercier, P. Tournayre, J. L. Martín, and J. L. Berdagué. 2014. Identification and origin of odorous sulfur compounds in cooked ham. Food Chemistry 155:207–13.
  • Usbeck, J. C., C. C. Kern, R. F. Vogel, and J. Behr. 2013. Optimization of experimental and modelling parameters for the differentiation of beverage spoiling yeasts by Matrix-Assisted-Laser-Desorption/Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF MS) in response to varying growth conditions. Food Microbiology 36 (2):379–87. doi: 10.1016/j.fm.2013.07.004.
  • Vasavada, P. C. A. Lee, and R. Betts. 2020. Conventional and novel rapid methods for detection and enumeration of microorganisms. In Food safety engineering, by Ali Demirci, Hao Feng, Kathiravan Krishnamurthy, 85–128. Cham: Springer.
  • Virgili, R., G. Saccani, L. Gabba, E. Tanzi, and C. S. Bordini. 2007. Changes of free amino acids and biogenic amines during extended ageing of Italian dry-cured ham. LWT - Food Science and Technology 40 (5):871–8. doi: 10.1016/j.lwt.2006.03.024.
  • Wang, W., X. Feng, D. Zhang, B. Li, B. Sun, H. Tian, and Y. Liu. 2018. Analysis of volatile compounds in Chinese dry-cured hams by comprehensive two-dimensional gas chromatography with high-resolution time-of-flight mass spectrometry. Meat Science 140:14–25. doi: 10.1016/j.meatsci.2018.02.016.
  • Wang, X., S. Wang, and H. Zhao. 2019. Unraveling microbial community diversity and succession of Chinese Sichuan sausages during spontaneous fermentation by high-throughput sequencing. Journal of Food Science and Technology 56 (7):3254–63.
  • Wang, X., Y. Zhang, J. Sun, P. Pan, Y. Liu, and T. Tian. 2021a. Effects of starter culture inoculation on microbial community diversity and food safety of Chinese Cantonese sausages by high-throughput sequencing. Journal of Food Science and Technology 58 (3):931–9. doi: 10.1007/s13197-020-04607-y.
  • Wang, Y., F. Li, J. Chen, Z. Sun, F. Wang, C. Wang, and L. Fu. 2021b. High-throughput sequencing-based characterization of the predominant microbial community associated with characteristic flavor formation in Jinhua Ham. Food Microbiology 94:103643. doi: 10.1016/j.fm.2020.103643.
  • Xiao, Y., Y. Liu, C. Chen, T. Xie, and P. Li. 2020. Effect of Lactobacillus plantarum and Staphylococcus xylosus on flavour development and bacterial communities in Chinese dry fermented sausages. Food Research International 135:109247. doi: 10.1016/j.foodres.2020.109247.
  • Yang, J., S. Wu, R. Mai, L. Lin, W. Zhao, and W. Bai. 2021. Formation of amino acid-derived volatile compounds in dry-cured mackerel (Scomberomorus niphonius): Metabolic pathways involving microorganisms, precursors, and intermediates. Food Chemistry 364:130163. doi: 10.1016/j.foodchem.2021.130163.
  • Zang, J., Y. Xu, W. Xia, D. Yu, P. Gao, Q. Jiang, and F. Yang. 2018. Dynamics and diversity of microbial community succession during fermentation of Suan yu, a Chinese traditional fermented fish, determined by high throughput sequencing. Food Research International 111:565–73. doi: 10.1016/j.foodres.2018.05.076.
  • Zhan, G., D. Pan, C. Zhou, Y. Wang, J. He, J. Zhang, G. Li, and J. Cao. 2021. Characterizing bacterial strains of spoiled Jinhua ham and evaluating the effect of antimicrobial agents on these isolated bacterial strains. LWT 136:110351. doi: 10.1016/j.lwt.2020.110351.
  • Zhang, X. M., X. J. Dang, Y. B. Wang, T. Sun, Y. Wang, H. Yu, and W. S. Yang. 2021. Diversity and composition of microbiota during fermentation of traditional Nuodeng ham. Journal of Microbiology 59 (1):20–8. doi: 10.1007/s12275-021-0219-4.
  • Zhao, X., C. W. Lin, J. Wang, and D. H. Oh. 2014. Advances in rapid detection methods for foodborne pathogens. Journal of Microbiology and Biotechnology 24 (3):297–312.
  • Zheng, J., S. Wittouck, E. Salvetti, C. M. Franz, H. Harris, P. Mattarelli, P. W. O’Toole, B. Pot, P. Vandamme, J. Walter, et al. 2020. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology 70 (4):2782–858. doi: 10.1099/ijsem.0.004107.
  • Zhou, C. Y., D. D. Pan, J. X. Cao, and G. H. Zhou. 2021. A comprehensive review on molecular mechanism of defective dry‐cured ham with excessive pastiness, adhesiveness, and bitterness by proteomics insights. Comprehensive Reviews in Food Science and Food Safety 20 (4):3838–57.
  • Zhou, C. Y., D. D. Pan, Y. Bai, C. B. Li, X. L. Xu, G. H. Zhou, and J. X. Cao. 2019. Evaluating endogenous protease of salting exudates during the salting process of Jinhua ham. LWT 101:76–82. doi: 10.1016/j.lwt.2018.11.026.
  • Zhou, C. Y., J. Q. Wu, C. B. Tang, G. Li, C. Dai, Y. Bai, C. B. Li, X. L. Xu, G. H. Zhou, and J. X. Cao. 2019. Comparing the proteomic profile of proteins and the sensory characteristics in Jinhua ham with different processing procedures. Food Control 106:106694. doi: 10.1016/j.foodcont.2019.06.020.
  • Zhou, C. Y., Y. Le, Y. Y. Zheng, J. J. Wang, G. Li, Y. Bai, C. B. Li, X. L. Xu, G. H. Zhou, and J. X. Cao. 2020. Characterizing the effect of free amino acids and volatile compounds on excessive bitterness and sourness in defective dry-cured ham. LWT 123:109071. doi: 10.1016/j.lwt.2020.109071.
  • Ziyaina, M., B. Rasco, and S. S. Sablani. 2020. Rapid methods of microbial detection in dairy products. Food Control 110:107008. doi: 10.1016/j.foodcont.2019.107008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.