4,969
Views
7
CrossRef citations to date
0
Altmetric
Review Articles

Australian native fruits and vegetables: Chemical composition, nutritional profile, bioactivity and potential valorization by industries

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Adiamo, O., M. Netzel, L. Hoffman, M. Gidley, and Y. Sultanbawa. 2021. Nutritional, anti-nutritional, antioxidant, physicochemical and functional characterization of Australian acacia seed: Effect of species and regions. Journal of the Science of Food and Agriculture 101 (11):4681–90. doi: 10.1002/jsfa.11113. [pubmedMismatch]
  • Adiamo, O., Y. Sultanbawa, and D. Cozzolino. 2021. Mid-infrared spectroscopy as a rapid tool to qualitatively predict the effects of species, regions and roasting on the nutritional composition of Australian acacia seed species. Molecules 26 (7):1879. doi: 10.3390/molecules26071879.
  • Agatonovic-Kustrin, S., E. Doyle, V. Gegechkori, and D. Morton. 2020. High-performance thin-layer chromatography linked with (bio)assays and FTIR-ATR spectroscopy as a method for discovery and quantification of bioactive components in native Australian plants. Journal of Pharmaceutical and Biomedical Analysis 184:113208. doi: 10.1016/j.jpba.2020.113208.
  • Ahmed, N. 2005. Advanced glycation endproducts-role in pathology of diabetic complications. Diabetes Research and Clinical Practice 67 (1):3–21. doi: 10.1016/j.diabres.2004.09.004.
  • Ahmed, A, and K. Johnson. 2000. Horticultural development of Australian native edible plants. Australian Journal of Botany 48 (4):417–26. doi: 10.1071/BT99042.
  • Aiyer, H, and R. Gupta. 2010. Berries and ellagic acid prevent estrogen-induced mammary tumorigenesis by modulating enzymes of estrogen metabolism. Cancer Prevention Research 3 (6):727–37. doi: 10.1158/1940-6207.CAPR-09-0260.
  • Akter, S., R. Addepalli, M. Netzel, M. Fletcher, Y. Sultanbawa, and S. Osborne. 2021. Impact of polyphenol-rich extracts of Terminalia ferdinandiana fruits and seeds on viability of human intestinal and liver cells in vitro. Food Chemistry: Molecular Sciences 2:100024. doi: 10.1016/j.fochms.2021.100024.
  • Akter, S., R. Addepalli, M. Netzel, U. Tinggi, M. Fletcher, Y. Sultanbawa, and S. Osborne. 2019. Antioxidant-rich extracts of Terminalia ferdinandiana interfere with estimation of cell viability. Antioxidants 8 (6):191. doi: 10.3390/antiox8060191.
  • Akter, S., R. Addepalli, M. Netzel, U. Tinggi, M. Fletcher, Y. Sultanbawa, and S. Osborne. 2022. In vitro bioaccessibility and intestinal absorption of selected bioactive compounds in Terminalia ferdinandiana. Frontiers in Nutrition 8: doi: 10.3389/fnut.2021.818195.
  • Akter, K., E. Barnes, J. Brophy, D. Harrington, Y. Community Elders, S. Vemulpad, and J. Jamie. 2016. Phytochemical profile and antibacterial and antioxidant activities of medicinal plants used by aboriginal people of New South Wales, Australia. Evidence-Based Complementary and Alternative Medicine 2016:1–14. doi: 10.1155/2016/4683059.
  • Akter, S., M. Netzel, M. Fletcher, U. Tinggi, and Y. Sultanbawa. 2018. Chemical and nutritional composition of Terminalia ferdinandiana (Kakadu Plum) kernels: a novel nutrition source. Foods 7 (4):60. doi: 10.3390/foods7040060.
  • Akter, S., M. Netzel, U. Tinggi, M. Fletcher, S. Osborne, and Y. Sultanbawa. 2020. Interactions between phytochemicals and minerals in Terminalia ferdinandiana and implications for mineral bioavailability. Frontiers in Nutrition 7 doi: 10.3389/fnut.2020.598219.
  • Akter, S., M. Netzel, U. Tinggi, S. Osborne, M. Fletcher, and Y. Sultanbawa. 2019. Antioxidant rich extracts of Terminalia ferdinandiana inhibit the growth of foodborne bacteria. Foods 8 (8):281. doi: 10.3390/foods8080281.
  • Alderees, F., R. Mereddy, D. Webber, N. Nirmal, and Y. Sultanbawa. 2018. Mechanism of action against food spoilage yeasts and bioactivity of Tasmannia lanceolata, Backhousia citriodora and Syzygium anisatum plant solvent extracts. Foods 7 (11):179. doi: 10.3390/foods7110179.
  • ANFAB. 2021. Australian native food and botanicals. Accessed 8 April. https://anfab.org.au/main.asp?_=SPECIES.
  • Balouiri, M., M. Sadiki, and S. K. Ibnsouda. 2016. Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis 6 (2):71–9. doi: 10.1016/j.jpha.2015.11.005.
  • Bhuyan, D. J., M. Alsherbiny, S. Perera, M. Low, A. Basu, O. A. Devi, M. S. Barooah, C. G. Li, and K. Papoutsis. 2019. The odyssey of bioactive compounds in avocado (Persea americana) and their health benefits. Antioxidants 8 (10):426. doi: 10.3390/antiox8100426.[Mismatch
  • Bhuyan, D. J., Q. V. Vuong, A. C. Chalmers, M. C. Bowyer, and C. J. Scarlett. 2018. An array of bioactive compounds from australian eucalypts and their relevance in pancreatic cancer therapeutics. Pancreas 47 (6):690–707. doi: 10.1097/mpa.0000000000001074.
  • Block, G., B. Patterson, and A. Subar. 1992. Fruit, vegetables, and cancer prevention: a review of the epidemiological evidence. Nutrition and Cancer 18 (1):1–29. doi: 10.1080/01635589209514201.
  • Bobasa, E., M. Netzel, D. Cozzolino, A. D. T. Phan, and Y. Sultanbawa. 2021. Measurement of total soluble solids and moisture in puree and dry powder of Kakadu plum (Terminalia ferdinandiana) samples using hand-held near infrared spectroscopy. Journal of near Infrared Spectroscopy 29 (4):201–6. doi: 10.1177/0967033520982361.
  • Bobasa, E., M. Netzel, A. Dao Thi Phan, H. Smyth, Y. Sultanbawa, and D. Cozzolino. 2021. Unlocking the secrets of terminalia kernels using near-infrared spectroscopy. Applied Spectroscopy 75 (7):834–8. doi: 10.1177/0003702821992136.
  • Bobasa, E., A. D. T. Phan, M. Netzel, D. Cozzolino, and Y. Sultanbawa. 2021. Hydrolysable tannins in Terminalia ferdinandiana Exell fruit powder and comparison of their functional properties from different solvent extracts. Food Chemistry 358:129833. doi: 10.1016/j.foodchem.2021.129833.
  • Bobasa, E., A. D. Phan, M. Netzel, H. Smyth, Y. Sultanbawa, and D. Cozzolino. 2021. The use of a micro near infrared portable instrument to predict bioactive compounds in a wild harvested fruit—Kakadu Plum (Terminalia ferdinandiana). Sensors 21 (4):1413. doi: 10.3390/s21041413.
  • Brand, J, and V. Cherikoff. 1985. Australian aboriginal bushfoods: The nutritional composition of plants from arid and semi-arid areas. Australian Aboriginal Studies 38-46 (2)
  • Brand, J, and V. Cherikoff. 2019. Australian aboriginal bushfoods: their nutritive value. Arid Lands: Today and Tomorrow:99–111.
  • Brand-Miller, J, and S. Holt. 1998. Australian Aboriginal plant foods: A consideration of their nutritional composition and health implications. Nutrition Research Reviews 11 (1):5–23. doi: 10.1079/NRR19980003.
  • Bray, F., J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal. 2018. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer Journal for Clinicians 68 (6):394–424. doi: 10.3322/caac.21492.
  • Brophy, J., R. Goldsack, and P. Forster. 2001. The leaf oils of the Australian species of citrus (Rutaceae). Journal of Essential Oil Research 13 (4):264–8. doi: 10.1080/10412905.2001.9699690.
  • Buchholz, T, and M. Melzig. 2016. Medicinal plants traditionally used for treatment of obesity and diabetes Mellitus – screening for pancreatic lipase and α-amylase inhibition. Phytotherapy Research : PTR 30 (2):260–6. doi: 10.1002/ptr.5525.
  • Caltagirone, S., C. Rossi, A. Poggi, F. Ranelletti, P. G. Natali, M. Brunetti, F. Aiello, and M. Piantelli. 2000. Flavonoids apigenin and quercetin inhibit melanoma growth and metastatic potential. International Journal of Cancer 87 (4):595–600. doi: 10.1002/1097-0215(20000815)87:4<595::AID-IJC21>3.0.CO;2-5.
  • Campbell, A. 2004. Inflammation, neurodegenerative diseases, and environmental exposures. Annals of the New York Academy of Sciences 1035 (1):117–32. doi: 10.1196/annals.1332.008.
  • Castillo, M., E. Perkins, J. Campbell, R. Doerr, J. Hassett, C. Kandaswami, and E. Middleton. 1989. The effects of the bioflavonoid quercetin on squamous cell carcinoma of head and neck origin. The American Journal of Surgery 158 (4):351–5. doi: 10.1016/0002-9610(89)90132-3.
  • Ceci, C., L. Tentori, M. Atzori, P. Lacal, E. Bonanno, M. Scimeca, R. Cicconi, M. Mattei, M. de Martino, G. Vespasiani, et al. 2016. Ellagic acid inhibits bladder cancer invasiveness and in vivo tumor growth. Nutrients 8 (11):744. doi: 10.3390/nu8110744.
  • Chaliha, M., A. D. T. Phan, S. Cao, Q. Li, J. Gorman, Y. Sultanbawa, and D. Cozzolino. 2020. Antimicrobial activity, total phenolic and ascorbic acid content of Terminalia ferdinandiana leaves at various stages of maturity. Current Research in Nutrition and Food Science Journal 8 (3):744–56. doi: 10.12944/CRNFSJ.8.3.07.
  • Chaliha, M., D. Williams, D. Edwards, S. Pun, H. Smyth, and Y. Sultanbawa. 2017. Bioactive rich extracts from Terminalia ferdinandiana by enzyme-assisted extraction: A simple food safe extraction method. Journal of Medicinal Plants Research 11 (5):96–106. doi: 10.5897/JMPR2016.6285.
  • Chaliha, M, and Y. Sultanbawa. 2019. Terminalia ferdinandiana, a traditional medicinal plant of Australia, alleviates hydrogen peroxide induced oxidative stress and inflammation, in vitro. Journal of Complementary and Integrative Medicine 17 (1) doi: 10.1515/jcim-2019-0008.
  • Chapman, J., A. Power, M. Netzel, Y. Sultanbawa, H. Smyth, V. K. Truong, and D. Cozzolino. 2021. Challenges and opportunities of the fourth revolution: A brief insight into the future of food. Critical Reviews in Food Science and Nutrition 1–9. doi: 10.1080/10408398.2020.1863328.
  • Cheesman, M., A. White, B. Matthews, and I. Cock. 2019. Terminalia ferdinandiana fruit and leaf extracts inhibit methicillin-resistant Staphylococcus aureus growth. Planta Medica 85 (16):1253–62. doi: 10.1055/a-1013-0434.
  • Chen, L., H. Deng, H. Cui, J. Fang, Z. Zuo, J. Deng, Y. Li, X. Wang, and L. Zhao. 2018. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9 (6):7204–18. doi: 10.18632/oncotarget.23208.
  • Cherikoff, V, and J. Isaacs. 1989. Bush food handbook: Ti Tree Press.
  • Chikowe, G., L. Mpala, and I. E. Cock. 2013. Antibacterial activity of selected australian syzygium species. Pharmacognosy Communications 3 (4):77–83.
  • Choudhari, A. S., P. C. Mandave, M. Deshpande, P. Ranjekar, and O. Prakash. 2019. Phytochemicals in cancer treatment: from preclinical studies to clinical practice. Frontiers in Pharmacology 10:1614. doi: 10.3389/fphar.2019.01614.
  • Clarke, M. 2012. Australian Natives Food Industry Stocktake. Australia: Australian Government.
  • Clarke, P. A. 2008. Aboriginal healing practices and Australian bush medicine. Journal of the Anthropological Society of South Australia 33 (1):3–38.
  • Cock, I. E. 2012. Antimicrobial activity of Syzygium australe and Syzygium leuhmannii leaf methanolic extracts. Pharmacognosy Communications 2 (2):71–7. doi: 10.5530/pc.2012.2.11.
  • Cock, I. E, and S. Mohanty. 2011. Evaluation of the antibacterial activity and toxicity of Terminalia ferdinandia fruit extracts. Pharmacognosy Journal 3 (20):72–9. doi: 10.5530/pj.2011.20.14.
  • Cozzolino, D., A. D. Phan, M. Netzel, H. Smyth, and Y. Sultanbawa. 2021a. Assessing the interaction between drying and addition of maltodextrin to Kakadu plum powder samples by two dimensional and near infrared spectroscopy. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 247:119121. doi: 10.1016/j.saa.2020.119121.
  • Cozzolino, D., A. D. T. Phan, M. Netzel, H. Smyth, and Y. Sultanbawa. 2021b. The use of vibrational spectroscopy to predict vitamin C in Kakadu plum powders (Terminalia ferdinandiana Exell, Combretaceae). Journal of the Science of Food and Agriculture 101 (8):3208–13. doi: 10.1002/jsfa.10950.
  • Cozzolino, D., A. Phan, M. Netzel, H. Smyth, and Y. Sultanbawa. 2021c. Monitoring two different drying methods of Kakadu plum puree by combining infrared and chemometrics analysis. CyTA - Journal of Food 19 (1):183–9. doi: 10.1080/19476337.2021.1875052.
  • Deachathai, S., W. Mahabusarakam, S. Phongpaichit, and W. C. Taylor. 2005. Phenolic compounds from the fruit of Garcinia dulcis. Phytochemistry 66 (19):2368–75. doi: 10.1016/j.phytochem.2005.06.025.
  • Deo, P., E. Hewawasam, A. Karakoulakis, D. Claudie, R. Nelson, B. Simpson, N. Smith, and S. Semple. 2016. In vitro inhibitory activities of selected Australian medicinal plant extracts against protein glycation, angiotensin converting enzyme (ACE) and digestive enzymes linked to type II diabetes. BMC Complementary and Alternative Medicine 16 (1):1–11. doi: 10.1186/s12906-016-1421-5.
  • Dyson, L. E. 2006. Indigenous Australian cookery, past and present. Journal of Australian Studies 30 (87):5–18. doi: 10.1080/14443050609388047.
  • Eckel, R., S. Grundy, and P. Zimmet. 2005. The metabolic syndrome. The Lancet 365 (9468):1415–28. doi: 10.1016/S0140-6736(05)66378-7.
  • Fanning, K., B. Topp, D. Russell, R. Stanley, and M. Netzel. 2014. Japanese plums (Prunus salicina Lindl.) and phytochemicals-breeding, horticultural practice, postharvest storage, processing and bioactivity. Journal of the Science of Food and Agriculture 94 (11):2137–47. doi: 10.1002/jsfa.6591.
  • Fischbach, M. 2011. Combination therapies for combating antimicrobial resistance. Current Opinion in Microbiology 14 (5):519–23. doi: 10.1016/j.mib.2011.08.003.
  • Fyfe, S., G. Netzel, M. Netzel, and Y. Sultanbawa. 2018a. Buchanania obovata: Functionality and phytochemical profiling of the Australian native green plum. Foods 7 (5):71. doi: 10.3390/foods7050071.
  • Fyfe, S., M. Netzel, U. Tinggi, E. Biehl, and Y. Sultanbawa. 2018b. Buchanania obovata: An Australian indigenous food for diet diversification. Nutrition & Dietetics: The Journal of the Dietitians Association of Australia 75 (5):527–32. doi: 10.1111/1747-0080.12437.
  • Fyfe, S., H. Smyth, H. J. Schirra, M. Rychlik, and Y. Sultanbawa. 2020. The nutritional potential of the native australian green plum (Buchanania obovata) compared to other anacardiaceae fruit and nuts. Frontiers in Nutrition 7 311. doi: 10.3389/fnut.2020.600215.
  • Geraghty, D. P., K. D. Ahuja, J. Pittaway, C. Shing, G. A. Jacobson, N. Jager, S. Jurković, C. Narkowicz, C. I. Saunders, M. Ball, et al. 2011. In vitro antioxidant, antiplatelet and anti-inflammatory activity of Carpobrotus rossii (pigface) extract. Journal of Ethnopharmacology 134 (1):97–103. doi: 10.1016/j.jep.2010.11.060.
  • Ghattamaneni, N., S. Panchal, and L. Brown. 2019. Cyanidin 3-glucoside from Queen Garnet plums and purple carrots attenuates DSS-induced inflammatory bowel disease in rats. Journal of Functional Foods 56:194–203. doi: 10.1016/j.jff.2019.01.028.
  • Gorman, J., P. Wurm, S. Vemuri, C. Brady, and Y. Sultanbawa. 2020. Kakadu Plum (Terminalia ferdinandiana) as a sustainable indigenous agribusiness. Economic Botany 74 (1):74–91. doi: 10.1007/s12231-019-09479-8.
  • Gott, B. 1983. Murnong-Microseris scapigera: A study of a staple food of Victorian aborigines. Australian Aboriginal Studies (2):2–18.
  • Greenhough, A., H. Smartt, A. Moore, H. Roberts, A. Williams, C. Paraskeva, and A. Kaidi. 2009. The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis 30 (3):377–86. doi: 10.1093/carcin/bgp014.
  • Guleria, S., A. K. Tiku, G. Singh, A. Koul, S. Gupta, and S. Rana. 2013. In vitro antioxidant activity and phenolic contents in methanol extracts from medicinal plants. Journal of Plant Biochemistry and Biotechnology 22 (1):9–15. doi: 10.1007/s13562-012-0105-6.
  • Guo, Y., K. Sakulnarmrat, and I. Konczak. 2014. Anti-inflammatory potential of native Australian herbs polyphenols. Toxicology Reports 1:385–90. doi: 10.1016/j.toxrep.2014.06.011.
  • Hanahan, D, and R. A. Weinberg. 2011. Hallmarks of cancer: The next generation. Cell 144 (5):646–74. doi: 10.1016/j.cell.2011.02.013.
  • Hart, C., P. Ilanko, J. Sirdaarta, P. Rayan, P. A. McDonnella, and I. E. Cock. 2014. Tasmannia stipitata as a functional food/natural preservative: Antimicrobial activity and toxicity. Pharmacognosy Communications 4 (4):33–47.
  • Hayashi, M., F. Bizerra, and P. I. Da Silva. 2013. Antimicrobial compounds from natural sources. Frontiers in Microbiology 4(:195. doi: 10.3389/fmicb.2013.00195.
  • Henry, M., W. J. Sirdaarta, A. White, G. A. Carlson, and C. I. Edwin. 2016. Bacillus anthracis growth inhibitory properties of Australian Terminalia spp.: Putative identification of low polarity volatile components by GC-MS headspace analysis. Pharmacognosy Journal 8 (3):281–90. doi: 10.5530/pj.2016.3.18.
  • Hidalgo, M., C. Sánchez-Moreno, and S. de Pascual-Teresa. 2010. Flavonoid–flavonoid interaction and its effect on their antioxidant activity. Food Chemistry 121 (3):691–6. doi: 10.1016/j.foodchem.2009.12.097.
  • Hoffer, L. J., M. Levine, S. Assouline, D. Melnychuk, S. J. Padayatty, K. Rosadiuk, C. Rousseau, L. Robitaille, and W. H. Miller. Jr. 2008. Phase I clinical trial of iv ascorbic acid in advanced malignancy. Annals of Oncology : official Journal of the European Society for Medical Oncology 19 (11):1969–74. doi: 10.1093/annonc/mdn377.
  • Hoffer, J., L. Robitaille, R. Zakarian, D. Melnychuk, P. Kavan, J. Agulnik, V. Cohen, D. Small, and W. Miller. Jr. 2015. High-dose intravenous vitamin C combined with cytotoxic chemotherapy in patients with advanced cancer: A phase I-II clinical trial. PloS One 10 (4):e0120228. doi: 10.1371/journal.pone.0120228.
  • Hu, F. 2011. Globalization of diabetes: The role of diet, lifestyle, and genes. Diabetes Care 34 (6):1249–57. doi: 10.2337/dc11-0442.
  • Hutadilok-Towatana, N., S. Kongkachuay, and W. Mahabusarakam. 2007. Inhibition of human lipoprotein oxidation by morelloflavone and camboginol from Garcinia dulcis. Natural Product Research 21 (7):655–62. doi: 10.1080/14786410701371256.
  • Igwe, E., S. Roodenrys, Y. Probst, V. do Rosario, M. Netzel, H. Hong, G. Netzel, A. Phan, and K. Charlton. 2020. Low anthocyanin plum nectar does not impact cognition, blood pressure and gut microbiota in healthy older adults: A randomized crossover trial. Nutrition Research (New York, N.Y.) 82:74–87. doi: 10.1016/j.nutres.2020.08.003.
  • Jadhav, R, and G. Puchchakayala. 2012. Hypoglycemic and antidiabetic activity of flavonoids: Boswellic acid, ellagic acid, quercetin, rutin on streptozotocin-nicotinamide induced type 2 diabetic rats. Group 1:100.
  • Jamieson, N., J. Sirdaartaa, and I. E. Cock. 2014. The anti-proliferative properties of Australian plants with high antioxidant capacities against cancer cell lines. Pharmacognosy Communications 4 (4):71–82. doi: 10.5530/pc.2014.4.8.
  • Jeong, J. H., J. Y. An, Y. T. Kwon, J. G. Rhee, and Y. J. Lee. 2009. Effects of low dose quercetin: Cancer cell-specific inhibition of cell cycle progression. Journal of Cellular Biochemistry 106 (1):73–82. doi: 10.1002/jcb.21977.
  • Jeong, Y.-J., J.-H. Kim, J.-M. Hong, J. S. Kang, H.-R. Kim, W. J. Lee, and Y-i. Hwang. 2014. Vitamin C treatment of mouse bone marrow-derived dendritic cells enhanced CD8(+) memory T cell production capacity of these cells in vivo. Immunobiology 219 (7):554–64. doi: 10.1016/j.imbio.2014.03.006.
  • Jideani, A., H. Silungwe, T. Takalani, A. Omolola, H. Udeh, and T. Anyasi. 2021. Antioxidant-rich natural fruit and vegetable products and human health. International Journal of Food Properties 24 (1):41–67. doi: 10.1080/10942912.2020.1866597.
  • John, O., P. Mouatt, M. Majzoub, T. Thomas, S. Panchal, and L. Brown. 2019. Physiological and metabolic effects of yellow mangosteen (Garcinia dulcis) rind in rats with diet-induced metabolic syndrome. International Journal of Molecular Sciences 21 (1):272. doi: 10.3390/ijms21010272.
  • John, O., P. Mouatt, S. Panchal, and L. Brown. 2021. Rind from purple mangosteen (Garcinia mangostana) attenuates diet-induced physiological and metabolic changes in obese rats. Nutrients 13 (2):319. doi: 10.3390/nu13020319.
  • John, O., P. Mouatt, I. Prasadam, Y. Xiao, S. Panchal, and L. Brown. 2019. The edible native Australian fruit, Davidson’s plum (Davidsonia pruriens), reduces symptoms in rats with diet-induced metabolic syndrome. Journal of Functional Foods 56:204–15. doi: 10.1016/j.jff.2019.03.018.
  • Kalita, S.A. K. Verma, and S. B. Prasad. 2014. Chlorambucil and ascorbic acid-mediated anticancer activity and hematological toxicity in Dalton’s ascites lymphoma-bearing mice.
  • Kim, S., S. Semple, B. Simpson, and P. Deo. 2020. Antioxidant and antiglycation activities of Syzygium paniculatum gaertn and inhibition of digestive enzymes relevant to type 2 diabetes mellitus. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 75 (4):621–7. doi: 10.1007/s11130-020-00858-4.
  • Kleemann, R., L. Verschuren, M. Morrison, S. Zadelaar, M. van Erk, P. Wielinga, and T. Kooistra. 2011. Anti-inflammatory, anti-proliferative and anti-atherosclerotic effects of quercetin in human in vitro and in vivo models. Atherosclerosis 218 (1):44–52. doi: 10.1016/j.atherosclerosis.2011.04.023.
  • Konczak, I., F. Maillot, and A. Dalar. 2014. Phytochemical divergence in 45 accessions of Terminalia ferdinandiana (Kakadu plum). Food Chemistry 151:248–56. doi: 10.1016/j.foodchem.2013.11.049.
  • Konczak, I, and P. Roulle. 2011. Nutritional properties of commercially grown native Australian fruits: Lipophilic antioxidants and minerals. Food Research International 44 (7):2339–44. doi: 10.1016/j.foodres.2011.02.023.
  • Konczak, I., D. Zabaras, M. Dunstan, and P. Aguas. 2010a. Antioxidant capacity and hydrophilic phytochemicals in commercially grown native Australian fruits. Food Chemistry 123 (4):1048–54. doi: 10.1016/j.foodchem.2010.05.060.
  • Konczak, I., D. Zabaras, M. Dunstan, and P. Aguas. 2010b. Antioxidant capacity and phenolic compounds in commercially grown native Australian herbs and spices. Food Chemistry 122 (1):260–6. doi: 10.1016/j.foodchem.2010.03.004.
  • Konda, P. Y., S. Dasari, S. Konanki, and P. Nagarajan. 2019. In vivo antihyperglycemic, antihyperlipidemic, antioxidative stress and antioxidant potential activities of Syzygium paniculatum Gaertn. in Streptozotocin-induced diabetic rats . Heliyon 5 (3):e01373. doi: 10.1016/j.heliyon.2019.e01373.
  • Lee, P. ‐S., Chia. ‐Y. Teng, N. Kalyanam, Chi. ‐T. Ho, and Min. ‐H. Pan. 2019. Garcinol reduces obesity in high‐fat‐diet‐fed mice by modulating gut microbiota composition. Molecular Nutrition & Food Research 63 (2):1800390. doi: 10.1002/mnfr.201800390.
  • Leyva-López, N., E. Gutierrez-Grijalva, D. Ambriz-Perez, and J. Heredia. 2016. Flavonoids as cytokine modulators: a possible therapy for inflammation-related diseases. International Journal of Molecular Sciences 17 (6):921. doi: 10.3390/ijms17060921.
  • Lim, V., S. G. Gorji, V. D. Daygon, and M. Fitzgerald. 2020. Untargeted and targeted metabolomic profiling of australian indigenous fruits. Metabolites 10 (3):114. doi: 10.3390/metabo10030114.
  • Lin, B. W., C. C. Gong, H. F. Song, and Y. Y. Cui. 2017. Effects of anthocyanins on the prevention and treatment of cancer. British Journal of Pharmacology 174 (11):1226–43. doi: 10.1111/bph.13627.
  • Majolo, F., L. Knabben de Oliveira Becker Delwing, D. J. Marmitt, I. Cunha Bustamante-Filho, and M. I. Goettert. 2019. Medicinal plants and bioactive natural compounds for cancer treatment: Important advances for drug discovery. Phytochemistry Letters 31:196–207. doi: 10.1016/j.phytol.2019.04.003.
  • Manach, C., A. Scalbert, C. Morand, C. Rémésy, and L. Jiménez. 2004. Polyphenols: Food sources and bioavailability. The American Journal of Clinical Nutrition 79 (5):727–47. doi: 10.1093/ajcn/79.5.727.
  • Mani, J., J. Johnson, H. Hosking, N. Ashwath, K. Walsh, P. Neilsen, D. Broszczak, and M. Naiker. 2021. Antioxidative and therapeutic potential of selected Australian plants: A review. Journal of Ethnopharmacology 268:113580. doi: 10.1016/j.jep.2020.113580.
  • Mansouri, M. T., A. A. Hemmati, B. Naghizadeh, S. A. Mard, A. Rezaie, and B. Ghorbanzadeh. 2015. A study of the mechanisms underlying the anti-inflammatory effect of ellagic acid in carrageenan-induced paw edema in rats. Indian Journal of Pharmacology 47 (3):292–8. doi: 10.4103/0253-7613.157127.
  • Maru, G., R. Hudlikar, G. Kumar, K. Gandhi, and M. Mahimkar. 2016. Understanding the molecular mechanisms of cancer prevention by dietary phytochemicals: From experimental models to clinical trials. World Journal of Biological Chemistry 7 (1):88–99. doi: 10.4331/wjbc.v7.i1.88.
  • Mazerand, C, and I. E. Cock. 2019. An examination of the antibacterial, antifungal, anti-giardial and anticancer properties of Buchanania obovata Engl. fruit extracts. Pharmacognosy Communications 9 (1):07–14. doi: 10.5530/pc.2019.1.3.
  • Mazza, G. 2005. Bioactivity, absorption and metabolism of anthocyanins. In International Symposium on Human Health Effects of Fruits and Vegetables 744.
  • McDonald, J.N. A. Caffin, S. Sommano, and R. Cocksedge. 2008. The effect of post harvest handling on selected native food plants.
  • McDougall, G., F. Shpiro, P. Dobson, P. Smith, A. Blake, and D. Stewart. 2005. Different polyphenolic components of soft fruits inhibit alpha-amylase and alpha-glucosidase . Journal of Agricultural and Food Chemistry 53 (7):2760–6. doi: 10.1021/jf0489926.
  • McManus, K., A. Wood, M. H. Wright, B. Matthews, A. C. Greene, and I. E. Cock. 2017. Terminalia ferdinandiana Exell. Extracts inhibit the growth of body odour-forming bacteria. International Journal of Cosmetic Science 39 (5):500–10. doi: 10.1111/ics.12403.
  • Mills, C. C., E. A. Kolb, and V. B. Sampson. 2018. Development of chemotherapy with cell-cycle inhibitors for adult and pediatric cancer therapy. Cancer Research 78 (2):320–5. doi: 10.1158/0008-5472.CAN-17-2782.
  • Miyazawa, T., G. Burdeos, M. Itaya, K. Nakagawa, and T. Miyazawa. 2019. Vitamin E: regulatory redox interactions. IUBMB Life 71 (4):430–41. doi: 10.1002/iub.2008.
  • Mohanty, S, and I. Cock. 2012. The chemotherapeutic potential of Terminalia ferdinandiana: Phytochemistry and bioactivity. Pharmacognosy Reviews 6 (11):29–36. doi: 10.4103/0973-7847.95855.
  • Morita, I. 2002. Distinct functions of COX-1 and COX-2. Prostaglandins & Other Lipid Mediators 68-69:165–75. doi: 10.1016/S0090-6980(02)00029-1.
  • Mouria, M., A. Gukovskaya, Y. Jung, P. Buechler, O. Hines, H. Reber, and S. Pandol. 2002. Food-derived polyphenols inhibit pancreatic cancer growth through mitochondrial cytochrome C release and apoptosis. International Journal of Cancer 98 (5):761–9. doi: 10.1002/ijc.10202.
  • Mpala, L., G. Chikowe, and I. E. Cock. 2020. Davidsonia pruriens F. Muell. Fruit and leaf extracts lack antibacterial and antifungal activity. Pharmacognosy Communications 10 (3):113–8. doi: 10.5530/pc.2020.3.23.
  • Mulisa Bobasa, E., A. Dao Thi Phan, C. Manolis, M. Netzel, H. Smyth, D. Cozzolino, and Y. Sultanbawa. 2020. Effect of sample presentation on the near infrared spectra of wild harvest Kakadu plum fruits (Terminalia ferdinandiana). Infrared Physics & Technology 111:103560. doi: 10.1016/j.infrared.2020.103560.
  • Murhekar, S., M. H. Wright, A. Carlson Greene, J. C. Brownlie, and I. E. Cock. 2017. Inhibition of Shewanella spp. growth by Syzygium australe and Syzygium luehmannii extracts: Natural methods for the prevention of fish spoilage. Journal of Food Science and Technology 54 (10):3314–26. doi: 10.1007/s13197-017-2782-6.
  • Nathan, D. 2015. Diabetes: Advances in diagnosis and treatment. Jama 314 (10):1052–62. doi: 10.1001/jama.2015.9536.
  • National Health and Medical Research Council. 2017. Nutrient Reference Values for Australia and New Zealand: Executive Summary. edited by Department of Health and Ageing. Australia: Australian Government.
  • Netzel, M., G. Netzel, Q. Tian, S. Schwartz, and I. Konczak. 2006. Sources of antioxidant activity in Australian native fruits. Identification and quantification of anthocyanins. Journal of Agricultural and Food Chemistry 54 (26):9820–6. doi: 10.1021/jf0622735.
  • Netzel, M., G. Netzel, Q. Tian, S. Schwartz, and I. Konczak. 2007. Native Australian fruits—a novel source of antioxidants for food. Innovative Food Science & Emerging Technologies 8 (3):339–46. doi: 10.1016/j.ifset.2007.03.007.
  • Niedzwiecki, A., M. W. Roomi, T. Kalinovsky, and M. Rath. 2016. Anticancer efficacy of polyphenols and their combinations. Nutrients 8 (9):552. doi: 10.3390/nu8090:552.
  • Nirmal, N., Prakash, R. Mereddy, D. Webber, and Y. Sultanbawa. 2021. Biochemical, antioxidant and sensory evaluation of Davidsonia pruriens and Davidsoina jerseyana fruit infusion. Food Chemistry 342:128349. doi: 10.1016/j.foodchem.2020.128349.
  • Njume, C., O. Donkor, and A. McAinch. 2019. Predisposing factors of type 2 diabetes mellitus and the potential protective role of native plants with functional properties. Journal of Functional Foods 53:115–24. doi: 10.1016/j.jff.2018.12.001.
  • Njume, C., A. McAinch, and O. Donkor. 2020. Proximate and phenolic composition of selected native Australian food plants. International Journal of Food Science & Technology 55 (5):2060–79. doi: 10.1111/ijfs.14400.
  • NSW Office of Environment and Heritage. 2012. National Recovery Plan for Magenta Lilly Pilly (Syzygium paniculatum). Department of Agriculture, Water and the Environment, Australian Government. http://www.environment.gov.au/cgi-bin/sprat/public/publicspecies.pl?showprofile=Y&taxon_id=20307.
  • NUTTAB. 2011. Food Nutrient Database. https://www.foodstandards.gov.au/science/monitoringnutrients/ausnut/ausnutdatafiles/Pages/foodnutrient.aspx
  • Panchal, S. K., H. Poudyal, A. Iyer, R. Nazer, M. A. Alam, V. Diwan, K. Kauter, C. Sernia, F. Campbell, L. Ward, et al. 2011. High-carbohydrate, high-fat diet-induced metabolic syndrome and cardiovascular remodeling in rats. Journal of Cardiovascular Pharmacology 57 (5):611–24. doi: 10.1097/FJC.0b013e31821b1379.
  • Park, J.-H., K. Davis, G. Lee, M. Jung, Y. Jung, J. Park, S.-Y. Yi, M.-A. Lee, S. Lee, C.-H. Yeom, et al. 2012. Ascorbic acid alleviates toxicity of paclitaxel without interfering with the anticancer efficacy in mice. Nutrition Research 32 (11):873–83. doi: 10.1016/j.nutres.2012.09.011.
  • Pearce, A., M. Haas, R. Viney, S. A. Pearson, P. Haywood, C. Brown, and R. Ward. 2017. Incidence and severity of self-reported chemotherapy side effects in routine care: A prospective cohort study. PloS One 12 (10):e0184360. doi: 10.1371/journal.pone.0184360.
  • Peng, Y., Y. Yan, P. Wan, W. Dong, K. Huang, L. Ran, J. Mi, L. Lu, X. Zeng, and Y. Cao. 2020. Effects of long-term intake of anthocyanins from Lycium ruthenicum Murray on the organism health and gut microbiota in vivo. Food Research International (Ottawa, Ont.) 130:108952. doi: 10.1016/j.foodres.2019.108952.
  • Phan, A. D. T., O. Adiamo, S. Akter, M. Netzel, D. Cozzolino, and Y. Sultanbawa. 2021. Effects of drying methods and maltodextrin on vitamin C and quality of Terminalia ferdinandiana fruit powder, an emerging Australian functional food ingredient. Journal of the Science of Food and Agriculture 101 (12):5132–41. doi: 10.1002/jsfa.11159.
  • Phan, A. D. T., M. S. Damyeh, M. Chaliha, S. Akter, S. Fyfe, M. Netzel, D. Cozzolino, and Y. Sultanbawa. 2021. The effect of maturity and season on health-related bioactive compounds in wild harvested fruit of Terminalia ferdinandiana (Exell). International Journal of Food Science & Technology 56 (12):6431–42. doi: 10.1111/ijfs.15350.
  • Pinkaew, D., S. G. Cho, D. Hui, J. Wiktorowicz, N. Hutadilok-Towatana, W. Mahabusarakam, M. Tonganunt, L. Stafford, A. Phongdara, M. Liu, et al. 2009. Morelloflavone blocks injury-induced neointimal formation by inhibiting vascular smooth muscle cell migration. Biochimica et Biophysica Acta 1790 (1):31–9. doi: 10.1016/j.bbagen.2008.09.006.
  • Prior, R., H. A. Hoang, L. Gu, X. Wu, M. Bacchiocca, L. Howard, M. Hampsch-Woodill, D. Huang, B. Ou, and R. Jacob. 2003. Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORAC(FL))) of plasma and other biological and food samples. Journal of Agricultural and Food Chemistry 51 (11):3273–9. doi: 10.1021/jf0262256.
  • Ramírez, F, and J. Kallarackal. 2019. The phenology and potential ecological associations of Magenta Lilly Pilly (Syzygium paniculatum Gaertn) a native vulnerable Australian tree growing in Bogotá, Colombia. Arboricultural Journal 41 (4):191–211. doi: 10.1080/03071375.2019.1642047.
  • Rawson, A., A. Patras, B. K. Tiwari, F. Noci, T. Koutchma, and N. Brunton. 2011. Effect of thermal and non thermal processing technologies on the bioactive content of exotic fruits and their products: Review of recent advances. Food Research International 44 (7):1875–87. doi: 10.1016/j.foodres.2011.02.053.
  • Read, C. 2012. Nutritional Data for Australian Native Foods. Rural Industries Research and Development Corporation, RIRDC Publication (12/099).
  • Reang, J., P. C. Sharma, V. K. Thakur, and J. Majeed. 2021. Understanding the therapeutic potential of ascorbic acid in the battle to overcome cancer. Biomolecules 11 (8):1130. doi: 10.3390/biom11081130.
  • Richer, S., W. Stiles, L. Statkute, J. Pulido, J. Frankowski, D. Rudy, K. Pei, M. Tsipursky, and J. Nyland. 2004. Double-masked, placebo-controlled, randomized trial of lutein and antioxidant supplementation in the intervention of atrophic age-related macular degeneration: The Veterans LAST study (Lutein Antioxidant Supplementation Trial). Optometry - Journal of the American Optometric Association 75 (4):216–29. doi: 10.1016/S1529-1839(04)70049-4.
  • Richmond, R., M. Bowyer, and Q. Vuong. 2019. Australian native fruits: Potential uses as functional food ingredients. Journal of Functional Foods 62:103547. doi: 10.1016/j.jff.2019.103547.
  • RIRDC. 2012. A Focus on Riberry. Rural Industries Research and Development Corporation.
  • Sadgrove, N, and G. Jones. 2015. A contemporary introduction to essential oils: chemistry, bioactivity and prospects for australian agriculture. Agriculture 5 (1):48–102. doi: 10.3390/agriculture5010048.
  • Sakulnarmrat, K. 2012. Potential health properties of selected commercially grown native Australian herbs and fruits. ed. G. Srzednicki, K. Izabela. Chemical Sciences & Engineering, Faculty of Engineering, UNSW and CSIRO Animal Food and Health Sciences.. https://www.unsworks.unsw.edu.au/primoexplore/fulldisplay/unsworks_10979/UNSWORKS
  • Sakulnarmrat, K, and I. Konczak. 2012. Composition of native Australian herbs polyphenolic-rich fractions and in vitro inhibitory activities against key enzymes relevant to metabolic syndrome. Food Chemistry 134 (2):1011–9. doi: 10.1016/j.foodchem.2012.02.217.
  • Sakulnarmrat, K., G. Srzednicki, and I. Konczak. 2014. Composition and inhibitory activities towards digestive enzymes of polyphenolic-rich fractions of Davidson’s plum and quandong. LWT - Food Science and Technology 57 (1):366–75. doi: 10.1016/j.lwt.2014.01.002.
  • Sakulnarmrat, K., G. Srzednicki, and I. Konczak. 2015. Bioprospecting Davidson’s plum and quandong: Cytoprotective and proapoptotic activities. LWT - Food Science and Technology 61 (2):622–9. doi: 10.1016/j.lwt.2014.12.023.
  • Sautron, C, and I. E. Cock. 2014. Antimicrobial activity and toxicity of Syzygium australe and Syzygium leuhmannii fruit extracts. Pharmacognosy Communication s 4 (1):53–60. doi: 10.5530/pc.2014.1.8.
  • Shahidi, F, and P. Ambigaipalan. 2015. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects–A review. Journal of Functional Foods 18:820–97. doi: 10.1016/j.jff.2015.06.018.
  • Shalom, J, and I. Cock. 2018. Terminalia ferdinandiana Exell. fruit and leaf extracts inhibit proliferation and induce apoptosis in selected human cancer cell lines. Nutrition and Cancer 70 (4):579–93. doi: 10.1080/01635581.2018.1460680.
  • Shi, G.-J., Y. Li, Q.-H. Cao, H.-X. Wu, X.-Y. Tang, X.-H. Gao, J.-Q. Yu, Z. Chen, and Y. Yang. 2019. In vitro and in vivo evidence that quercetin protects against diabetes and its complications: A systematic review of the literature. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 109:1085–99. doi: 10.1016/j.biopha.2018.10.130.
  • Singh, A., R. Raju, and G. Münch. 2021. Potential anti-neuroinflammatory compounds from Australian plants - A review. Neurochemistry International 142:104897. doi: 10.1016/j.neuint.2020.104897.
  • Sirdaarta, J., A. Maen, P. Rayan, B. Matthews, and I. E. Cock. 2016. High performance liquid chromatography-mass spectrometry analysis of high antioxidant Australian fruits with antiproliferative activity against cancer cells . Pharmacognosy Magazine 12 (Suppl 2):S181–S194. doi: 10.4103/0973‑1296.182178.
  • Sirdaarta, J., B. Matthews, A. White, and I. E. Cock. 2015. GC-MS and LC-MS analysis of Kakadu plum fruit extracts displaying inhibitory activity against microbial triggers of multiple sclerosis. Pharmacognosy Communications 5 (2):100–15. doi: 10.5530/pc.2015.2.2.
  • Sivasinprasasn, S., R. Pantan, S. Thummayot, J. Tocharus, A. Suksamrarn, and C. Tocharus. 2016. Cyanidin-3-glucoside attenuates angiotensin II-induced oxidative stress and inflammation in vascular endothelial cells. Chemico-Biological Interactions 260:67–74. doi: 10.1016/j.cbi.2016.10.022.
  • Sommano, S., N. Caffin, and G. Kerven. 2013. Screening for antioxidant activity, phenolic content, and flavonoids from Australian native food plants. International Journal of Food Properties 16 (6):1394–406. doi: 10.1080/10942912.2011.580485.
  • Sommano, S., N. Caffin, J. McDonald, and R. Cocksedge. 2013. The impact of thermal processing on bioactive compounds in Australian native food products (bush tomato and Kakadu plum). Food Research International 50 (2):557–61. doi: 10.1016/j.foodres.2011.03.008.
  • Srivarathan, S., A. Dao Thi Phan, H. T. Hong, E. Chua, O. Wright, Y. Sultanbawa, and M. Netzel. 2021a. Tecticornia sp. (Samphire)—A promising underutilized Australian indigenous edible halophyte. Frontiers in Nutrition 8 doi: 10.3389/fnut.2021.607799.
  • Srivarathan, S., A. D. T. Phan, O. Wright, Y. Sultanbawa, M. Netzel, and D. Cozzolino. 2021b. The measurement of antioxidant capacity and colour attributes in wild harvest samphire (Tecticornia sp.) samples using mid-infrared spectroscopy. Food Analytical Methods 14 (11):2328–34. doi: 10.1007/s12161-021-02065-6.
  • Sultanbawa, Y., M. Chaliha, A. D. Phan, S. Olarte Mantilla, G. Netzel, M. Netzel, H. Smyth, and D. Cozzolino. 2021. An Infrared analysis of Terminalia ferdinandiana Exell [Combretaceae] fruit and leaves—towards the development of biospectroscopy tools to characterise uniquely Australian foods. Food Analytical Methods 14 (3):423–9. doi: 10.1007/s12161-020-01915-z.
  • Sultanbawa, Y, and F. Sultanbawa. 2017. Australian native plants: Cultivation and uses in the health and food industries. Boca Raton, FL: CRC Press.
  • Sultanbawa, Y.D. Williams, M. Chaliha, I. Konczak, and H. Smyth. 2015. Changes in quality and bioactivity of native food during storage. Canberra, Australia: Rural Industries Research and Development Corporation (RIRDC), Australian Government. ISBN 978-1-74254-754-1, ISSN 1440-6845.
  • Symonds, E. L., I. Konczak, and M. Fenech. 2013. The Australian fruit Illawarra plum (Podocarpus elatus Endl., Podocarpaceae) inhibits telomerase, increases histone deacetylase activity and decreases proliferation of colon cancer cells. British Journal of Nutrition 109 (12):2117–25. doi: 10.1017/S0007114512004333.
  • Tan, A., D.-X. Hou, I. Konczak, S. Tanigawa, I. Ramzan, and D. Sze. 2011. Native Australian fruit polyphenols inhibit COX-2 and iNOS expression in LPS-activated murine macrophages. Food Research International 44 (7):2362–7. doi: 10.1016/j.foodres.2010.12.031.
  • Tan, A. C., I. Konczak, I. Ramzan, and D. M. Sze. 2011a. Native Australian fruit polyphenols inhibit cell viability and induce apoptosis in human cancer cell lines. Nutrition and Cancer 63 (3):444–55. doi: 10.1080/01635581.2011.535953.
  • Tan, A., I. Konczak, I. Ramzan, and D. M.-Y. Sze. 2011b. Antioxidant and cytoprotective activities of native Australian fruit polyphenols. Food Research International 44 (7):2034–40. doi: 10.1016/j.foodres.2010.10.023.
  • Tan, A. C., I. Konczak, I. Ramzan, D. Zabaras, and D. M. Sze. 2011. Potential antioxidant, antiinflammatory, and proapoptotic anticancer activities of Kakadu plum and Illawarra plum polyphenolic fractions. Nutrition and Cancer 63 (7):1074–84. doi: 10.1080/01635581.2011.596646.
  • Teodor, E. D., O. Ungureanu, F. Gatea, and G. L. Radu. 2020. The Potential of Flavonoids and Tannins from Medicinal Plants as Anticancer Agents. Anti-Cancer Agents in Medicinal Chemistry 20 (18):2216–27. doi: 10.2174/1871520620666200516150829.
  • Tuansulong, K.-A., N. Hutadilok-Towatana, W. Mahabusarakam, D. Pinkaew, and K. Fujise. 2011. Morelloflavone from Garcinia dulcis as a novel biflavonoid inhibitor of HMG-CoA reductase. Phytotherapy Research : PTR 25 (3):424–8. doi: 10.1002/ptr.3286.
  • Tundis, R., M. R. Loizzo, and F. Menichini. 2010. Natural products as alpha-amylase and alpha-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: an update. Mini Reviews in Medicinal Chemistry 10 (4):315–31. doi: 10.2174/138955710791331007.
  • Umesalma, S, and G. Sudhandiran. 2010. Differential inhibitory effects of the polyphenol ellagic acid on inflammatory mediators NF-kappaB, iNOS, COX-2, TNF-alpha, and IL-6 in 1,2-dimethylhydrazine-induced rat colon carcinogenesis . Basic & Clinical Pharmacology & Toxicology 107 (2):650–5. doi: 10.1111/j.1742-7843.2010.00565.x.
  • Vazquez Prieto, M. A., A. Bettaieb, C. Rodriguez Lanzi, V. C. Soto, D. J. Perdicaro, C. R. Galmarini, F. G. Haj, R. M. Miatello, and P. I. Oteiza. 2015. Catechin and quercetin attenuate adipose inflammation in fructose-fed rats and 3T3-L1 adipocytes. Molecular Nutrition & Food Research 59 (4):622–33. doi: 10.1002/mnfr.201400631.
  • Vuong, Q., A. Chalmers, D. Jyoti Bhuyan, M. Bowyer, and C. Scarlett. 2015. Botanical, phytochemical, and anticancer properties of the Eucalyptus species. Chemistry & Biodiversity 12 (6):907–24. doi: 10.1002/cbdv.201400327.
  • Vuong, Q., S. Hirun, T. Chuen, C. Goldsmith, M. Bowyer, A. Chalmers, P. Phillips, and C. Scarlett. 2014. Physicochemical composition, antioxidant and anti-proliferative capacity of a lilly pilly (Syzygium paniculatum) extract. Journal of Herbal Medicine 4 (3):134–40. doi: 10.1016/j.hermed.2014.04.003.
  • Vuong, Q. V., S. Hirun, P. A. Phillips, T. L. K. Chuen, M. C. Bowyer, C. D. Goldsmith, and C. J. Scarlett. 2014. Fruit-derived phenolic compounds and pancreatic cancer: Perspectives from Australian native fruits. Journal of Ethnopharmacology 152 (2):227–42. doi: 10.1016/j.jep.2013.12.023.
  • Wilkinson, J, and H. Cavanagh. 2005. Antibacterial activity of essential oils from Australian native plants. Phytotherapy Research : PTR 19 (7):643–6. doi: 10.1002/ptr.1716.
  • Williams, D, and M. Chaliha. 2016. Nutritional characteristics and bioactive compounds in Australian native plants: a review. In Australian native plants: Cultivation and uses in the health and food industries, 223–36. Traditional Herbal Medicines for Modern Times. Boca Raton, FL: CRC Press. doi: 10.1201/b20635-20.
  • Williams, D., D. Edwards, M. Chaliha, and Y. Sultanbawa. 2016. Measuring the three forms of ellagic acid: Suitability of extraction solvents. Chemical Papers 70 (2):144–52. doi: 10.1515/chempap-2015-0193.
  • Williams, D. J., D. Edwards, S. Pun, M. Chaliha, B. Burren, U. Tinggi, and Y. Sultanbawa. 2016. Organic acids in Kakadu plum (Terminalia ferdinandiana): The good (ellagic), the bad (oxalic) and the uncertain (ascorbic). Food Research International (Ottawa, Ont.) 89 (Pt 1):237–44. doi: 10.1016/j.foodres.2016.08.004.
  • Williams, D., D. Edwards, S. Pun, M. Chaliha, and Y. Sultanbawa. 2014. Profiling ellagic acid content: The importance of form and ascorbic acid levels. Food Research International 66:100–6. doi: 10.1016/j.foodres.2014.09.003.
  • Winnett, V., H. Boyer, J. Sirdaarta, and I. E. Cock. 2014. The potential of Tasmannia lanceolata as a natural preservative and medicinal agent: Antimicrobial activity and toxicity. Pharmacognosy Communication 4 (1):42–52. doi: 10.5530/pc.2014.1.7.
  • Wood, A. J., K. McManus, M. H. Wright, A. C. Greene, and I. E. Cock. 2017. Growth inhibitory activity of selected Australian Syzygium species against malodour forming bacteria. Pharmacognosy Communications 7 (3):129–36. doi: 10.5530/pc.2017.3.19.
  • World Health Organization. 2020. Cancer Tomorrow.
  • Wright, M. H., B. Matthews, M. S. J. Arnold, A. Carlson Greene, and I. E. Cock. 2016. The prevention of fish spoilage by high antioxidant Australian culinary plants: Shewanella putrefaciens growth inhibition. International Journal of Food Science & Technology 51 (3):801–13. doi: 10.1111/ijfs.13026.
  • Wright, M. H., J. Sirdaarta, A. White, A. C. Greene, and I. E. Cock. 2016. GC-MS headspace analysis of Terminalia ferdinandiana fruit and leaf extracts which inhibit Bacillus anthracis growth. Pharmacognosy Journal 9 (1):73–82. doi: 10.5530/pj.2017.1.14.
  • Wrigley, J. Walter, and M. Fagg. 2013. Australian native plants: cultivation, use in landscaping and propagation. Wahroonga, NSW: Reed New Holland.
  • Zeb, A. 2018. Ellagic acid in suppressing in vivo and in vitro oxidative stresses. Molecular and Cellular Biochemistry 448 (1–2):27–41. doi: 10.1007/s11010-018-3310-3.
  • Zhang, J., A. Dao Thi Phan, S. Srivarathan, S. Akter, Y. Sultanbawa, and D. Cozzolino. 2022. Proximate composition, functional and antimicrobial properties of wild harvest Terminalia carpentariae fruit. Journal of Food Measurement and Characterization 16 (1):582–9. doi: 10.1007/s11694-021-01182-4.
  • Zhao, G., F. He, C. Wu, P. Li, N. Li, J. Deng, G. Zhu, W. Ren, and Y. Peng. 2018. Betaine in inflammation: Mechanistic aspects and applications. Frontiers in Immunology 9(:1070. doi: 10.3389/fimmu.2018.01070.
  • Zhou, W., G. Kallifatidis, B. Baumann, V. Rausch, J. Mattern, J. Gladkich, N. Giese, G. Moldenhauer, T. Wirth, M. Büchler, et al. 2010. Dietary polyphenol quercetin targets pancreatic cancer stem cells. International Journal of Oncology 37 (3):551–61. doi: 10.3892/ijo_00000704.