8,716
Views
11
CrossRef citations to date
0
Altmetric
Review Articles

Sulfur compounds: From plants to humans and their role in chronic disease prevention

, , , , , ORCID Icon & show all

References

  • Abdel-Daim, M. M., A. I. Abushouk, S. G. Bungău, M. Bin-Jumah, A. F. El-kott, A. A. Shati, L. Aleya, and S. Alkahtani. 2020. Protective effects of thymoquinone and diallyl sulphide against malathion-induced toxicity in rats. Environmental Science and Pollution Research International 27 (10):10228–35. doi: 10.1007/s11356-019-07580-y.
  • Ahmed, S. M. U., L. Luo, A. Namani, X. J. Wang, and X. Tang. 2017. Nrf2 signaling pathway: Pivotal roles in inflammation. Biochimica et Biophysica Acta. Molecular Basis of Disease 1863 (2):585–97. doi: 10.1016/j.bbadis.2016.11.005.
  • Ampofo, E., B. M. Schmitt, M. D. Menger, and M. W. Laschke. 2018. Targeting the microcirculation by indole-3-carbinol and its main derivate 3,3’,-diindolylmethane: Effects on angiogenesis, thrombosis and inflammation. Mini Reviews in Medicinal Chemistry 18 (11):962–8. doi: 10.2174/1389557518666180313100144.
  • Ansary, J., T. Y. Forbes-Hernández, E. Gil, D. Cianciosi, J. Zhang, M. Elexpuru-Zabaleta, J. Simal-Gandara, F. Giampieri, and M. Battino. 2020. Potential health benefit of garlic based on human intervention studies: A brief overview. Antioxidants ) 9 (7):619. doi: 10.3390/antiox9070619.
  • Armah, C. N., C. Derdemezis, M. H. Traka, J. R. Dainty, J. F. Doleman, S. Saha, W. Leung, J. F. Potter, J. A. Lovegrove, and R. F. Mithen. 2015. Diet rich in high glucoraphanin broccoli reduces plasma LDL cholesterol: Evidence from randomised controlled trials. Molecular Nutrition & Food Research 59 (5):918–26. doi: 10.1002/mnfr.201400863.
  • Arnold, N., K. Lechner, C. Waldeyer, M. D. Shapiro, and W. Koenig. 2021. Inflammation and cardiovascular disease: The future. European Cardiology 16:e20. doi: 10.15420/ecr.2020.50.
  • Arora, R., R. Kumar, J. Mahajan, A. P. Vig, B. Singh, B. Singh, and S. Arora. 2016. 3-Butenyl isothiocyanate: A hydrolytic product of glucosinolate as a potential cytotoxic agent against human cancer cell lines. Journal of Food Science and Technology 53 (9):3437–45. doi: 10.1007/s13197-016-2316-7.
  • Aune, D., E. Giovannucci, P. Boffetta, L. T. Fadnes, N. Keum, T. Norat, D. C. Greenwood, E. Riboli, L. J. Vatten, and S. Tonstad. 2017. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality-a systematic review and dose-response meta-analysis of prospective studies. International Journal of Epidemiology 46 (3):1029–56. doi: 10.1093/ije/dyw319.
  • Axelsson, A. S., E. Tubbs, B. Mecham, S. Chacko, H. A. Nenonen, Y. Tang, J. W. Fahey, J. M. J. Derry, C. B. Wollheim, N. Wierup, et al. 2017. Sulforaphane reduces hepatic glucose production and improves glucose control in patients with type 2 diabetes. Science Translational Medicine 9 (394):1–12. doi: 10.1126/scitranslmed.aah4477.
  • Baenas, N., J. Marhuenda, C. García-Viguera, P. Zafrilla, and D. A. Moreno. 2019. Influence of cooking methods on glucosinolates and isothiocyanates content in novel cruciferous foods. Foods 8 (7):257. doi: 10.3390/foods8070257.
  • Bahadoran, Z., P. Mirmiran, F. Hosseinpanah, A. Rajab, G. Asghari, and F. Azizi. 2012. Broccoli sprouts powder could improve serum triglyceride and oxidized LDL/LDL-cholesterol ratio in type 2 diabetic patients: A randomized double-blind placebo-controlled clinical trial. Diabetes Research and Clinical Practice 96 (3):348–54. doi: 10.1016/j.diabres.2012.01.009.
  • Bahadoran, Z., M. Tohidi, P. Nazeri, M. Mehran, F. Azizi, and P. Mirmiran. 2012. Effect of broccoli sprouts on insulin resistance in type 2 diabetic patients: A randomized double-blind clinical trial. International Journal of Food Sciences and Nutrition 63 (7):767–71. doi: 10.3109/09637486.2012.665043.
  • Bai, Y., X. Wang, S. Zhao, C. Ma, J. Cui, and Y. Zheng. 2015. Sulforaphane protects against cardiovascular disease via Nrf2 activation. Oxidative Medicine and Cellular Longevity 2015:407580. doi: 10.1155/2015/407580.
  • Barbieri, R., E. Coppo, A. Marchese, M. Daglia, E. Sobarzo-Sánchez, S. F. Nabavi, and S. M. Nabavi. 2017. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiological Research 196:44–68. doi: 10.1016/j.micres.2016.12.003.
  • Bekaert, M., P. P. Edger, C. M. Hudson, J. C. Pires, and G. C. Conant. 2012. Metabolic and evolutionary costs of herbivory defense: Systems biology of glucosinolate synthesis. The New Phytologist 196 (2):596–605. doi: 10.1111/j.1469-8137.2012.04302.x.
  • Bell, L., O. O. Oloyede, S. Lignou, C. Wagstaff, and L. Methven. 2018. Taste and Flavor Perceptions of glucosinolates, isothiocyanates, and related compounds. Molecular Nutrition & Food Research 62 (18):1700990. doi: 10.1002/mnfr.201700990.
  • Bell, L., and C. Wagstaff. 2017. Enhancement Of glucosinolate and isothiocyanate profiles in Brassicaceae crops: Addressing challenges in breeding for cultivation, storage, and consumer-related traits. Journal of Agricultural and Food Chemistry 65 (43):9379–403. doi: 10.1021/acs.jafc.7b03628.
  • Bellezza, I., I. Giambanco, A. Minelli, and R. Donato. 2018. Nrf2-Keap1 signaling in oxidative and reductive stress. Biochimica et Biophysica Acta. Molecular Cell Research 1865 (5):721–33. doi: 10.1016/j.bbamcr.2018.02.010.
  • Bernaert, N., L. Goetghebeur, H. De Clercq, M. De Loose, E. Daeseleire, E. Van Pamel, E. Van Bockstaele, and B. Van Droogenbroeck. 2012. Influence of cultivar and harvest time on the amounts of isoalliin and methiin in leek (Allium ampeloprasum var. porrum). Journal of Agricultural and Food Chemistry 60 (44):10910–9. doi: 10.1021/jf302132a.
  • Bhatwalkar, S. B., R. Mondal, S. B. N. Krishna, J. K. Adam, P. Govender, and R. Anupam. 2021. Antibacterial properties of organosulfur compounds of garlic (Allium sativum). Frontiers in Microbiology 12:613077. doi: 10.3389/fmicb.2021.613077.
  • Bilotta, M. T., S. Petillo, A. Santoni, and M. Cippitelli. 2020. Liver X receptors: Regulators of cholesterol metabolism, inflammation, autoimmunity, and cancer. Frontiers in Immunology 11 (2867):584303. doi: 10.3389/fimmu.2020.584303.
  • Blankenberg, S., S. Barbaux, and L. Tiret. 2003. Adhesion molecules and atherosclerosis. Atherosclerosis 170 (2):191–203. doi: 10.1016/S0021-9150(03)00097-2.
  • Blažević, I., S. Montaut, F. Burčul, C. E. Olsen, M. Burow, P. Rollin, and N. Agerbirk. 2020. Glucosinolate structural diversity, identification, chemical synthesis and metabolism in plants. Phytochemistry 169:112100. doi: 10.1016/j.phytochem.2019.112100.
  • Blekkenhorst, L. C., C. P. Bondonno, J. R. Lewis, A. Devine, K. Zhu, W. H. Lim, R. J. Woodman, L. J. Beilin, R. L. Prince, and J. M. Hodgson. 2017. Cruciferous and allium vegetable intakes are inversely associated with 15-year atherosclerotic vascular disease deaths in older adult women. Journal of the American Heart Association 6 (10):1–15. doi: 10.1161/JAHA.117.006558.
  • Blekkenhorst, L. C., C. P. Bondonno, J. R. Lewis, R. J. Woodman, A. Devine, N. P. Bondonno, W. H. Lim, K. Zhu, L. J. Beilin, P. L. Thompson, et al. 2018. Cruciferous and total vegetable intakes are inversely associated with subclinical atherosclerosis in older adult women. Journal of the American Heart Association 7 (8):e008391. doi: 10.1161/JAHA.117.008391.
  • Brosnan, J. T., and M. E. Brosnan. 2006. The sulfur-containing amino acids: An overview. The Journal of Nutrition 136 (6 Suppl):1636S–40S. doi: 10.1093/jn/136.6.1636S.
  • Castro, V. M. D. d., K. C. de Paula Medeiros, L. I. C. de Lemos, L. de Fátima Campos Pedrosa, F. V. L. Ladd, T. G. de Carvalho, R. F. de Araújo Júnior, B. J. Abreu, and N. B. da Silva Farias. 2021. S-methyl cysteine sulfoxide ameliorates duodenal morphological alterations in streptozotocin-induced diabetic rats. Tissue & Cell 69:101483. doi: 10.1016/j.tice.2020.101483.
  • Chan, J. Y., A. C. Yuen, R. Y. Chan, and S. W. Chan. 2013. A review of the cardiovascular benefits and antioxidant properties of allicin. Phytotherapy Research: PTR 27 (5):637–46. doi: 10.1002/ptr.4796.
  • Chang, J., M. Wang, Y. Jian, F. Zhang, J. Zhu, Q. Wang, and B. Sun. 2019. Health-promoting phytochemicals and antioxidant capacity in different organs from six varieties of Chinese kale. Scientific Reports 9 (1):20344. doi: 10.1038/s41598-019-56671-w.
  • Chang, T., H. Ho, S.-J. Hsu, C.-C. Chang, M.-H. Tsai, T. Huo, H.-C. Huang, F.-Y. Lee, M.-C. Hou, and S.-D. Lee. 2019. Glucobrassicin metabolites ameliorate the development of portal hypertension and cirrhosis in bile duct-ligated rats. International Journal of Molecular Sciences 20 (17):4161. doi: 10.3390/ijms20174161.
  • Cho, H. J., K. W. Lee, and J. H. Park. 2013. Erucin exerts anti-inflammatory properties in murine macrophages and mouse skin: Possible mediation through the inhibition of NFκB signaling. International Journal of Molecular Sciences 14 (10):20564–77. doi: 10.3390/ijms141020564.
  • Choi, Y., M. A. Abdelmegeed, and B. J. Song. 2018. Preventive effects of indole-3-carbinol against alcohol-induced liver injury in mice via antioxidant, anti-inflammatory, and anti-apoptotic mechanisms: Role of gut-liver-adipose tissue axis. The Journal of Nutritional Biochemistry 55:12–25. doi: 10.1016/j.jnutbio.2017.11.011.
  • Chuang, W. T., Y. T. Liu, C. S. Huang, C. W. Lo, H. T. Yao, H. W. Chen, and C. K. Lii. 2019. Benzyl isothiocyanate and phenethyl isothiocyanate inhibit adipogenesis and hepatosteatosis in mice with obesity induced by a high-fat diet. Journal of Agricultural and Food Chemistry 67 (25):7136–46. doi: 10.1021/acs.jafc.9b02668.
  • Chung, L. Y. 2006. The antioxidant properties of garlic compounds: Allyl cysteine, alliin, allicin, and allyl disulfide. Journal of Medicinal Food 9 (2):205–13. doi: 10.1089/jmf.2006.9.205.
  • Citi, V., A. Martelli, L. Testai, A. Marino, M. C. Breschi, and V. Calderone. 2014. Hydrogen sulfide releasing capacity of natural isothiocyanates: Is it a reliable explanation for the multiple biological effects of Brassicaceae? Planta Medica 80 (8–9):610–3. doi: 10.1055/s-0034-1368591.
  • Citi, V., E. Piragine, E. Pagnotta, L. Ugolini, L. Di Cesare Mannelli, L. Testai, C. Ghelardini, L. Lazzeri, V. Calderone, and A. Martelli. 2019. Anticancer properties of erucin, an H2 S-releasing isothiocyanate, on human pancreatic adenocarcinoma cells (AsPC-1)). Phytotherapy Research: PTR 33 (3):845–55. doi: 10.1002/ptr.6278.
  • Clarke, J. D., A. Hsu, K. Riedl, D. Bella, S. J. Schwartz, J. F. Stevens, and E. Ho. 2011. Bioavailability and inter-conversion of sulforaphane and erucin in human subjects consuming broccoli sprouts or broccoli supplement in a cross-over study design. Pharmacological Research 64 (5):456–63. doi: 10.1016/j.phrs.2011.07.005.
  • Clifford, T., J. P. Acton, S. P. Cocksedge, K. A. B. Davies, and S. J. Bailey. 2021. The effect of dietary phytochemicals on nuclear factor erythroid 2-related factor 2 (Nrf2) activation: A systematic review of human intervention trials. Molecular Biology Reports 48 (2):1745–61. doi: 10.1007/s11033-020-06041-x.
  • Colovic, M. B., V. M. Vasic, D. M. Djuric, and D. Z. Krstic. 2018. Sulphur-containing amino acids: Protective role against free radicals and heavy metals. Current Medicinal Chemistry 25 (3):324–35. doi: 10.2174/0929867324666170609075434.
  • Coode-Bate, J., T. Sivapalan, A. Melchini, S. Saha, P. W. Needs, J. R. Dainty, J. B. Maicha, G. Beasy, M. H. Traka, R. D. Mills, et al. 2019. Accumulation of dietary S-methyl cysteine sulfoxide in human prostate tissue. Molecular Nutrition & Food Research 63 (20):e1900461. doi: 10.1002/mnfr.201900461.
  • Corsello, T., N. Komaravelli, and A. Casola. 2018. Role of hydrogen sulfide in NRF2- and sirtuin-dependent maintenance of cellular redox balance. Antioxidants (Basel, Switzerland) 7 (10):129. doi: 10.3390/antiox7100129.
  • Corvino, A., F. Frecentese, E. Magli, E. Perissutti, V. Santagada, A. Scognamiglio, G. Caliendo, F. Fiorino, and B. Severino. 2021. Trends in H(2)S-donors chemistry and their effects in cardiovascular diseases. Antioxidants (Basel) 10 (3):429. doi: 10.3390/antiox10030429.
  • da Costa, R. M., D. Rodrigues, C. A. Pereira, J. F. Silva, J. V. Alves, N. S. Lobato, and R. C. Tostes. 2019. Nrf2 as a potential mediator of cardiovascular risk in metabolic diseases. Frontiers in Pharmacology 10:382. doi: 10.3389/fphar.2019.00382.
  • Dayalan Naidu, S., T. Suzuki, M. Yamamoto, J. W. Fahey, and A. T. Dinkova-Kostova. 2018. Phenethyl isothiocyanate, a dual activator of transcription factors NRF2 and HSF1. Molecular Nutrition & Food Research 62 (18):e1700908. doi: 10.1002/mnfr.201700908.
  • De Greef, D., E. M. Barton, E. N. Sandberg, C. R. Croley, J. Pumarol, T. L. Wong, N. Das, and A. Bishayee. 2021. Anticancer potential of garlic and its bioactive constituents: A systematic and comprehensive review. Seminars in Cancer Biology 73:219–64. doi: 10.1016/j.semcancer.2020.11.020.
  • De Kok, L. J., M. Durenkamp, L. Yang, and I. Stulen. 2007. Atmospheric sulfur. In Sulfur in plants. An ecological perspective, ed. Malcolm J. Hawkesford and L. J. De Kok, 91–106. Dordrecht, The Netherlands: Springer. doi: 10.1007/978-1-4020-5887-5.
  • Del Carmen Martínez-Ballesta, M., D. A. Moreno, and M. Carvajal. 2013. The physiological importance of glucosinolates on plant response to abiotic stress in Brassica. International Journal of Molecular Sciences 14 (6):11607–25. doi: 10.3390/ijms140611607.
  • Dinh, T. N., M. O. Parat, Y. S. Ong, and K. Y. Khaw. 2021. Anticancer activities of dietary benzyl isothiocyanate: A comprehensive review. Pharmacological Research 169:105666. doi: 10.1016/j.phrs.2021.105666.
  • Dinkova-Kostova, A. T., and R. V. Kostov. 2012. Glucosinolates and isothiocyanates in health and disease. Trends in Molecular Medicine 18 (6):337–47. doi: 10.1016/j.molmed.2012.04.003.
  • Doleman, J. F., K. Grisar, L. Van Liedekerke, S. Saha, M. Roe, H. S. Tapp, and R. F. Mithen. 2017. The contribution of alliaceous and cruciferous vegetables to dietary sulphur intake. Food Chemistry 234:38–45. doi: 10.1016/j.foodchem.2017.04.098.
  • Dong, Z., R. Sinha, and J. P. Richie. Jr. 2018. Disease prevention and delayed aging by dietary sulfur amino acid restriction: Translational implications. Annals of the New York Academy of Sciences 1418 (1):44–55. doi: 10.1111/nyas.13584.
  • Dong, Z., X. Gao, V. M. Chinchilli, R. Sinha, J. Muscat, R. M. Winkels, and J. P. Richie, Jr. 2020. Association of sulfur amino acid consumption with cardiometabolic risk factors: Cross-sectional findings from NHANES III. EClinicalMedicine 19:100248. doi: 10.1016/j.eclinm.2019.100248.
  • Edmands, W. M. B., N. J. Gooderham, E. Holmes, and S. C. Mitchell. 2013. S-Methyl-l-cysteine sulphoxide: The Cinderella phytochemical? Toxicology Research 2 (1):11–22. doi: 10.1039/C2TX20030A.
  • Eisenschmidt-Bönn, D., N. Schneegans, A. Backenköhler, U. Wittstock, and W. Brandt. 2019. Structural diversification during glucosinolate breakdown: Mechanisms of thiocyanate, epithionitrile and simple nitrile formation. The Plant Journal: For Cell and Molecular Biology 99 (2):329–43. doi: 10.1111/tpj.14327.
  • El-Saber Batiha, G., A. M. Beshbishy, L. G. Wasef, Y. H. A. Elewa, A. A. Al-Sagan, A. A. Al-Sagan, M. E. Abd El-Hack, A. E. Taha, Y. M. Abd-Elhakim, and H. P. Devkota. 2020. Chemical constituents and pharmacological activities of garlic (Allium sativum L.): A review. Nutrients 12 (3):872. doi: 10.3390/nu12030872.
  • Ernst, I. M., K. Palani, T. Esatbeyoglu, K. Schwarz, and G. Rimbach. 2013. Synthesis and Nrf2-inducing activity of the isothiocyanates iberverin, iberin and cheirolin. Pharmacological Research 70 (1):155–62. doi: 10.1016/j.phrs.2013.01.011.
  • Esteve, M. 2020. Mechanisms underlying biological effects of cruciferous glucosinolate-derived isothiocyanates/indoles: A focus on metabolic syndrome. Frontiers in Nutrition 7:111. doi: 10.3389/fnut.2020.00111.
  • Fahey, J. W., A. T. Zalcmann, and P. Talalay. 2001. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56 (1):5–51. doi: 10.1016/S0031-9422(00)00316-2.
  • Fahey, J. W., and T. Kensler. 2021. The challenges of designing and implementing clinical trials with broccoli sprouts … and turning evidence into public health action. Frontiers in Nutrition 8 (183):648788. doi: 10.3389/fnut.2021.648788.
  • Fakhri, S., M. Pesce, A. Patruno, S. Z. Moradi, A. Iranpanah, M. H. Farzaei, and E. Sobarzo-Sánchez. 2020. Attenuation of Nrf2/Keap1/ARE in Alzheimer’s disease by plant secondary metabolites: A mechanistic review. Molecules 25 (21):4926. doi: 10.3390/molecules25214926.
  • Farag, M. A., and A. A. Motaal. 2010. Sulforaphane composition, cytotoxic and antioxidant activity of crucifer vegetables. Journal of Advanced Research 1 (1):65–70. doi: 10.1016/j.jare.2010.02.005.
  • Farhat, Z., P. Hershberger, J. Freudenheim, M. Mammen, R. Hageman Blair, D. Aga, and L. Mu. 2021. Types of garlic and their anticancer and antioxidant activity: A review of the epidemiologic and experimental evidence. European Journal of Nutrition 60 (7):3585–609. doi: 10.1007/s00394-021-02482-7.
  • Favela-González, K. M., A. Y. Hernández-Almanza, and N. M. De la Fuente-Salcido. 2020. The value of bioactive compounds of cruciferous vegetables (Brassica) as antimicrobials and antioxidants: A review. Journal of Food Biochemistry: e13414. doi: 10.1111/jfbc.13414.
  • Felker, P., R. Bunch, and A. M. Leung. 2016. Concentrations of thiocyanate and goitrin in human plasma, their precursor concentrations in brassica vegetables, and associated potential risk for hypothyroidism. Nutrition Reviews 74 (4):248–58. doi: 10.1093/nutrit/nuv110.
  • Ferrucci, L., and E. Fabbri. 2018. Inflammageing: Chronic inflammation in ageing, cardiovascular disease, and frailty. Nature Reviews. Cardiology 15 (9):505–22. doi: 10.1038/s41569-018-0064-2.
  • Franceschi, C., P. Garagnani, P. Parini, C. Giuliani, and A. Santoro. 2018. Inflammaging: A new immune-metabolic viewpoint for age-related diseases. Nature Reviews. Endocrinology 14 (10):576–90. doi: 10.1038/s41574-018-0059-4.
  • Francioso, A., A. Baseggio Conrado, L. Mosca, and M. Fontana. 2020. Chemistry and biochemistry of sulfur natural compounds: Key intermediates of metabolism and redox biology. Oxidative Medicine and Cellular Longevity 2020:8294158. doi: 10.1155/2020/8294158.
  • Franco, R., O. J. Schoneveld, A. Pappa, and M. I. Panayiotidis. 2007. The central role of glutathione in the pathophysiology of human diseases. Archives of Physiology and Biochemistry 113 (4–5):234–58. doi: 10.1080/13813450701661198.
  • Fuentes, E., M. Alarcón, M. Fuentes, G. Carrasco, and I. Palomo. 2014. A novel role of Eruca sativa Mill. (rocket) extract: Antiplatelet (NF-κB inhibition) and antithrombotic activities. Nutrients 6 (12):5839–52. doi: 10.3390/nu6125839.
  • Galavi, A., H. Hosseinzadeh, and B. Marjan Razavi. 2021. The effects of Allium cepa L. (onion) and its active constituents on metabolic syndrome: A review. Iranian Journal of Basic Medical Sciences 24 (1):3–16. doi: 10.22038/ijbms.2020.46956.10843.
  • Gasparello, J., E. D’Aversa, C. Papi, L. Gambari, B. Grigolo, M. Borgatti, A. Finotti, and R. Gambari. 2021. Sulforaphane inhibits the expression of interleukin-6 and interleukin-8 induced in bronchial epithelial IB3-1 cells by exposure to the SARS-CoV-2 Spike protein. Phytomedicine 87:153583. doi: 10.1016/j.phymed.2021.153583.
  • Gigolashvili, T., and S. Kopriva. 2014. Transporters in plant sulfur metabolism. Frontiers in Plant Science 5:442. doi: 10.3389/fpls.2014.00442.
  • Giles, G. I., M. J. Nasim, W. Ali, and C. Jacob. 2017. The reactive sulfur species concept: 15 years on. Antioxidants (Basel, Switzerland) 6 (2):38. doi: 10.3390/antiox6020038.
  • Gong, T. T., Q. Guo, X. Li, T. N. Zhang, F. H. Liu, X. H. He, B. Lin, and Q. J. Wu. 2021. Isothiocyanate iberin inhibits cell proliferation and induces cell apoptosis in the progression of ovarian cancer by mediating ROS accumulation and GPX1 expression. Biomedicine & Pharmacotherapy 142:111533. doi: 10.1016/j.biopha.2021.111533.
  • Gugliandolo, A., S. Giacoppo, M. Ficicchia, A. Aliquò, P. Bramanti, and E. Mazzon. 2018. Eruca sativa seed extract: A novel natural product able to counteract neuroinflammation. Molecular Medicine Reports 17 (5):6235–44. doi: 10.3892/mmr.2018.8695.
  • Gullner, G., B. Zechmann, A. Künstler, and L. Király. 2017. The signaling roles of glutathione in plant disease resistance. In Glutathione in plant growth, development, and stress tolerance, ed. Mohammad Anwar Hossain, Mohammad Golam Mostofa, Pedro Diaz-Vivancos, David J. Burritt, Masayuki Fujita, and Lam-Son Phan Tran, 331–57. Cham: Springer International Publishing.
  • Gupta, P., S. E. Wright, S. H. Kim, and S. K. Srivastava. 2014. Phenethyl isothiocyanate: A comprehensive review of anti-cancer mechanisms. Biochimica et Biophysica Acta 1846 (2):405–24. doi: 10.1016/j.bbcan.2014.08.003.
  • Gwon, M. H., Y. S. Im, A. R. Seo, K. Y. Kim, H. R. Moon, and J. M. Yun. 2020. Phenethyl isothiocyanate protects against high fat/cholesterol diet-induced obesity and atherosclerosis in C57BL/6 mice. Nutrients 12 (12):3657. doi: 10.3390/nu12123657.
  • Gwon, M. H., and J. M. Yun. 2021. Phenethyl isothiocyanate improves lipid metabolism and inflammation via mTOR/PPARγ/AMPK signaling in the adipose tissue of obese mice. Journal of Medicinal Food 24 (6):666–9. doi: 10.1089/jmf.2020.4881.
  • Hajra, S., A. R. Patra, A. Basu, and S. Bhattacharya. 2018. Prevention of doxorubicin (DOX)-induced genotoxicity and cardiotoxicity: Effect of plant derived small molecule indole-3-carbinol (I3C) on oxidative stress and inflammation. Biomedicine & Pharmacotherapy 101:228–43. doi: 10.1016/j.biopha.2018.02.088.
  • Halkier, B. A., and J. Gershenzon. 2006. Biology and biochemistry of glucosinolates. Annual Review of Plant Biology 57:303–33. doi: 10.1146/annurev.arplant.57.032905.105228.
  • Hasanuzzaman, M., K. Nahar, T. I. Anee, and M. Fujita. 2017. Glutathione in plants: Biosynthesis and physiological role in environmental stress tolerance. Physiology and Molecular Biology of Plants 23 (2):249–68. doi: 10.1007/s12298-017-0422-2.
  • Hawkesford, M. J. 2007. Sulfur and plant ecology: A central role of sulfate transporters in responses to sulfur availability. In Sulfur in plants. An ecological perspective, ed. M. J. Hawkesford and L. J. De Kok, 1–15. Dordrecht, The Netherlands: Springer. doi: 10.1007/978-1-4020-5887-5.
  • Hirasawa, N. 2019. Expression of histidine decarboxylase and its roles in inflammation. International Journal of Molecular Sciences 20 (2):376. doi: 10.3390/ijms20020376.
  • Horníčková, J., R. Kubec, K. Cejpek, J. Velíšek, J. Ovesná, and H. Stavělíková. 2010. Profiles of S-alk(en)ylcysteine sulfoxides in various garlic genotypes. Czech Journal of Food Sciences 28 (4):298–308. doi: 10.17221/135/2010-CJFS.
  • Houghton, C. A. 2019. Sulforaphane: Its "coming of age" as a clinically relevant nutraceutical in the prevention and treatment of chronic disease. Oxidative Medicine and Cellular Longevity 2019:2716870. doi: 10.1155/2019/2716870.
  • Hsu, C. N., and Y. L. Tain. 2021. Preventing developmental origins of cardiovascular disease: Hydrogen sulfide as a potential target? Antioxidants 10 (2):247. doi: 10.3390/antiox10020247.
  • Hwang, I. M., B. Park, Y. M. Dang, S. Y. Kim, and H. Y. Seo. 2019. Simultaneous direct determination of 15 glucosinolates in eight Brassica species by UHPLC-Q-Orbitrap-MS. Food Chemistry 282:127–33. doi: 10.1016/j.foodchem.2018.12.036.
  • Im, Y. S., M. H. Gwon, and J. M. Yun. 2021. Protective effects of phenethyl isothiocyanate on foam cell formation by combined treatment of oxidized low-density lipoprotein and lipopolysaccharide in THP-1 macrophage. Food Science & Nutrition 9 (6):3269–79. doi: 10.1002/fsn3.2293.
  • Ingenbleek, Y., and H. Kimura. 2013. Nutritional essentiality of sulfur in health and disease. Nutrition Reviews 71 (7):413–32. doi: 10.1111/nure.12050.
  • Iranshahi, M. 2012. A review of volatile sulfur-containing compounds from terrestrial plants: Biosynthesis, distribution and analytical methods. Journal of Essential Oil Research 24 (4):393–434. doi: 10.1080/10412905.2012.692918.
  • Jadhav, U., R. Ezhilarasan, S. F. Vaughn, M. A. Berhow, and S. Mohanam. 2007. Iberin induces cell cycle arrest and apoptosis in human neuroblastoma cells. International Journal of Molecular Medicine 19 (3):353–61. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2435066/. doi: 10.3892/ijmm.19.3.353.
  • Jang, Y. J., B. Park, H. W. Lee, H. J. Park, H. J. Koo, B. O. Kim, E. H. Sohn, S. H. Um, and S. Pyo. 2017. Sinigrin attenuates the progression of atherosclerosis in ApoE-/- mice fed a high-cholesterol diet potentially by inhibiting VCAM-1 expression. Chemico-Biological Interactions 272:28–36. doi: 10.1016/j.cbi.2017.05.006.
  • Jang, Y. J., and S. Pyo. 2015. Anti-atherosclerotic effect of sinigrin in ApoE-deficient mice. The FASEB Journal 29 (S1):609–1. doi: 10.1096/fasebj.29.1_supplement.609.1.
  • Jez, J. M. 2019. Structural biology of plant sulfur metabolism: From sulfate to glutathione. Journal of Experimental Botany 70 (16):4089–103. doi: 10.1093/jxb/erz094.
  • Jia, X., L. Zhong, Y. Song, Y. Hu, G. Wang, and S. Sun. 2016. Consumption of citrus and cruciferous vegetables with incident type 2 diabetes mellitus based on a meta-analysis of prospective study. Primary Care Diabetes 10 (4):272–80. doi: 10.1016/j.pcd.2015.12.004.
  • Jiang, J., T. B. Kang, W. Shim do, N. H. Oh, T. J. Kim, and K. H. Lee. 2013. Indole-3-carbinol inhibits LPS-induced inflammatory response by blocking TRIF-dependent signaling pathway in macrophages. Food and Chemical Toxicology 57:256–61. doi: 10.1016/j.fct.2013.03.040.
  • Jiang, Y., S. H. Wu, X. O. Shu, Y. B. Xiang, B. T. Ji, G. L. Milne, Q. Cai, X. Zhang, Y. T. Gao, W. Zheng, et al. 2014. Cruciferous vegetable intake is inversely correlated with circulating levels of proinflammatory markers in women. Journal of the Academy of Nutrition and Dietetics 114 (5):700–8.e2. doi: 10.1016/j.jand.2013.12.019.
  • Kalinina, E. V., and L. A. Gavriliuk. 2020. Glutathione synthesis in cancer cells. Biochemistry. Biokhimiia 85 (8):895–907. doi: 10.1134/S0006297920080052.
  • Khan, M. S., F. H. Haas, A. A. Samami, A. M. Gholami, A. Bauer, K. Fellenberg, M. Reichelt, R. Hänsch, R. R. Mendel, A. J. Meyer, et al. 2010. Sulfite reductase defines a newly discovered bottleneck for assimilatory sulfate reduction and is essential for growth and development in Arabidopsis thaliana. The Plant Cell 22 (4):1216–31. doi: 10.1105/tpc.110.074088.
  • Khanfar, A., and A. Qaroot. 2020. Could glutathione depletion be the Trojan horse of COVID-19 mortality? European Review for Medical and Pharmacological Sciences 24 (23):12500–9. doi: 10.26355/eurrev_202012_24046.
  • Kim, J. 2021. Pre-clinical neuroprotective evidences and plausible mechanisms of sulforaphane in Alzheimer’s disease. International Journal of Molecular Sciences 22 (6):2929. doi: 10.3390/ijms22062929.
  • Kliebenstein, D. J., J. Kroymann, and T. Mitchell-Olds. 2005. The glucosinolate-myrosinase system in an ecological and evolutionary context. Current Opinion in Plant Biology 8 (3):264–71. doi: 10.1016/j.pbi.2005.03.002.
  • Kodera, Y., M. Kurita, M. Nakamoto, and T. Matsutomo. 2020. Chemistry of aged garlic: Diversity of constituents in aged garlic extract and their production mechanisms via the combination of chemical and enzymatic reactions (Review). Experimental and Therapeutic Medicine 19 (2):1574–84. doi: 10.3892/etm.2019.8393.
  • Kodera, Y., M. Ushijima, H. Amano, J. I. Suzuki, and T. Matsutomo. 2017. Chemical and biological properties of S-1-propenyl-l-cysteine in aged garlic extract. Molecules 22 (4):570. doi: 10.3390/molecules22040570.
  • Kottoor, S. J., and R. R. Arora. 2018. The utility of anti-inflammatory agents in cardiovascular disease: A novel perspective on the treatment of atherosclerosis. Journal of Cardiovascular Pharmacology and Therapeutics 23 (6):483–93. doi: 10.1177/1074248418778548.
  • Krause, K., A. Pyrczak-Felczykowska, M. Karczewska, M. Narajczyk, A. Herman-Antosiewicz, A. Szalewska-Pałasz, and D. Nowicki. 2021. Dietary isothiocyanates, sulforaphane and 2-phenethyl isothiocyanate, effectively impair vibrio cholerae virulence. International Journal of Molecular Sciences 22 (19):10187. doi: 10.3390/ijms221910187.
  • Kumar, P., O. Osahon, D. B. Vides, N. Hanania, C. G. Minard, and R. V. Sekhar. 2021. Severe glutathione deficiency, oxidative stress and oxidant damage in adults hospitalized with COVID-19: Implications for GlyNAC (glycine and N-acetylcysteine) supplementation. Antioxidants 11 (1):50. doi: 10.3390/antiox11010050.
  • Kumari, K., and K. T. Augusti. 2002. Antidiabetic and antioxidant effects of S-methyl cysteine sulfoxide isolated from onions (Allium cepa Linn) as compared to standard drugs in alloxan diabetic rats. Indian Journal of Experimental Biology 40 (9):1005–9. https://pubmed.ncbi.nlm.nih.gov/12587728/.
  • Kumari, K., B. C. Mathew, and K. T. Augusti. 1995. Antidiabetic and hypolipidemic effects of S-methyl cysteine sulfoxide isolated from Allium cepa Linn. Indian Journal of Biochemistry & Biophysics 32 (1):49–54. https://pubmed.ncbi.nlm.nih.gov/7665195/.
  • Kunimura, K., S. Miki, M. Takashima, and J. I. Suzuki. 2021. S-1-propenylcysteine improves TNF-α-induced vascular endothelial barrier dysfunction by suppressing the GEF-H1/RhoA/Rac pathway. Cell Communication and Signaling: CCS 19 (1):17. doi: 10.1186/s12964-020-00692-w.
  • Künstler, A., G. Gullner, A. L. Ádám, K. Nagy, and L. Király. 2020. The versatile roles of sulfur-containing biomolecules in plant defense-A road to disease resistance. Plants (Basel) 9 (12):1705. doi: 10.3390/plants9121705.
  • Kuschman, H. P., M. B. Palczewski, and D. D. Thomas. 2021. Nitric oxide and hydrogen sulfide: Sibling rivalry in the family of epigenetic regulators. Free Radical Biology & Medicine 170:34–43. doi: 10.1016/j.freeradbiomed.2021.01.010.
  • Lancaster, J. E., and M. L. Shaw. 1989. γ-Glutamyl peptides in the biosynthesis of S-alk(en)yl-l-cysteine sulphoxides (flavour precursors) in Allium. Phytochemistry 28 (2):455–60. doi: 10.1016/0031-9422(89)80031-7.
  • Lee, H. W., C. G. Lee, D. K. Rhee, S. H. Um, and S. Pyo. 2017. Sinigrin inhibits production of inflammatory mediators by suppressing NF-κB/MAPK pathways or NLRP3 inflammasome activation in macrophages. International Immunopharmacology 45:163–73. doi: 10.1016/j.intimp.2017.01.032.
  • Lee, H. W., and K. R. Lee. 2015. Effect of sinigrin on vascular cell adhesion molecule-1 expression in TNF-α-stimulated mouse vascular smooth muscle cells via downregulation of NF-κB signaling pathways. The FASEB Journal 29 (S1):593–15. doi: 10.1096/fasebj.29.1_supplement.593.15.
  • Lee, H. H., J.-W. Jeong, S. H. Hong, C. Park, B. W. Kim, and Y. H. Choi. 2018. Diallyl trisulfide suppresses the production of lipopolysaccharide-induced inflammatory mediators in BV2 microglia by decreasing the NF-κB pathway activity associated with toll-like receptor 4 and CXCL12/CXCR4 pathway blockade. Journal of Cancer Prevention 23 (3):134–40. doi: 10.15430/JCP.2018.23.3.134.
  • Lemos, L. I. C., M. A. Medeiros, J. Lima, T. O. Teixeira, C. A. Figueiredo, N. B. S. Farias, F. S. Silva, B. J. Abreu, K. C. P. Medeiros, and L. F. C. Pedrosa. 2021. S-methyl cysteine sulfoxide mitigates histopathological damage, alleviate oxidative stress and promotes immunomodulation in diabetic rats. Journal of Complementary and Integrative Medicine 18 (4):719–25. doi: 10.1515/jcim-2020-0220.
  • Li, M., S. Wang, X. Li, L. Jiang, X. Wang, R. Kou, Q. Wang, L. Xu, N. Zhao, and K. Xie. 2018. Diallyl sulfide protects against lipopolysaccharide/d-galactosamine-induced acute liver injury by inhibiting oxidative stress, inflammation and apoptosis in mice. Food and Chemical Toxicology 120:500–9. doi: 10.1016/j.fct.2018.07.053.
  • Li, Z., H. Guo, J. Li, T. Ma, S. Zhou, Z. Zhang, L. Miao, and L. Cai. 2020. Sulforaphane prevents type 2 diabetes-induced nephropathy via AMPK-mediated activation of lipid metabolic pathways and Nrf2 antioxidative function. Clinical Science (London, England: 1979) 134 (18):2469–87. doi: 10.1042/CS20191088.
  • Liang, X., H. W. Lee, Z. Li, Y. Lu, L. Zou, and C. N. Ong. 2018. Simultaneous quantification of 22 glucosinolates in 12 Brassicaceae vegetables by hydrophilic interaction chromatography-tandem mass spectrometry. ACS Omega 3 (11):15546–53. doi: 10.1021/acsomega.8b01668.
  • Liebman, S. E., and T. H. Le. 2021. Eat your broccoli: Oxidative stress, NRF2, and sulforaphane in chronic kidney disease. Nutrients 13 (1):266. doi: 10.3390/nu13010266.
  • Lietzow, J. 2021. Biologically active compounds in mustard seeds: A toxicological perspective. Foods (Basel, Switzerland) 10 (9):2089. doi: 10.3390/foods10092089.
  • Liguori, I., G. Russo, F. Curcio, G. Bulli, L. Aran, D. Della-Morte, G. Gargiulo, G. Testa, F. Cacciatore, D. Bonaduce, et al. 2018. Oxidative stress, aging, and diseases. Clinical Interventions in Aging 13:757–72. doi: 10.2147/CIA.S158513.
  • Liu, T., L. Zhang, D. Joo, and S.-C. Sun. 2017. NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy 2 (1):17023. doi: 10.1038/sigtrans.2017.23.
  • Liu, Z., H. Wang, J. Xie, J. Lv, G. Zhang, L. Hu, S. Luo, L. Li, and J. Yu. 2021. The roles of Cruciferae glucosinolates in disease and pest resistance. Plants (Basel) 10 (6):1097. doi: 10.3390/plants10061097.
  • Livshits, G., and A. Kalinkovich. 2019. Inflammaging as a common ground for the development and maintenance of sarcopenia, obesity, cardiomyopathy and dysbiosis. Ageing Research Reviews 56:100980. doi: 10.1016/j.arr.2019.100980.
  • López-Chillón, M. T., C. Carazo-Díaz, D. Prieto-Merino, P. Zafrilla, D. A. Moreno, and D. Villaño. 2019. Effects of long-term consumption of broccoli sprouts on inflammatory markers in overweight subjects. Clinical Nutrition 38 (2):745–52. doi: 10.1016/j.clnu.2018.03.006.
  • Lucarini, E., E. Pagnotta, L. Micheli, C. Parisio, L. Testai, A. Martelli, V. Calderone, R. Matteo, L. Lazzeri, L. Di Cesare Mannelli, et al. 2019. Eruca sativa meal against diabetic neuropathic pain: An H(2)S-mediated effect of glucoerucin. Molecules 24 (16):3006. doi: 10.3390/molecules24163006.
  • Mae, T., K. Ohira, and A. Fujiwara. 1971. Fate of ($) S-methyl-L-cysteine sulfoxide in Chinese cabbage, Brassica pekinensis RUPR. Plant and Cell Physiology 12 (1):1–11. doi: 10.1093/oxfordjournals.pcp.a074591.
  • Magli, E., E. Perissutti, V. Santagada, G. Caliendo, A. Corvino, G. Esposito, G. Esposito, F. Fiorino, M. Migliaccio, A. Scognamiglio, et al. 2021. H(2)S donors and their use in medicinal chemistry. Biomolecules 11 (12):1899. doi: 10.3390/biom11121899.
  • Maina, S., G. Misinzo, G. Bakari, and H.-Y. Kim. 2020. Human, animal and plant health benefits of glucosinolates and strategies for enhanced bioactivity: A systematic review. Molecules (Basel, Switzerland) 25 (16):3682. doi: 10.3390/molecules25163682.
  • Marino, M., D. Martini, S. Venturi, M. Tucci, M. Porrini, P. Riso, and D. Bo. 2021. An overview of registered clinical trials on glucosinolates and human health: The current situation. Frontiers in Nutrition 8:730906. doi: 10.3389/fnut.2021.730906.
  • Marks, H. S., J. A. Hilson, H. C. Leichtweis, and G. S. Stoewsand. 1992. S-methylcysteine sulfoxide in Brassica vegetables and formation of methyl methanethiosulfinate from brussels sprouts. Journal of Agricultural and Food Chemistry 40 (11):2098–101. doi: 10.1021/jf00023a012.
  • Martelli, A., V. Citi, L. Testai, S. Brogi, and V. Calderone. 2020. Organic isothiocyanates as hydrogen sulfide donors. Antioxidants & Redox Signaling 32 (2):110–44. doi: 10.1089/ars.2019.7888.
  • Martelli, A., E. Piragine, V. Citi, L. Testai, E. Pagnotta, L. Ugolini, L. Lazzeri, L. Di Cesare Mannelli, O. L. Manzo, M. Bucci, et al. 2020. Erucin exhibits vasorelaxing effects and antihypertensive activity by H2 S-releasing properties. British Journal of Pharmacology 177 (4):824–35. doi: 10.1111/bph.14645.
  • Martin, H. 2010. Role of PPAR-gamma in inflammation. Prospects for therapeutic intervention by food components. Mutation Research 690 (1–2):57–63. doi: 10.1016/j.mrfmmm.2009.09.009.
  • Maruthanila, V. L., J. Poornima, and S. Mirunalini. 2014. Attenuation of carcinogenesis and the mechanism underlying by the influence of indole-3-carbinol and its metabolite 3,3’-diindolylmethane: A therapeutic marvel. Advances in Pharmacological Sciences 2014:832161. doi: 10.1155/2014/832161.
  • Maruyama-Nakashita, A. 2017. Metabolic changes sustain the plant life in low-sulfur environments. Current Opinion in Plant Biology 39:144–51. doi: 10.1016/j.pbi.2017.06.015.
  • Matsutomo, T., M. Ushijima, Y. Kodera, M. Nakamoto, M. Takashima, N. Morihara, and K. Tamura. 2017. Metabolomic study on the antihypertensive effect of S-1-propenylcysteine in spontaneously hypertensive rats using liquid chromatography coupled with quadrupole-Orbitrap mass spectrometry. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences 1046:147–55. doi: 10.1016/j.jchromb.2017.01.029.
  • Matsutomo, T., M. Ushijima, K. Kunimura, and M. Ohtani. 2019. Metabolomic study reveals the acute hypotensive effect of S-1-propenylcysteine accompanied by alteration of the plasma histidine level in spontaneously hypertensive rats. Journal of Pharmaceutical and Biomedical Analysis 168:148–54. doi: 10.1016/j.jpba.2019.01.043.
  • Matuz-Mares, D., H. Riveros-Rosas, M. M. Vilchis-Landeros, and H. Vázquez-Meza. 2021. Glutathione participation in the prevention of cardiovascular diseases. Antioxidants (Basel) 10 (8):1220. doi: 10.3390/antiox10081220.
  • Mazumder, A., A. Dwivedi, and J. du Plessis. 2016. Sinigrin and its therapeutic benefits. Molecules (Basel, Switzerland) 21 (4):416. doi: 10.3390/molecules21040416.
  • Melchini, A., and M. H. Traka. 2010. Biological profile of erucin: A new promising anticancer agent from cruciferous vegetables. Toxins 2 (4):593–612. doi: 10.3390/toxins2040593.
  • Melrose, J. 2019. The glucosinolates: A sulphur glucoside family of mustard anti-tumour and antimicrobial phytochemicals of potential therapeutic application. Biomedicines 7 (3):62. doi: 10.3390/biomedicines7030062.
  • Miękus, N., K. Marszałek, M. Podlacha, A. Iqbal, C. Puchalski, and A. H. Świergiel. 2020. Health benefits of plant-derived sulfur compounds, glucosinolates, and organosulfur compounds. Molecules (Basel, Switzerland) 25 (17):3804. doi: 10.3390/molecules25173804.
  • Mithen, R. 2007. Sulphur-containing compounds. In Plant secondary metabolites: Occurrence, structure and role in the human diet, 25–46. Chichester, UK: John Wiley and Sons.
  • Mithen, R., and E. Ho. 2018. Isothiocyanates for human health. Molecular Nutrition & Food Research 62 (18):e1870079. doi: 10.1002/mnfr.201870079.
  • Mitreiter, S., and T. Gigolashvili. 2021. Regulation of glucosinolate biosynthesis. Journal of Experimental Botany 72 (1):70–91. doi: 10.1093/jxb/eraa479.
  • Moreira, D. M., R. L. da Silva, J. L. Vieira, T. Fattah, M. E. Lueneberg, and C. A. Gottschall. 2015. Role of vascular inflammation in coronary artery disease: Potential of anti-inflammatory drugs in the prevention of atherothrombosis. Inflammation and anti-inflammatory drugs in coronary artery disease. American Journal of Cardiovascular Drugs: Drugs, Devices, and Other Interventions 15 (1):1–11. doi: 10.1007/s40256-014-0094-z.
  • Mugford, S. G., B. R. Lee, A. Koprivova, C. Matthewman, and S. Kopriva. 2011. Control of sulfur partitioning between primary and secondary metabolism. The Plant Journal: For Cell and Molecular Biology 65 (1):96–105. doi: 10.1111/j.1365-313X.2010.04410.x.
  • Mukwevho, E., Z. Ferreira, and A. Ayeleso. 2014. Potential role of sulfur-containing antioxidant systems in highly oxidative environments. Molecules (Basel, Switzerland) 19 (12):19376–89. doi: 10.3390/molecules191219376.
  • Munday, R., and C. M. Munday. 2004. Induction of phase II detoxification enzymes in rats by plant-derived isothiocyanates: Comparison of allyl isothiocyanate with sulforaphane and related compounds. Journal of Agricultural and Food Chemistry 52 (7):1867–71. doi: 10.1021/jf030549s.
  • Narbad, A., and J. T. Rossiter. 2018. Gut glucosinolate metabolism and isothiocyanate production. Molecular Nutrition & Food Research 62 (18):e1700991. doi: 10.1002/mnfr.201700991.
  • Nguyen, V. P. T., J. Stewart, M. Lopez, I. Ioannou, and F. Allais. 2020. Glucosinolates: Natural occurrence, biosynthesis, accessibility, isolation, structures, and biological activities. Molecules (Basel, Switzerland) 25 (19):4537. doi: 10.3390/molecules25194537.
  • Nimni, M. E., B. Han, and F. Cordoba. 2007. Are we getting enough sulfur in our diet? Nutrition & Metabolism 4:24. doi: 10.1186/1743-7075-4-24.
  • Nugrahedi, P. Y., T. Oliviero, J. K. Heising, M. Dekker, and R. Verkerk. 2017. Stir-frying of Chinese cabbage and pakchoi retains health-promoting glucosinolates. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 72 (4):439–44. doi: 10.1007/s11130-017-0646-x.
  • Nwachukwu, I. D., and A. J. Slusarenko. 2014. Thiosulfinates, organic polysulfanes, and related compounds: From an unusual chemistry toward a wealth of potential applications. In Recent advances in redox active plant and microbial products: From basic chemistry to widespread applications in medicine and agriculture, 265–88. Netherlands: Springer.
  • Nwachukwu, I. D., A. J. Slusarenko, and M. C. Gruhlke. 2012. Sulfur and sulfur compounds in plant defence. Natural Product Communications 7 (3):395–400. doi: 10.1177/1934578X1200700323.
  • Palliyaguru, D. L., J.-M. Yuan, T. W. Kensler, and J. W. Fahey. 2018. Isothiocyanates: Translating the power of plants to people. Molecular Nutrition & Food Research 62 (18):1700965. doi: 10.1002/mnfr.201700965.
  • Paul, S., C. A. Geng, T. H. Yang, Y. P. Yang, and J. J. Chen. 2019. Phytochemical and health-beneficial progress of turnip (Brassica rapa). Journal of Food Science 84 (1):19–30. doi: 10.1111/1750-3841.14417.
  • Petropoulos, S., F. Di Gioia, and G. Ntatsi. 2017. Vegetable organosulfur compounds and their health promoting effects. Current Pharmaceutical Design 23 (19):2850–75. doi: 10.2174/1381612823666170111100531.
  • Pocasap, P., N. Weerapreeyakul, and K. Thumanu. 2019. Alyssin and iberin in cruciferous vegetables exert anticancer activity in HepG2 by increasing intracellular reactive oxygen species and tubulin depolymerization. Biomolecules & Therapeutics 27 (6):540–52. doi: 10.4062/biomolther.2019.027.
  • Polonikov, A. 2020. Endogenous deficiency of glutathione as the most likely cause of serious manifestations and death in COVID-19 patients. ACS Infectious Diseases 6 (7):1558–62. doi: 10.1021/acsinfecdis.0c00288.
  • Puccinelli, M. T., and S. D. Stan. 2017. Dietary bioactive diallyl trisulfide in cancer prevention and treatment. International Journal of Molecular Sciences 18 (8):1645. doi: 10.3390/ijms18081645.
  • Qi, T., F. Xu, X. Yan, S. Li, and H. Li. 2016. Sulforaphane exerts anti-inflammatory effects against lipopolysaccharide-induced acute lung injury in mice through the Nrf2/ARE pathway. International Journal of Molecular Medicine 37 (1):182–8. doi: 10.3892/ijmm.2015.2396.
  • Quintero-Fabián, S., D. Ortuño-Sahagún, M. Vázquez-Carrera, and R. I. López-Roa. 2013. Alliin, a garlic (Allium sativum) compound, prevents LPS-induced inflammation in 3T3-L1 adipocytes. Mediators of Inflammation 2013:381815. doi: 10.1155/2013/381815.
  • Raghupathi, W., and V. Raghupathi. 2018. An empirical study of chronic diseases in the United States: A visual analytics approach. International Journal of Environmental Research and Public Health 15 (3):431. doi: 10.3390/ijerph15030431.
  • Ramirez, C. N., W. Li, C. Zhang, R. Wu, S. Su, C. Wang, L. Gao, R. Yin, and A.-N. Kong. 2017. In vitro-in vivo dose response of ursolic acid, sulforaphane, PEITC, and curcumin in cancer prevention. The AAPS Journal 20 (1):19. doi: 10.1208/s12248-017-0177-2.
  • Rektorisova, M., V. Hrbek, M. Jiru, J. Ovesna, and J. Hajslova. 2020. Variability in S-alk(en)yl-l-cysteine sulfoxides in garlic within a seven-month period determined by a liquid chromatography - Tandem mass spectrometry method. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 75 (3):376–82. doi: 10.1007/s11130-020-00817-z.
  • Ridker, P. M. 2018. Clinician’s guide to reducing inflammation to reduce atherothrombotic risk: JACC review topic of the week. Journal of the American College of Cardiology 72 (25):3320–31. doi: 10.1016/j.jacc.2018.06.082.
  • Roman, Y. M., A. V. Hernandez, and C. M. White. 2020. The role of suppressing inflammation in the treatment of atherosclerotic cardiovascular disease. Annals of Pharmacotherapy 54 (10):1021–9. doi: 10.1177/1060028020922994.
  • Romero, L. C., M. Á. Aroca, A. M. Laureano-Marín, I. Moreno, I. García, and C. Gotor. 2014. Cysteine and cysteine-related signaling pathways in Arabidopsis thaliana. Molecular Plant 7 (2):264–76. doi: 10.1093/mp/sst168.
  • Rose, P., M. Whiteman, P. K. Moore, and Z. Z. Yi. 2005. Bioactive S-alk(en)yl cysteine sulfoxide metabolites in the genus Allium: The chemistry of potential therapeutic agents. Natural Product Reports 22 (3):351–68. doi: 10.1039/b417639c.
  • Rose, P., P. K. Moore, M. Whiteman, and Y.-Z. Zhu. 2019. An appraisal of developments in Allium sulfur chemistry: Expanding the pharmacopeia of garlic. Molecules (Basel, Switzerland) 24 (21):4006. doi: 10.3390/molecules24214006.
  • Ruhee, R. T., S. Ma, and K. Suzuki. 2019. Sulforaphane protects cells against lipopolysaccharide-stimulated inflammation in murine macrophages. Antioxidants (Basel) 8 (12):577. doi: 10.3390/antiox8120577.
  • Ruhee, R. T., L. A. Roberts, S. Ma, and K. Suzuki. 2020. Organosulfur compounds: A review of their anti-inflammatory effects in human health. Frontiers in Nutrition 7:64. doi: 10.3389/fnut.2020.00064.
  • Russo, M., C. Spagnuolo, G. L. Russo, K. Skalicka-Woźniak, M. Daglia, E. Sobarzo-Sánchez, S. F. Nabavi, and S. M. Nabavi. 2018. Nrf2 targeting by sulforaphane: A potential therapy for cancer treatment. Critical Reviews in Food Science and Nutrition 58 (8):1391–405. doi: 10.1080/10408398.2016.1259983.
  • Sánchez-Sánchez, M., A. S. M. Zepeda-Morales, L. Carrera-Quintanar, J. M. Viveros-Paredes, N. N. Franco-Arroyo, M. Godínez-Rubí, D. Ortuño-Sahagun, and R. I. López-Roa. 2020. López-Roa. 2020. Alliin, an Allium sativum nutraceutical, reduces metaflammation markers in DIO mice. Nutrients 12 (3):624. doi: 10.3390/nu12030624.
  • Scammahorn, J. J., I. T. N. Nguyen, E. M. Bos, H. Van Goor, and J. A. Joles. 2021. Fighting oxidative stress with sulfur: Hydrogen sulfide in the renal and cardiovascular systems. Antioxidants (Basel) 10 (3):373. doi: 10.3390/antiox10030373.
  • Schweizer, F., P. Fernández-Calvo, M. Zander, M. Diez-Diaz, S. Fonseca, G. Glauser, M. G. Lewsey, J. R. Ecker, R. Solano, and P. Reymond. 2013. Arabidopsis basic helix-loop-helix transcription factors MYC2, MYC3, and MYC4 regulate glucosinolate biosynthesis, insect performance, and feeding behavior. The Plant Cell 25 (8):3117–32. doi: 10.1105/tpc.113.115139.
  • Shang, A., S. Y. Cao, X. Y. Xu, R. Y. Gan, G. Y. Tang, H. Corke, V. Mavumengwana, and H. B. Li. 2019. Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods 8 (7):246. doi: 10.3390/foods8070246.
  • Shi, L., Q. Lin, X. Li, Y. Nie, S. Sun, X. Deng, L. Wang, J. Lu, Y. Tang, and F. Luo. 2017. Alliin, a garlic organosulfur compound, ameliorates gut inflammation through MAPK-NF-κB/AP-1/STAT-1 inactivation and PPAR-γ activation. Molecular Nutrition & Food Research 61 (9):1601013. doi: 10.1002/mnfr.201601013.
  • Smith, R. H., C. R. Earl, and N. A. Matheson. 1974. The probable role of S-methylcysteine sulphoxide in kale, poisoning in ruminants. Biochemical Society Transactions 2 (1):101–7. doi: 10.1042/bst0020101.
  • Sønderby, I. E., M. Burow, H. C. Rowe, D. J. Kliebenstein, and B. A. Halkier. 2010. A complex interplay of three R2R3 MYB transcription factors determines the profile of aliphatic glucosinolates in Arabidopsis. Plant Physiology 153 (1):348–63. doi: 10.1104/pp.109.149286.
  • Soundararajan, P., and J. S. Kim. 2018. Anti-carcinogenic glucosinolates in cruciferous vegetables and their antagonistic effects on prevention of cancers. Molecules 23 (11):2983. doi: 10.3390/molecules23112983.
  • Štefanová, I., J. Zápal, M. Moos, M. Kuzma, and R. Kubec. 2019. Isoalliin-derived thiolanes formed in homogenized onion. Journal of Agricultural and Food Chemistry 67 (35):9895–906. doi: 10.1021/acs.jafc.9b01384.
  • Stefels, J. 2007. Sulfur in the marine environment. In Sulfur in plants. An ecological perspective, ed. Malcolm J. Hawkesford and L. J. De Kok, 77–90. Dordrecht, The Netherlands: Springer. doi: 10.1007/978-1-4020-5887-5.
  • Suman, S., and Y. Shukla. 2016. Diallyl sulfide and its role in chronic diseases prevention. Advances in Experimental Medicine and Biology 929:127–44. doi: 10.1007/978-3-319-41342-6_6.
  • Sun, C.-C., S.-J. Li, C.-L. Yang, R.-L. Xue, Y.-Y. Xi, L. Wang, Q.-L. Zhao, and D.-J. Li. 2015. Sulforaphane attenuates muscle inflammation in dystrophin-deficient mdx mice via NF-E2-related factor 2 (Nrf2)-mediated inhibition of NF-κB signaling pathway. The Journal of Biological Chemistry 290 (29):17784–95. doi: 10.1074/jbc.M115.655019.
  • Sun, Y., S. Zhou, H. Guo, J. Zhang, T. Ma, Y. Zheng, Z. Zhang, and L. Cai. 2020. Protective effects of sulforaphane on type 2 diabetes-induced cardiomyopathy via AMPK-mediated activation of lipid metabolic pathways and NRF2 function. Metabolism: Clinical and Experimental 102:154002. doi: 10.1016/j.metabol.2019.154002.
  • Tausz, M. 2007. Sulfur in forest ecosystems. In Sulfur in plants. An ecological perspective, ed. Malcolm J. Hawkesford and L. J. De Kok, 59–75. Dordrecht, The Netherlands: Springer. doi: 10.1007/978-1-4020-5887-5.
  • Teskey, G., R. Abrahem, R. Cao, K. Gyurjian, H. Islamoglu, M. Lucero, A. Martinez, E. Paredes, O. Salaiz, B. Robinson, et al. 2018. Glutathione as a marker for human disease. Advances in Clinical Chemistry 87:141–59. doi: 10.1016/bs.acc.2018.07.004.
  • Tian, S., X. Liu, P. Lei, X. Zhang, and Y. Shan. 2018. Microbiota: A mediator to transform glucosinolate precursors in cruciferous vegetables to the active isothiocyanates. Journal of the Science of Food and Agriculture 98 (4):1255–60. doi: 10.1002/jsfa.8654.
  • Tuñón, J., M. Bäck, L. Badimón, M. L. Bochaton-Piallat, B. Cariou, M. J. Daemen, J. Egido, P. C. Evans, S. E. Francis, D. F. Ketelhuth, ESC Working Group on Atherosclerosis and Vascular Biology, et al. 2018. Interplay between hypercholesterolaemia and inflammation in atherosclerosis: Translating experimental targets into clinical practice. European Journal of Preventive Cardiology 25 (9):948–55., . doi: 10.1177/2047487318773384.
  • Ushijima, M., M. Takashima, K. Kunimura, Y. Kodera, N. Morihara, and K. Tamura. 2018. Effects of S-1-propenylcysteine, a sulfur compound in aged garlic extract, on blood pressure and peripheral circulation in spontaneously hypertensive rats. The Journal of Pharmacy and Pharmacology 70 (4):559–65. doi: 10.1111/jphp.12865.
  • Van Moerkercke, A., O. Duncan, M. Zander, J. Šimura, M. Broda, R. Vanden Bossche, M. G. Lewsey, S. Lama, K. B. Singh, K. Ljung, et al. 2019. A MYC2/MYC3/MYC4-dependent transcription factor network regulates water spray-responsive gene expression and jasmonate levels. Proceedings of the National Academy of Sciences of the United States of America 116 (46):23345–56. doi: 10.1073/pnas.1911758116.
  • Vermeulen, M., R. van den Berg, A. P. Freidig, P. J. van Bladeren, and W. H. Vaes. 2006. Association between consumption of cruciferous vegetables and condiments and excretion in urine of isothiocyanate mercapturic acids. Journal of Agricultural and Food Chemistry 54 (15):5350–8. doi: 10.1021/jf060723n.
  • Vojtovič, D., L. Luhová, and M. Petřivalský. 2021. Something smells bad to plant pathogens: Production of hydrogen sulfide in plants and its role in plant defence responses. Journal of Advanced Research 27:199–209. doi: 10.1016/j.jare.2020.09.005.
  • Wang, C., and C. Wang. 2017. Anti-nociceptive and anti-inflammatory actions of sulforaphane in chronic constriction injury-induced neuropathic pain mice. Inflammopharmacology 25 (1):99–106. doi: 10.1007/s10787-016-0307-y.
  • Wang, L., W. Han, Y. Iwasaki, R. Yermek, G. W. G. Sharp, Y. Seino, and T. Yada. 2021. Onion component, isoalliin, stimulates feeding and activates the arcuate nucleus neuropeptide Y, ghrelin- and Ninjin’yoeito-responsive neurons. Neuropeptides 89:102180. doi: 10.1016/j.npep.2021.102180.
  • Wang, S. L., D. S. Liu, E. S. Liang, Y. H. Gao, Y. Cui, Y. Z. Liu, and W. Gao. 2015. Protective effect of allicin on high glucose/hypoxia-induced aortic endothelial cells via reduction of oxidative stress. Experimental and Therapeutic Medicine 10 (4):1394–400. doi: 10.3892/etm.2015.2708.
  • Wang, W., S. Wang, A. F. Howie, G. J. Beckett, R. Mithen, and Y. Bao. 2005. Sulforaphane, erucin, and iberin up-regulate thioredoxin reductase 1 expression in human MCF-7 cells. Journal of Agricultural and Food Chemistry 53 (5):1417–21. doi: 10.1021/jf048153j.
  • Wang, Y., Z. Zhang, W. Sun, Y. Tan, Y. Liu, Y. Zheng, Q. Liu, L. Cai, and J. Sun. 2014. Sulforaphane attenuation of type 2 diabetes-induced aortic damage was associated with the upregulation of Nrf2 expression and function. Oxidative Medicine and Cellular Longevity 2014:123963. doi: 10.1155/2014/123963.
  • Washida, K., M. Miyata, T. Koyama, K. Yazawa, and K. Nomoto. 2010. Suppressive effect of Yamato-mana (Brassica rapa L. Oleifera Group) constituent 3-butenyl glucosinolate (gluconapin) on postprandial hypertriglyceridemia in mice. Bioscience, Biotechnology, and Biochemistry 74 (6):1286–9. doi: 10.1271/bbb.100018.
  • Williams, D. E. 2021. Indoles derived from glucobrassicin: Cancer chemoprevention by indole-3-carbinol and 3,3’-diindolylmethane. Frontiers in Nutrition 8:734334. doi: 10.3389/fnut.2021.734334.
  • Wittstock, U., and M. Burow. 2007. Tipping the scales-specifier proteins in glucosinolate hydrolysis. IUBMB Life 59 (12):744–51. doi: 10.1080/15216540701736277.
  • World Health Organisation. 2007 (2002). Protein and amino acid requirements in human nutrition. Report of a Joint WHO/FAO/UNU Expert Consultation. WHO Technical Report Series, no. 935. Geneva, Switzerland. https://apps.who.int/iris/handle/10665/43411.
  • World Health Organisation. 2018. Global health estimates 2016: Disease burden by cause, age, sex, by country and by region, 2000–16. Geneva: World Health Institution. https://www.who.int/healthinfo/global_burden_disease/estimates/en/index1.html.
  • Wu, D., Q. Hu, and D. Zhu. 2018. An update on hydrogen sulfide and nitric oxide interactions in the cardiovascular system. Oxidative Medicine and Cellular Longevity 2018:4579140. doi: 10.1155/2018/4579140.
  • Wu, G., Y. Z. Fang, S. Yang, J. R. Lupton, and N. D. Turner. 2004. Glutathione metabolism and its implications for health. The Journal of Nutrition 134 (3):489–92. doi: 10.1093/jn/134.3.489.
  • Yagishita, Y., J. W. Fahey, A. T. Dinkova-Kostova, and T. W. Kensler. 2019. Broccoli or sulforaphane: Is it the source or dose that matters? Molecules 24 (19):3593. doi: 10.3390/molecules24193593.
  • Yamazaki, Y., K. Iwasaki, M. Mikami, and A. Yagihashi. 2010. Distribution of eleven flavor precursors, S-alk(en)yl-L-cysteine derivatives, in seven Allium vegetables. Food Science and Technology Research 17 (1):55–62. doi: 10.3136/fstr.17.55.
  • Yoshimoto, N., and K. Saito. 2019. S-Alk(en)ylcysteine sulfoxides in the genus Allium: Proposed biosynthesis, chemical conversion, and bioactivities. Journal of Experimental Botany 70 (16):4123–37. doi: 10.1093/jxb/erz243.
  • Zechmann, B. 2020. Subcellular roles of glutathione in mediating plant defense during biotic stress. Plants 9 (9):1067. doi: 10.3390/plants9091067.
  • Zhai, B., C. Zhang, Y. Sheng, C. Zhao, X. He, W. Xu, K. Huang, and Y. Luo. 2018. Hypoglycemic and hypolipidemic effect of S-allyl-cysteine sulfoxide (alliin) in DIO mice. Scientific Reports 8 (1):3527. doi: 10.1038/s41598-018-21421-x.
  • Zhang, H., Y. Park, J. Wu, X. p. Chen, S. Lee, J. Yang, K. Dellsperger, and C. Zhang. 2009. Role of TNF-alpha in vascular dysfunction. Clinical Science (London, England: 1979) 116 (3):219–30. doi: 10.1042/CS20080196.
  • Zhang, M., H. Pan, Y. Xu, X. Wang, Z. Qiu, and L. Jiang. 2017. Allicin decreases lipopolysaccharide-induced oxidative stress and inflammation in human umbilical vein endothelial cells through suppression of mitochondrial dysfunction and activation of Nrf2. Cellular Physiology and Biochemistry 41 (6):2255–67. doi: 10.1159/000475640.
  • Zhang, Y., P. Talalay, C. G. Cho, and G. H. Posner. 1992. A major inducer of anticarcinogenic protective enzymes from broccoli: Isolation and elucidation of structure. Proceedings of the National Academy of Sciences of the United States of America 89 (6):2399–403. doi: 10.1073/pnas.89.6.2399.
  • Zhao, F., J. Zhang, and N. Chang. 2018. Epigenetic modification of Nrf2 by sulforaphane increases the antioxidative and anti-inflammatory capacity in a cellular model of Alzheimer’s disease. European Journal of Pharmacology 824:1–10. doi: 10.1016/j.ejphar.2018.01.046.
  • Züst, T., B. Joseph, K. K. Shimizu, D. J. Kliebenstein, and L. A. Turnbull. 2011. Using knockout mutants to reveal the growth costs of defensive traits. Proceedings of the Royal Society of. Proceedings. Biological Sciences 278 (1718):2598–603. doi: 10.1098/rspb.2010.2475.