1,452
Views
6
CrossRef citations to date
0
Altmetric
Review Articles

Superheated steam processing: An emerging technology to improve food quality and safety

, , ORCID Icon, , &

References

  • Acar, C., I. Dincer, and A. S. Mujumdar. 2020. A comprehensive review of recent advances in renewable-based drying technologies for a sustainable future. Drying Technology 1–27. doi: 10.1080/07373937.2020.1848858.
  • Adamski, R., D. Siuta, B. Kukfisz, P. T. Mitkowski, and W. Szaferski. 2021. Influence of process parameters in superheated steam drying on fire and explosion parameters of woody biomass. Fuel Processing Technology 211:106597. doi: 10.1016/j.fuproc.2020.106597.
  • Alfy, A., B. V. Kiran, G. C. Jeevitha, and H. U. Hebbar. 2016. Recent developments in superheated steam processing of foods—A review. Critical Reviews in Food Science and Nutrition 56 (13):2191–208.
  • Asmaa, A. A., and T. Yang. 2017. Influence of superheated steam and deep frying cooking on the proximate, fatty acids, and amino acids composition of chicken sausage. International Food Research Journal 24:1308–13.
  • Badoud, F., B. Goeckener, K. Severin, M. Ernest, R. Romero, T. Alzieu, A. Glabasnia, J. Hamel, M. Buecking, and T. Delatour. 2020. Fate of acrylamide during coffee roasting and in vitro digestion assessed with carbon 14- and carbon 13-labeled materials. Food Chemistry 320:126601.
  • Bai, J. W., D. W. Sun, H. W. Xiao, A. S. Mujumdar, and Z. J. Gao. 2013. Novel high-humidity hot air impingement blanching (HHAIB) pretreatment enhances drying kinetics and color attributes of seedless grapes. Innovative Food Science & Emerging Technologies 20:230–7.
  • Ban, C., D. H. Lee, Y. Jo, H. Bae, H. Seong, S. O. Kim, S. Lim, and Y. J. Choi. 2018. Use of superheated steam to inactivate Salmonella enterica serovars Typhimurium and Enteritidis contamination on black peppercorns, pecans, and almonds. Journal of Food Engineering 222:284–91. doi: 10.1016/j.jfoodeng.2017.11.036.
  • Ban, G. H., and D. H. Kang. 2016. Effectiveness of superheated steam for inactivation of Escherichia coli O157:H7, Salmonella typhimurium, Salmonella enteritidis phage type 30, and Listeria monocytogenes on almonds and pistachios. International Journal of Food Microbiology 220:19–25. doi: 10.1016/j.ijfoodmicro.2015.12.011.
  • Ban, G.-H., and D. H. Kang. 2018. Inactivation of Escherichia coli O157:H7, Salmonella typhimurium, and Listeria monocytogenes on cherry tomatoes and oranges by superheated steam. Food Research International (Ottawa, ON) 112:38–47.
  • Bagdonaite, K., K. Derler, and M. Murkovic. 2008. Determination of acrylamide during roasting of coffee. Journal of Agricultural and Food Chemistry 56 (15):6081–6.
  • Bórquez, R. M., E. R. Canales, and H. R. Quezada. 2008. Drying of fish press-cake with superheated steam in a pilot plant impingement system. Drying Technology 26 (3):290–8. doi: 10.1080/07373930801897986.
  • Buturi, C. V., R. P. Mauro, V. Fogliano, C. Leonardi, and F. Giuffrida. 2021. Mineral biofortification of vegetables as a tool to improve human diet. Foods 10 (2):223.
  • Cenkowski, S., C. Pronyk, D. Zmidzinska, and W. E. Muir. 2007. Decontamination of food products with superheatedsteam. Journal of Food Engineering 83 (1):68–75. doi: 10.1016/j.jfoodeng.2006.12.002.
  • Chan, D. S. M., R. Lau, D. Aune, R. Vieira, D. C. Greenwood, E. Kampman, and T. Norat. 2011. Red and processed meat and colorectal cancer incidence: Meta-analysis of prospective studies. PloS One 6 (6):e20456. doi: 10.1371/journal.pone.0020456.
  • Chang, Y., X.-P. Li, L. Liu, Z. Ma, X.-Z. Hu, W.-Q. Zhao, and G.-T. Gao. 2015. Effect of processing in superheated steam on surface microbes and enzyme activity of naked oats. Journal of Food Processing and Preservation 39 (6):2753–61. doi: 10.1111/jfpp.12526.
  • Chikashige, K., T. Ogawa, M. Nakajima, I. Sotome, and S. Isobe. 2019. Effects of aqua-gas drying conditions on functional components and antioxidant activities in Egoma (Perilla frutescens L.). Food Science and Technology Research 25 (1):39–48. doi: 10.3136/fstr.25.39.
  • Chong, W. K., S. Y. Mah, A. M. Easa, and T. C. Tan. 2019. Thermal inactivation of lipoxygenase in soya bean using superheated steam to produce low beany flavour soya milk. Journal of Food Science and Technology 56 (9):4371–9. doi: 10.1007/s13197-019-03905-4.
  • Chryat, Y., H. Romdhana, and M. Esteban-Decloux. 2017. Reducing energy requirement for drying of beet-pulp: Simulation of energy integration between superheated steam and air drying systems. Drying Technology 35 (7):838–48.
  • Chungcharoen, T., S. Prachayawarakorn, P. Tungtrakul, and S. Soponronnarit. 2015. Quality attributes of germinated high-amylose and waxy rice in superheated steam and hot air drying. Drying Technology 33 (7):876–85. doi: 10.1080/07373937.2014.995304.
  • Cheevitsopon, E., and A. Noomhorm. 2015. Effects of superheated steam fluidized bed drying on the quality of parboiled germinated brown rice. Journal of Food Processing and Preservation 39 (4):349–56. doi: 10.1111/jfpp.12239.
  • Chindapan, N., S. Soydok, and S. Devahastin. 2019. Roasting kinetics and chemical composition changes of robusta coffee beans during hot air and superheated steam roasting. Journal of Food Science 84 (2):292–302.
  • Choicharoen, K., S. Devahastin, and S. Soponronnarit. 2011. Comparative evaluation of performance and energy consumption of hot air and superheated steam impinging stream dryers for high-moisture particulate materials. Applied Thermal Engineering 31 (16):3444–52. doi: 10.1016/j.applthermaleng.2011.06.030.
  • Cross, A. J., L. M. Ferrucci, A. Risch, B. I. Graubard, M. H. Ward, Y. Park, A. R. Hollenbeck, A. Schatzkin, and R. Sinha. 2010. A large prospective study of meat consumption and colorectal cancer risk: An investigation of potential mechanisms underlying this association. Cancer Research 70 (6):2406–14. doi: 10.1158/0008-5472.CAN-09-3929.
  • de Souza, R., A. Mente, A. Maroleanu, A. Cozma, V. Ha, T. Kishibe, E. Uleryk, P. Budylowski, H. Schünemann, J. Beyene, et al. 2015. Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: Systematic review and meta-analysis of observational studies. BMJ (Clinical Research ed.) 351:h3978. doi: 10.1136/bmj.h3978.
  • Deng, L. Z., A. S. Mujumdar, X. H. Yang, J. Wang, Q. Zhang, Z. A. Zheng, Z. J. Gao, and H. W. Xiao. 2018. High humidity hot air impingement blanching (HHAIB) enhances drying rate and softens texture of apricot via cell wall pectin polysaccharides degradation and ultrastructure modification. Food Chemistry 261:292–300. doi: 10.1016/j.foodchem.2018.04.062.
  • Deng, L. Z., P. P. Sutar, A. S. Mujumdar, Y. Tao, Z. Pan, Y. H. Liu, and H. W. Xiao. 2021. Thermal decontamination technologies for microorganisms and mycotoxins in low-moisture foods. Annual Review of Food Science and Technology 12:287–305. doi: 10.1146/annurev-food-062220-112934.
  • Deng, L. Z., Y. Tao, A. S. Mujumdar, Z. Pan, C. Chen, X. H. Yang, Z. L. Liu, H. Wang, and H. W. Xiao. 2020. Recent advances in non-thermal decontamination technologies for microorganisms and mycotoxins in low-moisture foods. Trends in Food Science & Technology 106:104–12.
  • Dueck, C., S. Cenkowski, and M. S. Izydorczyk. 2020. Effects of drying methods (hot air, microwave, and superheated steam) on physicochemical and nutritional properties of bulgur prepared from high‐amylose and waxy hull‐less barley. Cereal Chemistry 97 (2):483–95. doi: 10.1002/cche.10263.
  • Gao, T., Y. Shi, Y. Xue, F. Yan, D. Huang, Y. Wu, and Z. Weng. 2020. Polyphenol extract from superheated steam processed tea waste attenuates the oxidative damage in vivo and in vitro. Journal of Food Biochemistry 44 (1):e13096.
  • Guo, T., X. Liu, X. Wan, J. Weng, S. Liu, X. Liu, M. Chen, J. Li, N. Su, F. Wu, et al. 2011. Identification of a stable quantitative trait locus for percentage grains with white chalkiness in rice (Oryza sativa). Journal of Integrative Plant Biology 53 (8):598–607.
  • Guo, J., L. Tan, and L. Kong. 2021. Impact of dietary intake of resistant starch on obesity and associated metabolic profiles in human: A systematic review of the literature. Critical Reviews in Food Science and Nutrition 61 (6):889–905.
  • Hsu, K.-Y., and B.-H. Chen. 2020. Analysis and reduction of heterocyclic amines and cholesterol oxidation products in chicken by controlling flavorings and roasting condition. Food Research International 131:109004. doi: 10.1016/j.foodres.2020.109004.
  • Hu, Y., L. Wang, and Z. Li. 2017. Modification of protein structure and dough rheological properties of wheat flour through superheated steam treatment. Journal of Cereal Science 76:222–8. doi: 10.1016/j.jcs.2017.06.013.
  • Hu, Y., L. Wang, and Z. Li. 2018. Superheated steam treatment on wheat bran: Enzymes inactivation and nutritional attributes retention. LWT 91:446–52.
  • Hu, Y., L. Wang, H. Zhu, and Z. Li. 2017. Superheated steam treatment improved flour qualities of wheat in suitable conditions. Journal of Food Processing and Preservation 41 (6):e13238. doi: 10.1111/jfpp.13238.
  • Idrus, N. F. M., W. Zzaman, T. A. Yang, A. M. Easa, M. S. Sharifudin, B. W. Noorakmar, and M. H. A. Jahurul. 2017. Effect of superheated-steam roasting on physicochemical properties of peanut (Arachis hypogea) oil. Food Science and Biotechnology 26 (4):911–20. doi: 10.1007/s10068-017-0132-0.
  • Ismail, B. P., L. Senaratne-Lenagala, A. Stube, and A. Brackenridge. 2020. Protein demand: Review of plant and animal proteins used in alternative protein product development and production. Animal Frontiers 10:53–63. doi: 10.1093/af/vfaa040.
  • Jaiboon, P., N. Poomsa-ad, P. Tungtrakul, and S. Soponronnarit. 2016. Improving head rice yield of glutinous rice by novel parboiling process. Drying Technology 34 (16):1991–9.
  • Jangam, S. V. 2011. An overview of recent developments and some R&D challenges related to drying of foods. Drying Technology 29 (12):1343–57. doi: 10.1080/07373937.2011.594378.
  • Jeevitha, G. C., A. Anto, A. Chakkaravarthi, and H. U. Hebbar. 2015. Application of electromagnetic radiations and superheated steam for enzyme inactivation in green bell pepper. Journal of Food Processing and Preservation 39 (6):784–92. doi: 10.1111/jfpp.12288.
  • Jia, Z., B. Liu, C. Li, T. Fang, and J. Chen. 2018. Newly designed superheated steam dryer bearing heat recovery unit: Analysis of energy efficiency and kinetics of kelp drying. Drying Technology 36 (13):1619–30. doi: 10.1080/07373937.2017.1420080.
  • Jittanit, W., and K. Angkaew. 2020. Effect of superheated-steam drying compared to conventional parboiling on chalkiness, head rice yield and quality of chalky rice kernels. Journal of Stored Products Research 87:101627. doi: 10.1016/j.jspr.2020.101627.
  • Kim, T.-K., Y.-K. Ham, D.-M. Shin, H.-W. Kim, H. W. Jang, Y.-B. Kim, and Y.-S. Choi. 2020. Extraction of crude gelatin from duck skin: Effects of heating methods on gelatin yield. Poultry Science 99 (1):590–6.
  • Kluczek, A., and P. Olszewski. 2017. Energy audits in industrial processes. Journal of Cleaner Production 142:3437–53. doi: 10.1016/j.jclepro.2016.10.123.
  • Kwon, S.-A., W.-J. Song, and D.-H. Kang. 2018. Comparison of the effect of saturated and superheated steam on the inactivation of Escherichia coli O157:H7, Salmonella typhimurium and Listeria monocytogenes on cantaloupe and watermelon surfaces. Food Microbiology 72:157–65. doi: 10.1016/j.fm.2017.10.012.
  • Kwon, S.-A., W.-J. Song, and D.-H. Kang. 2019. Combination effect of saturated or superheated steam and lactic acid on the inactivation of Escherichia coli O157:H7, Salmonella typhimurium and Listeria monocytogenes on cantaloupe surfaces. Food Microbiology 82:342–8. doi: 10.1016/j.fm.2019.03.012.
  • Lee, K.-Y., M. S. Rahman, A.-N. Kim, E.-J. Jeong, B.-G. Kim, M.-H. Lee, H.-J. Kim, and S.-G. Choi. 2021. Effect of superheated steam treatment on yield. Physicochemical Properties and Volatile Profiles of Perilla Seed Oil. LWT 135:110240.
  • Lekcharoenkul, P., Y. Tanongkankit, N. Chiewchan, and S. Devahastin. 2014. Enhancement of sulforaphane content in cabbage outer leaves using hybrid drying technique and stepwise change of drying temperature. Journal of Food Engineering 122:56–61. doi: 10.1016/j.jfoodeng.2013.08.037.
  • Leonard, W., P. Zhang, D. Ying, and Z. Fang. 2020. Application of extrusion technology in plant food processing byproducts: An overview. Comprehensive Reviews in Food Science and Food Safety 19 (1):218–46. doi: 10.1111/1541-4337.12514.
  • International Agency for Cancer Research (IARC). 2015. Press release: IARC monographs evaluate consumption of red meat and processed meat. Lyon, France: International Agency for Cancer Research.
  • Li, J., Q.-C. Liang, and L. Bennamoun. 2016. Superheated steam drying: Design aspects, energetic performances, and mathematical modeling. Renewable and Sustainable Energy Reviews 60:1562–83. doi: 10.1016/j.rser.2016.03.033.
  • Liu, H., J. Ma, T. Pan, R. Suleman, Z. Wang, and D. Zhang. 2021. Effects of roasting by charcoal, electric, microwave and superheated steam methods on (non)volatile compounds in oyster cuts of roasted lamb. Meat Science 172:108324. doi: 10.1016/j.meatsci.2020.108324.
  • Liu, Y., E. Guan, M. Li, K. Bian, J. Wen, and C. Ren. 2020. Improvement of cake quality by superheated steam treatment of wheat. Journal of Cereal Science 95:103046. doi: 10.1016/j.jcs.2020.103046.
  • Liu, J., Q. Xu, Y. Shi, R. Wang, and Z. Li. 2018. Influence of steam condensation on vitamin C retention in green turnip undergoing low pressure superheated steam drying. Journal of Food Process Engineering 41 (8):e12898. doi: 10.1111/jfpe.12898.
  • Liu, J., J. Xue, Q. Xu, Y. Shi, L. Wu, and Z. Li. 2017. Drying kinetics and quality attributes of white radish in low pressure superheated steam. International Journal of Food Engineering 13 (7):20160365. doi: 10.1515/ijfe-2016-0365.
  • Liu, J., L. Zang, Q. Xu, R. Wang, and Z. Li. 2017. Drying of soy sauce residue in superheated steam at atmospheric pressure. Drying Technology 35 (13):1655–62. doi: 10.1080/07373937.2016.1273232.[Mismatch
  • Liu, Y., M. Li, K. Bian, E. Guan, Y. Liu, and Y. Lu. 2019. Reduction of deoxynivalenol in wheat with superheated steam and its effects on wheat quality. Toxins 11 (7):414. doi: 10.3390/toxins11070414.
  • Montenegro-Landívar, M. F., P. Tapia-Quirós, X. Vecino, M. Reig, C. Valderrama, M. Granados, J. L. Cortina, and J. Saurina. 2021. Polyphenols and their potential role to fight viral diseases: An overview. Science of the Total Environment 801:149719. doi: 10.1016/j.scitotenv.2021.149719.
  • Malaikritsanachalee, P., W. Choosri, and T. Choosri. 2020. Study on intermittent low‐pressure superheated steam drying: Effect on drying kinetics and quality changes in ripe mangoes. Journal of Food Processing and Preservation 44 (9):e14669. doi: 10.1111/jfpp.14669.
  • Ma, Y., D. Xu, S. Sang, Y. Jin, X. Xu, and B. Cui. 2021. Effect of superheated steam treatment on the structural and digestible properties of wheat flour. Food Hydrocolloids 112:106362. doi: 10.1016/j.foodhyd.2020.106362.
  • Matsuda, H., Y. Llave, M. Fukuoka, and N. Sakai. 2013. Color changes in fish during grilling – Influences of heat transfer and heating medium on browning color. Journal of Food Engineering 116 (1):130–7. doi: 10.1016/j.jfoodeng.2012.11.027.
  • Moustakas, K., M. Loizidou, M. Rehan, and A. S. Nizami. 2020. A review of recent developments in renewable and sustainable energy systems: Key challenges and future perspective. Renewable and Sustainable Energy Reviews 119:109418. doi: 10.1016/j.rser.2019.109418.
  • Mujumdar, A. 2014. Superheated steam drying. In Handbook of industrial drying, 4th ed., 421–32. Boca Raton, FL: CRC Press.
  • Nur, S. M., S. Rath, V. Ahmad, A. Ahmad, B. Ateeq, and M. I. Khan. 2021. Nutritive vitamins as epidrugs. Critical Reviews in Food Science and Nutrition 61 (1):1–13.
  • Phan-Thi, H, and Y. Waché. 2014. Isomerization and increase in the antioxidant properties of lycopene from Momordica cochinchinensis (gac) by moderate heat treatment with UV-Vis spectra as a marker. Food Chemistry 156:58–63. doi: 10.1016/j.foodchem.2014.01.040.
  • Peng, J. 2020. Study on the effect of integrated sterilization stew on the quality of braised beef with potatos. MA thesis, Hebei University, China.
  • Pongmalai, P., and S. Devahastin. 2020. Profiles of prebiotic fructooligosaccharides, inulin and sugars as well as physicochemical properties of banana and its snacks as affected by ripening stage and applied drying methods. Drying Technology 38 (5–6):724–34. doi: 10.1080/07373937.2019.1700517.
  • Prachayawarakorn, S., S. Soponronnarit, S. Wetchacama, and D. Jaisut. 2002. Desorptionisotherms and drying characteristics of shrimp in superheated steam and hot air. Drying Technology 20 (3):669–84. doi: 10.1081/DRT-120002823.
  • Pronyk, C., S. Cenkowski, and W. E. Muir. 2004. Drying foodstuffs with superheated steam. Drying Technology 22 (5):899–916. doi: 10.1081/DRT-120038571.
  • Pronyk, C., S. Cenkowski, W. E. Muir, and O. M. Lukow. 2008. Optimum processing conditions of instant Asian noodles in superheated steam. Drying Technology 26 (2):204–10. doi: 10.1080/07373930701831457.
  • Phungamngoen, C., N. Chiewchan, and S. Devahastin. 2014. Characterization of vegetable surface during drying using fractal analysis technique characterization of vegetable surface during drying using fractal analysis technique. In 3rd International Conference on Nutrition and Food Sciences IPCBEE, vol. 71, Singapore: IACSIT Press.
  • Qiu, L., M. Zhang, R. Ju, Y. Wang, B. Chitrakar, and B. Wang. 2020. Effect of different drying methods on the quality of restructured rose flower (Rosa rugosa) chips. Drying Technology 38 (12):1632–43. doi: 10.1080/07373937.2019.1653318.
  • Rattanarat, P., N. Chindapan, and S. Devahastin. 2021. Comparative evaluation of acrylamide and polycyclic aromatic hydrocarbons contents in Robusta coffee beans roasted by hot air and superheated steam. Food Chemistry 341 (Pt 1):128266. doi: 10.1016/j.foodchem.2020.128266.
  • Rodríguez-Bencomo, J. J., H. Kelebek, A. S. Sonmezdag, L. M. Rodríguez-Alcalá, J. Fontecha, and S. Selli. 2015. Characterization of the aroma-active, phenolic, and lipid profiles of the pistachio (Pistacia vera L.) nut as affected by the single and double roasting process. Journal of Agricultural and Food Chemistry 63 (35):7830–9.
  • Romdhana, H., C. Bonazzi, and M. Esteban-Decloux. 2015. Superheated steam drying: An overview of pilot and industrial dryers with a focus on energy efficiency. Drying Technology 33 (10):1255–74.
  • Rordprapat, W., A. Nathakaranakule, W. Tia, and S. Soponronnarit. 2005. Comparative study of fluidized bed paddy drying using hot air and superheated steam. Journal of Food Engineering 71 (1):28–36. doi: 10.1016/j.jfoodeng.2004.10.014.
  • Rumaisa, N., M. R. N. Hanim, and C. L. Hii. 2018. Superheated steam drying of black tea and quality improvement. International Journal of Food Engineering 14 (9–10):20180185. doi: 10.1515/ijfe-2018-0185.
  • Sai Manohar, R., G. R. Urmila Devi, S. Bhattacharya, and G. Venkateswara Rao. 2011. Wheat porridge with soy protein isolate and skimmed milk powder: Rheological, pasting and sensory characteristics. Journal of Food Engineering 103 (1):1–8. doi: 10.1016/j.jfoodeng.2010.09.006.
  • Sehrawat, R., P. K. Nema, and B. P. Kaur. 2016. Effect of superheated steam drying on properties of foodstuffs and kinetic modeling. Innovative Food Science & Emerging Technologies 34:285–301. doi: 10.1016/j.ifset.2016.02.003.
  • Sehrawat, R., P. K. Nema, and B. P. Kaur. 2018. Quality evaluation and drying characteristics of mango cubes dried using low-pressure superheated steam, vacuum and hot air drying methods. LWT 92:548–55. doi: 10.1016/j.lwt.2018.03.012.[Mismatch
  • Sehrawat, R., and P. K. Nema. 2018. Low pressure superheated steam drying of onion slices: Kinetics and quality comparison with vacuum and hot air drying in an advanced drying unit. Journal of Food Science and Technology 55 (10):4311–20. doi: 10.1007/s13197-018-3379-4.
  • Shaharuddin, S., R. Husen, and A. Othman. 2021. Nutritional values of Baccaurea pubera and comparative evaluation of SHS treatment on its antioxidant properties. Journal of Food Science and Technology 58 (6):2360–7.
  • Shah, M. K., G. Asa, J. Sherwood, K. Graber, and T. M. Bergholz. 2017. Efficacy of vacuum steam pasteurization for inactivation of Salmonella PT 30, Escherichia coli O157:H7 and Enterococcus faecium on low moisture foods . International Journal of Food Microbiology 244:111–1118. doi: 10.1016/j.ijfoodmicro.2017.01.003.
  • Sinha, R., U. Peters, A. J. Cross, M. Kulldorff, J. L. Weissfeld, P. F. Pinsky, N. Rothman, and R. B. Hayes. 2005. Meat, meat cooking methods and preservation, and risk for colorectal adenoma. Cancer Research 65 (17):8034–41. doi: 10.1158/0008-5472.CAN-04-3429.
  • Suleman, R., Z. Wang, R. M. Aadil, T. Hui, D. L. Hopkins, and D. Zhang. 2020. Effect of cooking on the nutritive quality, sensory properties and safety of lamb meat: Current challenges and future prospects. Meat Science 167:108172. doi: 10.1016/j.meatsci.2020.108172.
  • Suleman, R., T. Hui, Z. Wang, H. Liu, and D. Zhang. 2020. Comparative analysis of charcoal grilling, infrared grilling and superheated steam roasting on the colour, textural quality and heterocyclic aromatic amines of lamb patties. International Journal of Food Science & Technology 55 (3):1057–68. doi: 10.1111/ijfs.14388.
  • Süvari, M., G. T. Sivri, and Ö. Öksüz. 2017. Effect of different roasting temperatures on acrylamide formation of some different nuts. IOSR Journal of Environmental Science, Toxicology and Food Technology 11 (4):38–43. doi: 10.9790/2402-1104013843.
  • Swasdisevi, T., S. Devahastin, S. Thanasookprasert, and S. Soponronnarit. 2013. Comparative evaluation of hot-air and superheated-steam impinging stream drying as novel alternatives for paddy drying. Drying Technology 31 (6):717–25. doi: 10.1080/07373937.2013.773908.
  • Takemitsu, H., M. Amako, Y. Sako, K. Kita, T. Ozeki, H. Inui, and S. Kitamura. 2019. Reducing the undesirable odor of barley by cooking with superheated steam. Journal of Food Science and Technology 56 (10):4732–41.
  • Tan, K., H. Zhang, S. Li, H. Ma, and H. Zheng. 2021. Lipid nutritional quality of marine and freshwater bivalves and their aquaculture potential. Critical Reviews in Food Science and Nutrition 1–25. doi: 10.1080/10408398.2021.1909531.
  • Wang, H., X. M. Fang, P. P. Sutar, J. S. Meng, J. Wang, X. L. Yu, and H. W. Xiao. 2021. Effects of vacuum-steam pulsed blanching on drying kinetics, colour, phytochemical contents, antioxidant capacity of carrot and the mechanism of carrot quality changes revealed by texture, microstructure and ultrastructure. Food Chemistry 338:127799.
  • Wang, H., L. Wang, L. Tong, and Z. Li. 2019. Effect of superheated steam inactivation on naturally existent microorganisms and enzymes of highland barley. International Journal of Food Science & Technology 54 (8):2570–7. doi: 10.1111/ijfs.14168.
  • Wang, L., L. Wang, J. Qiu, and Z. Li. 2020. Effects of superheated steam processing on common buckwheat grains: Lipase inactivation and its association with lipidomics profile during storage. Journal of Cereal Science 95:103057. doi: 10.1016/j.jcs.2020.103057.
  • Wang, R., F. Huang, L. Zhang, Q. Liu, C. Zhang, and H. Zhang. 2019. Changes in the texture, microstructures, colour and volatile compounds of pork meat loins during superheated steam cooking. International Journal of Food Science & Technology 54 (10):2821–30. doi: 10.1111/ijfs.14198.
  • Wang, J., A. S. Mujumdar, L. Z. Deng, Z. J. Gao, H. W. Xiao, and G. S. V. Raghavan. 2018. High-humidity hot air impingement blanching alters texture, cell-wall polysaccharides, water status and distribution of seedless grape. Carbohydrate Polymers 194:9–17.
  • Wang, J., X. H. Yang, A. S. Mujumdar, D. Wang, J. H. Zhao, X. M. Fang, Q. Zhang, L. Xie, Z. Gao, and H. W. Xiao. 2017. Effects of various blanching methods on weight loss, enzymes inactivation, phytochemical contents, antioxidant capacity, ultrastructure and drying kinetics of red bell pepper (Capsicum annuum L.). LWT-Food Science and Technology 77:337–47. doi: 10.1016/j.lwt.2016.11.070.
  • Wang, L., M.-J. Jo, R. Katagiri, K. Harata, M. Ohta, A. Ogawa, M. Kamegai, Y. Ishida, S. Tanoue, S. Kimura, et al. 2018. Antioxidant effects of citrus pomace extracts processed by super-heated steam. LWT 90:331–8. doi: 10.1016/j.lwt.2017.12.024.
  • Wu, J., D. J. McClements, J. Chen, X. Hu, and C. Liu. 2016. Improvement in nutritional attributes of rice using superheated steam processing. Journal of Functional Foods 24:338–50. doi: 10.1016/j.jff.2016.04.019.
  • Xiao, H. W., J. W. Bai, D. W. Sun, and Z. J. Gao. 2014. The application of superheated steam impingement blanching (SSIB) in agricultural products processing: A review. Journal of Food Engineering 132:39–47. doi: 10.1016/j.jfoodeng.2014.01.032.
  • Xiao, H. W., Z. Pan, L. Z. Deng, H. M. EI-Mashad, X. H. Yang, A. S. Mujumdar, Z. J. Gao, and Q. Zhang. 2017. Recent developments and trends in thermal blanching: A comprehensive review. Information Processing in Agriculture 4 (2):101–27. doi: 10.1016/j.inpa.2017.02.001.
  • Yu, L. C., W. Zzaman, M. J. H. Akanda, T. A. Yang, and A. M. Easa. 2017. Influence of superheated steam cooking on proximate, fatty acid profile, and amino acid composition of catfish (Clarias batrachus) fillets. Turkish Journal of Fisheries and Aquatic Sciences 17 (5):935–43. doi: 10.4194/1303-2712-v17_5_09.
  • Zhang, N., Y. Gao, L. Tong, and Z. Li. 2018. Superheated steam processing improved the qualities of oats flour and noodles. Journal of Cereal Science 83:96–100. doi: 10.1016/j.jcs.2018.07.017.
  • Zielinska, M., W. Błaszczak, and S. Devahastin. 2015. Effect of superheated steam prefrying treatment on the quality of potato chips. International Journal of Food Science & Technology 50 (1):158–68. doi: 10.1111/ijfs.12613.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.