912
Views
4
CrossRef citations to date
0
Altmetric
Review Articles

G-quadruplex based biosensors for the detection of food contaminants

, , , ORCID Icon, , , , & show all

References

  • Armstrong-Price, D. E., P. S. Deore, and R. A. Manderville. 2020. Intrinsic “turn-on” aptasensor detection of ochratoxin a using energy-transfer Fluorescence. Journal of Agricultural and Food Chemistry 68 (7):2249–55. doi: 10.1021/acs.jafc.9b07391.
  • Ayofemi Olalekan Adeyeye, S. 2020. Aflatoxigenic fungi and mycotoxins in food: A review. Critical Reviews in Food Science and Nutrition 60 (5):709–21. doi: 10.1080/10408398.2018.1548429.
  • Batule, B. S., S. U. Kim, H. Mun, C. Choi, W.-B. Shim, and M.-G. Kim. 2018. Colorimetric detection of norovirus in oyster samples through dnazyme as a signaling probe. Journal of Agricultural and Food Chemistry 66 (11):3003–8. doi: 10.1021/acs.jafc.7b05289.
  • Burge, S., G. N. Parkinson, P. Hazel, A. K. Todd, and S. Neidle. 2006. Quadruplex DNA: Sequence, topology and structure. Nucleic Acids Research 34 (19):5402–15. doi: 10.
  • Cai, R.-F., Z.-W. Zhang, H.-H. Chen, Y.-P. Tian, and N.-D. Zhou. 2021. A versatile signal-on electrochemical biosensor for staphylococcus aureus based on triple-helix molecular switch. Sensors and Actuators B: Chemical 326:128842. doi: 10.1016/j.snb.2020.128842.
  • Chen, W., L.-J. Yang, C. Yan, B.-B. Yao, J.-F. Lu, J.-G. Xu, and G.-D. Liu. 2020. Surface-confined building of au@pt-centered and multi-g-quadruplex/hemin wire-surrounded electroactive super-nanostructures for ultrasensitive monitoring of morphine. ACS Sensors 5 (8):2644–51. doi: 10.1021/acssensors.0c01230.
  • Chen, Q.-M., C.-H. Yao, C.-Y. Yang, Z.-M. Liu, and S.-B. Wan. 2021. Development of an in-situ signal amplified electrochemical assay for detection of listeria monocytogenes with label-free strategy. Food Chemistry 358:129894. doi: 10.1016/j.foodchem.2021.129894.
  • Deore, P. S., M. D. Gray, A. J. Chung, and R. A. Manderville. 2019. Ligand-induced g-quadruplex polymorphism: A DNA nanodevice for label-free aptasensor platforms. Journal of the American Chemical Society 141 (36):14288–97. doi: 10.1021/jacs.9b06533.
  • Diculescu, V. C., A.-M. Chiorcea-Paquim, and A. M. Oliveira-Brett. 2016. Applications of a DNA-electrochemical biosensor. TrAC Trends in Analytical Chemistry 79:23–36. doi: 10.1016/j.trac.2016.01.019.
  • Fadock, K. L, and R. A. Manderville. 2017. DNA aptamer-target binding motif revealed using a fluorescent guanine probe: Implications for food toxin detection. ACS Omega 2 (8):4955–63. doi: 10.1021/acsomega.7b00782.
  • Gan, C.-F., B.-F. Wang, J.-Y. Huang, A.-R. Qileng, Z.-Y. He, H.-T. Lei, W.-P. Liu, and Y.-J. Liu. 2017. Multiple amplified enzyme-free electrochemical immunosensor based on g-quadruplex/hemin functionalized mesoporous silica with redox-active intercalators for microcystin-lr detection. Biosensors & Bioelectronics 98:126–33. doi: 10.1016/j.bios.2017.06.038.
  • Gao, Y., Y.-Z. Zhou, and R. Chandrawati. 2020. Metal and metal oxide nanoparticles to enhance the performance of enzyme-linked immunosorbent assay (elisa). ACS Applied Nano Materials 3 (1):1–21. doi: 10.1021/acsanm.9b02003.
  • Guo, H.-L., P.-F. Ma, K. Li, S.-X. Zhang, Y. Zhang, H.-Q. Guo, and Z.-P. Wang. 2022. A novel ratiometric aptasensor based on dual-emission fluorescent signals and the conformation of g-quadruplex for ota detection. Sensors and Actuators B: Chemical 358:131484. doi: 10.1016/j.snb.2022.131484.
  • Guo, Y.-N., Y. Wang, S. Liu, J.-H. Yu, H.-Z. Wang, Y.-L. Wang, and J.-D. Huang. 2016. Label-free and highly sensitive electrochemical detection of e. Coli based on rolling circle amplifications coupled peroxidase-mimicking dnazyme amplification. Biosensors & Bioelectronics 75:315–9. doi: 10.1016/j.bios.2015.08.031.
  • Harlia, E., K. N. Rahmah, and D. Suryanto. 2018. Food safety of milk and dairy product of dairy cattle from heavy metal contamination. IOP Conference Series: Earth and Environmental Science 102:012050. doi: 10.1088/1755-1315/102/1/012050.
  • He, B.-S., M. Li, and M.-N. Li. 2020. Electrochemical determination of sulfamethazine using a gold electrode modified with multi-walled carbon nanotubes, graphene oxide nanoribbons and branched aptamers. Mikrochimica Acta 187 (5):274. doi: 10.1007/s00604-020-04244-4.
  • He, M.-J., H.-R. Shen, Z.-T. Li, L. Wang, F. Wang, K.-L. Zhao, X.-M. Liu, O. Wendroth, and J.-M. Xu. 2019. Ten-year regional monitoring of soil-rice grain contamination by heavy metals with implications for target remediation and food safety. Environmental Pollution (Barking, Essex: 1987) 244:431–9. doi: 10.1016/j.envpol.2018.10.070.
  • He, K.-Y., L.-P. Sun, L. Wang, W. Li, G.-X. Hu, X.-F. Ji, Y.-M. Zhang, and X.-H. Xu. 2022. Engineering DNA g-quadruplex assembly for label-free detection of ochratoxin a in colorimetric and fluorescent dual modes. Journal of Hazardous Materials 423 (Pt A):126962. doi: 10.1016/j.jhazmat.2021.126962.
  • Huang, Z., J. Peng, J.-J. Han, G.-G. Zhang, Y.-J. Huang, M.-L. Duan, D.-F. Liu, Y.-H. Xiong, S.-Q. Xia, and W.-H. Lai. 2019. A novel method based on fluorescent magnetic nanobeads for rapid detection of escherichia coli o157:H7. Food Chemistry 276:333–41. doi: 10.1016/j.foodchem.2018.09.164.
  • Huang, W., H.-Y. Zhang, G.-S. Lai, S. Liu, B. Li, and A.-M. Yu. 2019. Sensitive and rapid aptasensing of chloramphenicol by colorimetric signal transduction with a dnazyme-functionalized gold nanoprobe. Food Chemistry 270:287–92. doi: 10.1016/j.foodchem.2018.07.127.
  • Iqbal, S. Z. 2021. Mycotoxins in food, recent development in food analysis and future challenges; a review. Current Opinion in Food Science 42:237–47. doi: 10.1016/j.cofs.2021.07.003.
  • Kebede, H., X.-M. Liu, J. Jin, and F.-G. Xing. 2020. Current status of major mycotoxins contamination in food and feed in africa. Food Control. 110:106975. doi: 10.1016/j.foodcont.2019.106975.
  • Khoshbin, Z., M. R. Housaindokht, M. Izadyar, A. Verdian, and M. R. Bozorgmehr. 2019. A simple paper-based aptasensor for ultrasensitive detection of lead (ii) ion. Analytica Chimica Acta 1071:70–7. doi: 10.1016/j.aca.2019.04.049.
  • Kim, S. U., B. S. Batule, H. Mun, W. B. Shim, and M. G. Kim. 2018. Ultrasensitive colorimetric detection of salmonella enterica typhimurium on lettuce leaves by hrpzyme-integrated polymerase chain reaction. Food Control. 84:522–8. doi: 10.1016/j.foodcont.2017.09.010.
  • Lei, L., Z.-J. Guo, J.-H. Wang, and E.-K. Wang. 2012. G-quadruplex as signal transducer for biorecognition events. Current Pharmaceutical Design 18 (14):2076–95. doi: 10.2174/138161212799958459.
  • Li, M, and B. S. He. 2021. Ultrasensitive sandwich-type electrochemical biosensor based on octahedral gold nanoparticles modified poly (ethylenimine) functionalized graphitic carbon nitride nanosheets for the determination of sulfamethazine. Sensors and Actuators B: Chemical 329:129158. doi: 10.1016/j.snb.2020.129158.
  • Li, Q., S.-H. Li, X. Chen, and L.-J. Bian. 2017. A g-quadruplex based fluorescent oligonucleotide turn-on probe towards iodides detection in real samples. Food Chemistry 230:432–40. doi: 10.1016/j.foodchem.2017.03.062.
  • Li, X.-T., X.-M. Tang, X.-J. Chen, B.-H. Qu, and L.-H. Lu. 2018. Label-free and enzyme-free fluorescent isocarbophos aptasensor based on mwcnts and g-quadruplex. Talanta 188:232–7. doi: 10.1016/j.talanta.2018.05.092.
  • Liu, A.-L., K. Wang, S.-H. Weng, Y. Lei, L.-Q. Lin, W. Chen, X.-H. Lin, and Y.-Z. Chen. 2012. Development of electrochemical DNA biosensors. TrAC Trends in Analytical Chemistry 37:101–11. doi: 10.1016/j.trac.2012.03.008.
  • Liu, Z.-M., C.-H. Yao, Y.-M. Wang, and C.-Y. Yang. 2018. A g-quadruplex dnazyme-based lamp biosensing platform for a novel colorimetric detection of listeria monocytogenes. Analytical Methods 10 (8):848–54. doi: 10.1039/C7AY02908J.
  • Li, X., G.-K. Wang, X.-L. Ding, Y.-H. Chen, Y.-P. Gou, and Y. Lu. 2013. A “turn-on” fluorescent sensor for detection of pb2+ based on graphene oxide and g-quadruplex DNA. Physical Chemistry Chemical Physics: PCCP 15 (31):12800–04. doi: 10.1039/C3CP00047H.
  • Li, Y.-N., J.-Y. Wang, B. Zhang, Y. He, J.-P. Wang, and S. Wang. 2019. A rapid fluorometric method for determination of aflatoxin b1 in plant-derived food by using a thioflavin t-based aptasensor. Mikrochimica Acta 186 (4):214. doi: 10.1007/s00604-019-3325-9.
  • Li, T.-T., Y. Zhang, X.-H. Sun, Y.-J. Zhang, Y.-A. Wang, and Z.-Y. Nie. 2021. Dual dye-labeled g-quadruplex aptasensor for detection of thallium(i) using ratiometric fluorescence resonance energy transfer. Talanta 233:122508. doi: 10.1016/j.talanta.2021.122508.
  • Lu, Z.-J., P. Wang, W.-W. Xiong, B.-P. Qi, R.-J. Shi, D.-S. Xiang, and K. Zhai. 2021. Simultaneous detection of mercury (ii), lead (ii) and silver (i) based on fluorescently labelled aptamer probes and graphene oxide. Environmental Technology 42 (19):3065–72. Advance online publication doi: 10.1080/09593330.2020.1721565.
  • Luan, Q., X. Xiong, N. Gan, Y.-T. Cao, T.-H. Li, D.-Z. Wu, Y.-R. Dong, and F.-T. Hu. 2018. A multiple signal amplified colorimetric aptasensor for antibiotics measurement using dnazyme labeled fe-mil-88-pt as novel peroxidase mimic tags and csdp target-triggered cycles. Talanta 187:27–34. doi: 10.1016/j.talanta.2018.04.072.
  • Lv, L., D.-H. Li, R. J. Liu, C.-B. Cui, and Z.-J. Guo. 2017. Label-free aptasensor for ochratoxin a detection using sybr gold as a probe. Sensors and Actuators B: Chemical 246:647–52. doi: 10.1016/j.snb.2017.02.143.
  • Ma, L.-Y., A. Nilghaz, J. R. Choi, X.-Q. Liu, and X.-N. Lu. 2018. Rapid detection of clenbuterol in milk using microfluidic paper-based elisa. Food Chemistry 246:437–41. doi: 10.1016/j.foodchem.2017.12.022.
  • Mohanty, J., N. Barooah, V. Dhamodharan, S. Harikrishna, P. I. Pradeepkumar, and A. C. Bhasikuttan. 2013. Thioflavin t as an efficient inducer and selective fluorescent sensor for the human telomeric g-quadruplex DNA. Journal of the American Chemical Society 135 (1):367–76. doi: 10.
  • Nakamura, H, and I. Karube. 2003. Current research activity in biosensors. Analytical and Bioanalytical Chemistry 377 (3):446–68. doi: 10.1007/s00216-003-1947-5.
  • Nekrasov, N., S. Jaric, D. Kireev, A. V. Emelianov, A. V. Orlov, I. Gadjanski, P. I. Nikitin, D. Akinwande, and I. Bobrinetskiy. 2022. Real-time detection of ochratoxin a in wine through insight of aptamer conformation in conjunction with graphene field-effect transistor. Biosensors & Bioelectronics 200:113890. doi: 10.1016/j.bios.2021.113890.
  • Pan, J.-F., L.-W. Zeng, and J.-H. Chen. 2019. An enzyme-free DNA circuit for the amplified detection of Cd2+ based on hairpin probe-mediated toehold binding and branch migration . Chemical Communications (Cambridge, England) 55 (79):11932–5. doi: 10.
  • Pang, S., S.-Y. Liu, and X.-G. Su. 2015. An ultrasensitive sensing strategy for the detection of lead (ii) ions based on the intermolecular g-quadruplex and graphene oxide. Sensors and Actuators B: Chemical 208:415–20. doi: 10.1016/j.snb.2014.11.030.
  • Qing, Z.-H., X.-X. He, K.-M. Wang, Z. Zou, X. Yang, J. Huang, and G.-P. Yan. 2012. Colorimetric multiplexed analysis of mercury and silver ions by using a unimolecular DNA probe and unmodified gold nanoparticles. Analytical Methods 4 (10):3320–5. doi: 10.1039/c2ay25521a.
  • Román-Ochoa, Y., G. T. Choque Delgado, T. R. Tejada, H. R. Yucra, A. E. Durand, and B. R. Hamaker. 2021. Heavy metal contamination and health risk assessment in grains and grain-based processed food in arequipa region of peru. Chemosphere 274:129792. doi: 10.1016/j.chemosphere.2021.129792.
  • Rotariu, L., F. Lagarde, N. Jaffrezic-Renault, and C. Bala. 2016. Electrochemical biosensors for fast detection of food contaminants: Trends and perspective. TrAC Trends in Analytical Chemistry 79:80–7. doi: 10.1016/j.trac.2015.12.017.
  • Shahsavar, K., M. Hosseini, E. Shokri, and G.-B. Xu. 2021. New insight into g-quadruplexes; diagnosis application in cancer. Analytical Biochemistry 620:114149. doi: 10.1016/j.ab.2021.114149.
  • Sharma, A, and A. K. Nagpal. 2020. Contamination of vegetables with heavy metals across the globe: Hampering food security goal. Journal of Food Science and Technology 57 (2):391–403. doi: 10.1007/s13197-019-04053-5.
  • Song, S.-X., X.-Y. Wang, K. Xu, G.-M. Xia, and X.-B. Yang. 2019. Visualized detection of vibrio parahaemolyticus in food samples using dual-functional aptamers and cut-assisted rolling circle amplification. Journal of Agricultural and Food Chemistry 67 (4):1244–53. doi: 10.1021/acs.jafc.8b04913.
  • Sowmya, N., M. S. Thakur, and H. K. Manonmani. 2012. Rapid and simple DNA extraction method for the detection of enterotoxigenic staphylococcus aureus directly from food samples: Comparison of pcr and lamp methods. Journal of Applied Microbiology 113 (1):106–13. doi: 10.1111/j.1365-2672.2012.05315.x.
  • Sun, Y.-H., N. Duan, P.-F. Ma, Y. Liang, X.-Y. Zhu, and Z.-P. Wang. 2019. Colorimetric aptasensor based on truncated aptamer and trivalent dnazyme for vibrio parahemolyticus determination. Journal of Agricultural and Food Chemistry 67 (8):2313–20. doi: 10.1021/acs.jafc.8b06893.
  • Tang, Y., X.-H. Huang, X.-L. Wang, C.-X. Wang, H. Tao, and Y. G. Wu. 2022. G-quadruplex dnazyme as peroxidase mimetic in a colorimetric biosensor for ultrasensitive and selective detection of trace tetracyclines in foods. Food Chemistry 366:130560. doi: 10.1016/j.foodchem.2021.130560.
  • Tian, F.-Y., J. Zhou, R.-J. Fu, Y.-L. Cui, Q.-Y. Zhao, B.-N. Jiao, and Y. He. 2020. Multicolor colorimetric detection of ochratoxin a via structure-switching aptamer and enzyme-induced metallization of gold nanorods. Food Chemistry 320:126607. doi: 10.1016/j.foodchem.2020.126607.
  • Toh, S. Y., M. Citartan, S. C. B. Gopinath, and T.-H. Tang. 2015. Aptamers as a replacement for antibodies in enzyme-linked immunosorbent assay. Biosensors & Bioelectronics 64:392–403. doi: 10.1016/j.bios.2014.09.026.
  • Wang, Q., Z.-H. Fan, L.-P. Qiu, X.-L. Liu, Y.-T. Yin, m. Ibrahim. Jamus, C. Song, and J.-Z. Chen. 2021. Occurrence and health risk assessment of residual heavy metals in the chinese mitten crab (eriocheir sinensis). Journal of Food Composition and Analysis 97:103787. doi: 10.1016/j.jfca.2020.103787.
  • Wang, S.-E, and S.-H. Si. 2013. Aptamer biosensing platform based on carbon nanotube long-range energy transfer for sensitive, selective and multicolor fluorescent heavy metal ion analysis. Analytical Methods 5 (12):2947–53. doi: 10.1039/c3ay40360b.
  • Wang, H.-J., Y.-H. Song, Y.-Q. Chai, and R. Yuan. 2019. Highly sensitive biosensor based on target induced dual signal amplification to electrochemiluminescent nanoneedles of ru(ii) complex. Biosensors & Bioelectronics 140:111344. doi: 10.1016/j.bios.2019.111344.
  • Wang, L., J.-Q. Tian, H.-L. Li, Y.-W. Zhang, and X.-P. Sun. 2011. A novel single-labeled fluorescent oligonucleotide probe for silver(i) ion detection based on the inherent quenching ability of deoxyguanosines. The Analyst 136 (5):891–3. doi: 10.
  • Wang, Z.-X., X.-L. Wu, L.-Q. Liu, L.-G. Xu, H. Kuang, and C.-L. Xu. 2020. Rapid and sensitive detection of diclazuril in chicken samples using a gold nanoparticle-based lateral-flow strip. Food Chemistry 312:126116. doi: 10.1016/j.foodchem.2019.126116.
  • Wang, Y., T. Ye, M. Yuan, H. Cao, J.-S. Yu, F.-Q. Yin, X.-X. Wu, L.-L. Hao, and F. Xu. 2022. An aptasensor for the detection of pb2+ based on photoinduced electron transfer between a G-quadruplex-hemin complex and a fluorophore. Luminescence : The Journal of Biological and Chemical Luminescence 37 (1):14–20. doi: 10.1002/bio.4141.
  • Wei, M, and W.-Y. Zhang. 2018. Ultrasensitive aptasensor with DNA tetrahedral nanostructure for ochratoxin a detection based on hemin/g-quadruplex catalyzed polyaniline deposition. Sensors and Actuators B: Chemical 276:1–7. doi: 10.1016/j.snb.2018.08.072.
  • Wu, C., G.-Z. Gao, K.-F. Zhai, L.-S. Xu, and D.-G. Zhang. 2020. A visual Hg2+ detection strategy based on distance as readout by G-quadruplex DNAzyme on microfluidic paper . Food Chemistry 331:127208. doi: 10.1016/j.foodchem.2020.127208.
  • Wu, Y.-P., Y.-X. Yue, S. Deng, G.-P. He, H. Gao, M. Zhou, K. Zhong, and R.-J. Deng. 2020. Ratiometric-enhanced g-quadruplex probes for amplified and mix-to-read detection of mercury pollution in aquatic products. Journal of Agricultural and Food Chemistry 68 (43):12124–31. doi: 10.1021/acs.jafc.0c05658.
  • Wu, J.-H., L.-W. Zeng, N.-L. Li, C.-S. Liu, and J.-H. Chen. 2019. A wash-free and label-free colorimetric biosensor for naked-eye detection of aflatoxin b1 using g-quadruplex as the signal reporter. Food Chemistry 298:125034. doi: 10.1016/j.foodchem.2019.125034.
  • Xi, H., M. Juhas, and Y. Zhang. 2020. G-quadruplex based biosensor: A potential tool for sars-cov-2 detection. Biosensors & Bioelectronics 167:112494. doi: 10.1016/j.bios.2020.112494.
  • Xie, S.-B., Y. Tang, and D.-Y. Tang. 2017. Highly sensitive electrochemical detection of mercuric ions based on sequential nucleic acid amplification and guanine nanowire formation. Analytical Methods 9 (37):5478–83. doi: 10.1039/C7AY01916E.
  • Xu, L., Y. Chen, R.-H. Zhang, T. Gao, Y.-J. Zhang, X.-Q. Shen, and R.-J. Pei. 2017. A highly sensitive turn-on fluorescent sensor for Ba2+ Based on G-Quadruplexes. Journal of Fluorescence 27 (2):569–74. doi: 10.1007/s10895-016-1984-z.
  • Xu, L., D.-X. Li, B.-Y. Jiang, Y. Xiang, and R. Yuan. 2019. Melamine-mediated base mismatch for label-free and amplified sensitive fluorescent detection of melamine in milk. Food Analytical Methods 12 (5):1255–61. doi: 10.1007/s12161-019-01465-z.
  • Xu, Z., L. L. Long, Y. Q. Chen, M. L. Chen, and Y. H. Cheng. 2021. A nanozyme-linked immunosorbent assay based on metal-organic frameworks (mofs) for sensitive detection of aflatoxin b1. Food Chemistry 338:128039. doi: 10.1016/j.foodchem.2020.128039.
  • Yang, F.-F., L. Xu, A. C. P. Dias, and X.-Y. Zhang. 2021. A sensitive sandwich elisa using a modified biotin-streptavidin amplified system for histamine detection in fish, prawn and crab. Food Chemistry 350:129196. doi: 10.1016/j.foodchem.2021.129196.
  • Yang, H.-L., Y. Zhou, and J.-W. Liu. 2020. G-quadruplex DNA for construction of biosensors. TrAC Trends in Analytical Chemistry 132:116060. doi: 10.1016/j.trac.2020.116060.
  • Yu, Y., W.-H. Li, X.-Z. Gu, X.-J. Yang, Y.-Y. Han, Y.-Q. Ma, Z.-W. Wang, and J. Zhang. 2022. Inhibition of crispr-cas12a trans-cleavage by lead (ii)-induced g-quadruplex and its analytical application. Food Chemistry 378:131802. doi: 10.1016/j.foodchem.2021.131802.
  • Yu, X.-H., Y.-H. Lin, X.-S. Wang, L.-J. Xu, Z.-W. Wang, and F.-F. Fu. 2018. Exonuclease-assisted multicolor aptasensor for visual detection of ochratoxin a based on g-quadruplex-hemin dnazyme-mediated etching of gold nanorod. Mikrochim Acta. 185 (5):259. doi: 10.1007/s00604-018-2811-9.
  • Yu, J.-L., H.-H. Wu, L.-Y. He, L. Tan, Z.-J. Jia, and N. Gan. 2021. The universal dual-mode aptasensor for simultaneous determination of different bacteria based on naked eyes and microfluidic-chip together with magnetic DNA encoded probes. Talanta 225:122062. doi: 10.1016/j.talanta.2020.122062.
  • Yu, Z., W. Zhou, J. Han, Y.-C. Li, L.-Z. Fan, and X.-H. Li. 2016. Na+-Induced Conformational Change of Pb2+-Stabilized G-Quadruplex and Its Influence on Pb2+ Detection . Analytical Chemistry 88 (19):9375–80. doi: 10.
  • Yu, Z., W. Zhou, G. Ma, Y.-C. Li, L.-Z. Fan, X.-H. Li, and Y. Lu. 2018. Insights into the competition between k(+) and pb(2+) binding to a g-quadruplex and discovery of a novel k(+)-pb(2+)-quadruplex intermediate. The Journal of Physical Chemistry B 122 (40):9382–8. doi: 10.1021/acs.jpcb.8b08161.
  • Zeng, L.-W., D.-H. Zhou, J.-H. Wu, C.-S. Liu, and J.-H. Chen. 2019. A target-induced and equipment-free biosensor for amplified visual detection of pesticide acetamiprid with high sensitivity and selectivity. Analytical Methods 11 (9):1168–73. doi: 10.1039/C8AY02513D.
  • Zeng, H.-L., Y.-L. Zhu, L.-L. Ma, X.-H. Xia, Y.-H. Li, Y. Ren, W.-Y. Zhao, H. Yang, and R.-J. Deng. 2019. G-quadruplex specific dye-based ratiometric fret aptasensor for robust and ultrafast detection of toxin. Dyes and Pigments 164:35–42. doi: 10.1016/j.dyepig.2019.01.005.
  • Zhang, K., N. Gan, Z.-P. Shen, J.-X. Cao, F.-T. Hu, and T.-H. Li. 2019. Microchip electrophoresis based aptasensor for multiplexed detection of antibiotics in foods via a stir-bar assisted multi-arm junctions recycling for signal amplification. Biosensors & Bioelectronics 130:139–46. doi: 10.1016/j.bios.2019.01.044.
  • Zhang, Z.-H., H.-F. Ji, Y.-P. Song, S. Zhang, M.-H. Wang, C.-C. Jia, J.-Y. Tian, L.-H. He, X.-J. Zhang, and C.-S. Liu. 2017. Fe(iii)-based metal-organic framework-derived core-shell nanostructure: Sensitive electrochemical platform for high trace determination of heavy metal ions. Biosensors & Bioelectronics 94:358–64. doi: 10.1016/j.bios.2017.03.014.
  • Zhang, J.-T., T.-S. Kang, S.-Y. Wong, R.-J. Pei, D.-L. Ma, and C.-H. Leung. 2019. An iridium(iii) complex/g-quadruplex ensemble for detection of ochratoxin a based on long-lifetime luminescent. Analytical Biochemistry 580:49–55. doi: 10.1016/j.ab.2019.06.005.
  • Zhang, Y., S.-T. Li, J.-J. Tian, K. Li, Z.-H. Du, and W.-T. Xu. 2021. Universal linker polymerase chain reaction-triggered strand displacement amplification visual biosensor for ultra-sensitive detection of salmonella. Talanta 222:121575. doi: 10.1016/j.talanta.2020.121575.
  • Zhang, J.-X., X. Ma, W.-H. Chen, Y.-F. Bai, P.-L. Xue, K.-H. Chen, W. Chen, and L.-J. Bian. 2021. Bifunctional single-labelled oligonucleotide probe for detection of trace ag(i) and pb(ii) based on cytosine-ag(i)-cytosine mismatches and g-quadruplex. Analytica Chimica Acta 1151:338258. doi: 10.1016/j.aca.2021.338258.
  • Zhang, M., Y. Wang, X. Sun, J.-L. Bai, Y. Peng, B.-A. Ning, Z.-X. Gao, and B.-L. Liu. 2020. Ultrasensitive competitive detection of patulin toxin by using strand displacement amplification and DNA g-quadruplex with aggregation-induced emission. Analytica Chimica Acta 1106:161–7. doi: 10.1016/j.aca.2020.01.064.
  • Zhang, X.-B., H. Zhi, F.-Y. Wang, M.-Z. Zhu, H. Meng, P. Wan, and L. Feng. 2022. Target-responsive smart nanomaterials via a Au-S Binding Encapsulation Strategy for Electrochemical/Colorimetric Dual-Mode Paper-Based Analytical Devices . Analytical Chemistry 94 (5):2569–77. doi: 10.1021/acs.analchem.1c04537.
  • Zhao, Y.-W., H. Zhang, Y. Wang, Y.-F. Zhao, Y.-W. Li, L. Han, and L.-H. Lu. 2021. A low-background fluorescent aptasensor for acetamiprid detection based on DNA three-way junction-formed g-quadruplexes and graphene oxide. Analytical and Bioanalytical Chemistry 413 (8):2071–9. doi: 10.1007/s00216-020-03141-2.
  • Zheng, L.-Y., G.-Z. Cai, S.-Y. Wang, M. Liao, Y.-B. Li, and J.-H. Lin. 2019. A microfluidic colorimetric biosensor for rapid detection of escherichia coli o157:H7 using gold nanoparticle aggregation and smart phone imaging. Biosensors & Bioelectronics 124-125:143–9. doi: 10.1016/j.bios.2018.10.006.
  • Zhou, W.-J., L. Xu, and B.-Y. Jiang. 2021. Target-initiated autonomous synthesis of metal-ion dependent dnazymes for label-free and amplified fluorescence detection of kanamycin in milk samples. Analytica Chimica Acta 1148:238195. doi: 10.1016/j.aca.2020.12.070.
  • Zhou, D.-H., L.-W. Zeng, J.-F. Pan, Q. Li, and J.-H. Chen. 2020. Autocatalytic DNA circuit for Hg2+ detection with high sensitivity and selectivity based on exonuclease III and G-quadruplex DNAzyme. Talanta 207:120258. doi: 10.1016/j.talanta.2019.120258.
  • Zhou, W., Y. Zhang, S. Wang, Y.-H. Li, J.-J. Zhang, C.-X. Zhang, Z. Wang, and Z.-S. Zhang. 2017. Lamp, pcr, and real-time pcr detection of acetobacter aceti in yogurt. Food Science and Biotechnology 26 (1):153–8. doi: 10.1007/s10068-017-0020-7.
  • Zhu, Q., L.-H. Liu, Y.-P. Xing, and X.-H. Zhou. 2018. Duplex functional g-quadruplex/nmm fluorescent probe for label-free detection of lead(ii) and mercury(ii) ions. Journal of Hazardous Materials 355:50–5. doi: 10.1016/j.jhazmat.2018.04.082.
  • Zhu, Y.-F., Y.-S. Wang, B. Zhou, Y.-Q. Huang, X.-J. Li, S.-H. Chen, X.-F. Wang, and X. Tang. 2018. Ultrasensitive detection of ag(i) based on the conformational switching of a multifunctional aptamer probe induced by silver(i). Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 189:190–4. doi: 10.1016/j.saa.2017.08.022.
  • Zhu, L.-J., Y.-C. Xu, N. Cheng, P.-Y. Xie, X.-L. Shao, K.-L. Huang, Y.-B. Luo, and W.-T. Xu. 2017. A facile cascade signal amplification strategy using dnazyme loop-mediated isothermal amplification for the ultrasensitive colorimetric detection of salmonella. Sensors and Actuators B: Chemical 242:880–8. doi: 10.1016/j.snb.2016.09.169.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.