661
Views
5
CrossRef citations to date
0
Altmetric
Review Articles

Effects of dietary fiber on intestinal iron absorption, and physiological status: a systematic review of in vivo and clinical studies

, , , &

References

  • Anderson, G. J., and D. M. Frazer. 2017. Current understanding of iron homeostasis. The American Journal of Clinical Nutrition 106 (Suppl 6):1559S–66S. doi: 10.3945/AJCN.117.155804.
  • Botta, A., N. G. Barra, N. H. Lam, S. Chow, K. Pantopoulos, J. D. Schertzer, and G. Sweeney. 2021. Iron reshapes the gut microbiome and host metabolism. Journal of Lipid and Atherosclerosis 10 (2):160–83. doi: 10.12997/JLA.2021.10.2.160.
  • Carboni, J., S. Reed, N. Kolba, A. Eshel, O. Koren, and E. Tako. 2020. Alterations in the intestinal morphology, gut microbiota, and trace mineral status following intra-amniotic administration (Gallus gallus) of teff (eragrostis tef) seed extracts. Nutrients 12 (10):3020–18. doi: 10.3390/nu12103020.
  • Carvalho, L., D. Brait, M. Vaz, P. Lollo, P. Morato, S. Oesterreich, J. Raposo, and K. Freitas. 2017. Partially hydrolyzed guar gum increases ferroportin expression in the colon of anemic growing rats. Nutrients 9 (3):228–17. doi: 10.3390/nu9030228.
  • Coe, G. L., N. v Pinkham, A. I. Celis, C. Johnson, J. L. DuBois, and S. T. Walk. 2021. Dynamic Gut Microbiome Changes in Response to Low-Iron Challenge. Applied and Environmental Microbiology 87 (3):1–14. doi: 10.1128/AEM.02307-20.
  • Dai, F. J., and C. F. Chau. 2017. Classification and regulatory perspectives of dietary fiber. Journal of Food and Drug Analysis 25 (1):37–42. doi: 10.1016/j.jfda.2016.09.006.
  • da Silva, B. P., N. Kolba, H. S. D. Martino, J. Hart, and E. Tako. 2019. Soluble extracts from chia seed (Salvia hispanica L.) affect brush border membrane functionality, morphology and intestinal bacterial populations in vivo (Gallus gallus). Nutrients 11 (2457):1–17. doi: 10.3390/nu11102457.
  • de Lima Correia Silva, M., P. da Graça Leite Speridião, L. M. Oyama, and M. B. de Morais. 2018. Effect of fructo-oligosaccharide supplementation in soya beverage on the intestinal absorption of calcium and iron in newly weaned rats. The British Journal of Nutrition 120 (12):1338–48. doi: 10.1017/S0007114518002714.
  • den Besten, G., K. van Eunen, A. K. Groen, K. Venema, D. J. Reijngoud, and B. M. Bakker. 2013. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of Lipid Research 54 (9):2325–40. doi: 10.1194/JLR.R036012.
  • Dias, D. M., N. Kolba, J. J. Hart, M. Ma, S. T. Sha, N. Lakshmanan, M. R. Nutti, H. S. D. Martino, R. P. Glahn, and E. Tako. 2019. Soluble extracts from carioca beans (Phaseolus vulgaris L.) affect the gut microbiota and iron related brush border membrane protein expression in vivo (Gallus gallus). Food Research International (Ottawa, Ont.) 123:172–80. doi: 10.1016/j.foodres.2019.04.060.
  • Finkelstein, J. L., Herman, H. S.Guetterman, H. M.Peña-Rosas, J. P. and Mehta S. 2018. Daily iron supplementation for prevention or treatment of iron deficiency anaemia in infants, children, and adolescents. Cochrane Database of Systematic Reviews 2018(12):CD013227. doi: 10.1002/14651858.CD013227.
  • Fisher, A. E., and D. P. Naughton. 2004. Iron supplements: The quick fix with long-term consequences. Nutrition Journal 3 (1):2. doi:10.1186/1475-2891-3-2.
  • Freitas, K. D. C., O. M. S. Amancio, and M. B. de Morais. 2012. High-performance inulin and oligofructose prebiotics increase the intestinal absorption of iron in rats with iron deficiency anaemia during the growth phase. The British Journal of Nutrition 108 (6):1008–16. doi: 10.1017/S0007114511006301.
  • Gomes, M. J. C., N. Kolba, N. Agarwal, D. Kim, A. Eshel, O. Koren, and E. Tako. 2021. Modifications in the intestinal functionality, morphology and microbiome following intra-amniotic administration (Gallus gallus) of grape (Vitis vinifera) stilbenes (resveratrol and pterostilbene). Nutrients 13 (9):3247. doi: 10.3390/nu13093247.
  • Gulec, S., G. J. Anderson, and J. F. Collins. 2014. Mechanistic and regulatory aspects of intestinal iron absorption. American Journal of Physiological Gastrointestinal Liver Physiology 307:397–409. doi: 10.1152/ajpgi.00348.2013.-Iron.
  • Harrison-Findik, D. D. 2010. Gender-related variations in iron metabolism and liver diseases. World Journal of Hepatology 2 (8):302–10. doi: 10.4254/wjh.v2.i8.302.
  • Higgins, J. P. T., D. G. Altman, P. C. Gøtzsche, P. Jüni, D. Moher, A. D. Oxman, J. Savović, K. F. Schulz, L. Weeks, and J. A. C. Sterne. 2011. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ (Clinical Research ed.) 343 (7829):d5928–9. doi: 10.1136/bmj.d5928.
  • Hooijmans, C. R., M. M. Rovers, R. B. M. de Vries, M. Leenaars, M. Ritskes-Hoitinga, and M. W. Langendam. 2014. SYRCLE’s risk of bias tool for animal studies. BMC Medical Research Methodology 14 (43):43. doi: 10.1186/1471-2288-14-43.
  • Hurrell, R., and I. Egli. 2010. Iron bioavailability and dietary reference values. American Journal of Clinical Nutrition 91 (5):1461S–71S. doi: 10.3945/ajcn.2010.28674F.
  • Husmann, F. M. D., L. Stierli, D. S. Bräm, C. Zeder, S. D. Krämer, M. B. Zimmermann, and I. Herter-Aeberli. 2022. Kinetics of iron absorption from ferrous fumarate with and without galacto-oligosaccharides determined from stable-isotope appearance curves in women. The American Journal of Clinical Nutrition 115 (3):949–57. doi: 10.1093/ajcn/nqab361/6415892.
  • Jaeggi, T., G. A. M. Kortman, D. Moretti, C. Chassard, P. Holding, A. Dostal, J. Boekhorst, H. M. Timmerman, D. W. Swinkels, H. Tjalsma, et al. 2015. Iron fortification adversely affects the gut microbiome, increases pathogen abundance and induces intestinal inflammation in Kenyan infants. Gut 64 (5):731–42. doi: 10.1136/gutjnl-2014-307720.
  • Jaramillo, A., P. Molina, L. Briones, S. Flores, M. Olivares, and F. Pizarro. 2018. Pectin esterification degree in the bioavailability of non-heme iron in women. Biological Trace Element Research 181 (1):38–43. doi: 10.1007/s12011-017-1036-9.
  • Jeroense, F. M. D., L. Michel, C. Zeder, I. Herter-Aeberli, and M. B. Zimmermann. 2019. Consumption of galacto-oligosaccharides increases iron absorption from ferrous fumarate: A stable iron isotope study in iron-depleted young women. The Journal of Nutrition 149 (5):738–46. doi: 10.1093/jn/nxy327.
  • Jeroense, F. M. D., C. Zeder, M. B. Zimmermann, and I. Herter-Aeberli. 2020. Acute consumption of prebiotic galacto-oligosaccharides increases iron absorption from ferrous fumarate, but not from ferrous sulfate and ferric pyrophosphate: Stable iron isotope studies in iron-depleted young women. The Journal of Nutrition 150 (9):2391–7. doi: 10.1093/jn/nxaa199.
  • Kaplan, J., and D. M. Ward. 2013. The essential nature of iron usage and regulation. Current Biology: CB 23 (15):R642–6. doi: 10.1016/J.CUB.2013.05.033.
  • Khammarnia, M., Z. Amani, M. Hajmohammadi, A. Ansari-Moghadam, and M. Eslahi. 2016. A survey of iron supplementation consumption and its related factors in high school students in Southeast Iran, 2015. The Malaysian Journal of Medical Sciences: MJMS 23 (5):57–64. doi: 10.21315/MJMS2016.23.5.8.
  • Kobayashi, Y., T. Ohbuchi, T. Fukuda, E. Wakasugi, R. Yasui, M. Hamada, M. Yokoyama, M. Kuwahata, and Y. Kido. 2011. Acidic xylooligosaccharide preserves hepatic iron storage level in adult female rats fed a low-iron diet. Journal of Nutritional Science and Vitaminology, 57 (4):292–7. doi: 10.3177/jnsv.57.292.
  • Koester Weber, T., K. de Cássia Freitas, O. M. S. Amancio, and M. B. d Morais. 2010. Effect of dietary fibre mixture on growth and intestinal iron absorption in rats recovering from iron-deficiency anaemia. British Journal of Nutrition 104 (10):1471–6. doi: 10.1017/S0007114510002497.
  • Kong, W. N., Q. Wu, D. Shen, S. E. Zhao, P. Guo, X. L. Duan, and Y. Z. Chang. 2015. Age-dependent expression of duodenal cytochrome b, divalent metal transporter 1, ferroportin 1, and hephaestin in the duodenum of rats. Journal of Gastroenterology and Hepatology 30 (3):513–20. doi: 10.1111/jgh.12830.
  • Lane, D. J. R., D. H. Bae, A. M. Merlot, S. Sahni, and D. R. Richardson. 2015. Duodenal cytochrome b (DCYTB) in iron metabolism: An update on function and regulation. Nutrients 7 (4):2274–96. doi: 10.3390/NU7042274.
  • Laparra, J. M., M. Díez-Municio, M. Herrero, and F. J. Moreno. 2014. Structural differences of prebiotic oligosaccharides influence their capability to enhance iron absorption in deficient rats. Food & Function 5 (10):2430–7. doi: 10.1039/c4fo00504j.
  • Lepczyński, A., A. Herosimczyk, M. Barszcz, M. Ożgo, M. Taciak, and J. Skomiał. 2016. Inulin-type fructans trigger changes in iron concentration and activity of bone metabolism biomarkers in blood plasma of growing pigs. Journal of Animal and Feed Sciences 25 (4):343–7. doi: 10.22358/jafs/67471/2016.
  • Liu, W., S. Zhang, S. Nekhai, and S. Liu. 2020. Depriving iron supply to the virus represents a promising adjuvant therapeutic against viral survival. Current Clinical Microbiology Reports 7 (2):13–9. doi: 10.1007/s40588-020-00140-w.
  • Liu, X.-N., J. Kang, L. Zhao, and F. E. Viteri. 1995. Intermittent iron supplementation in Chinese preschool children is efficient and safe. Food and Nutrition Bulletin 16 (2):1–146. doi: 10.1177/156482659501600207.
  • Lobo, A. R., M. L. Cocato, P. Borelli, E. H. S. Gaievski, A. R. Crisma, K. Nakajima, E. Y. Nakano, and C. Colli. 2011. Iron bioavailability from ferric pyrophosphate in rats fed with fructan-containing yacon (Smallanthus sonchifolius) flour. Food Chemistry 126 (3):885–91. doi: 10.1016/j.foodchem.2010.11.067.
  • Lobo, A. R., E. H. S. Gaievski, E. de Carli, E. P. Alvares, and C. Colli. 2014. Fructo-oligosaccharides and iron bioavailability in anaemic rats: The effects on iron species distribution, ferroportin-1 expression, crypt bifurcation and crypt cell proliferation in the caecum. The British Journal of Nutrition 112 (8):1286–95. doi: 10.1017/S0007114514002165.
  • Maawia, K., S. Iqbal, T. R. Qamar, P. Rafiq, A. Ullah, and M. u D. Ahmad. 2016. Production of impure prebiotic galacto-oligosaccharides and their effect on calcium, magnesium, iron and zinc absorption in Sprague-Dawley rats. PharmaNutrition 4 (4):154–60. doi: 10.1016/j.phanu.2016.10.003.
  • Mahmoud, U. T., M. A. M. Mahmoud, M. Abd-Elkareem, F. A. M. Ahmed, and N. S. A. Khalil. 2021. Prebiotics reduce feather pecking behavior, and improve trace element profile and redox balance in Mule ducks. Journal of Veterinary Behavior 43:28–38. doi: 10.1016/j.jveb.2021.03.001.
  • Marciano, R., A. B. Santamarina, A. A. de Santana, M. D. L. C. Silva, O. M. S. Amancio, C. M. D. P. O. do Nascimento, L. M. Oyama, and M. B. de Morais. 2015. Effects of prebiotic supplementation on the expression of proteins regulating iron absorption in anaemic growing rats. British Journal of Nutrition 113 (6):901–8. doi: 10.1017/S0007114514004334.
  • Martino, H. S. D., N. Kolba, and E. Tako. 2020. Yacon (Smallanthus sonchifolius) flour soluble extract improve intestinal bacterial populations, brush border membrane functionality and morphology in vivo (Gallus gallus). Food Research International 137:109705. doi: 10.1016/j.foodres.2020.109705.
  • Mikulic, N., M. A. Uyoga, D. Paganini, E. Mwasi, N. U. Stoffel, C. Zeder, S. Karanja, and M. B. Zimmermann. 2021. Consumption of a single dose of prebiotic galacto-oligosaccharides does not enhance iron absorption from micronutrient powders in Kenyan infants: A stable iron isotope study. The Journal of Nutrition 151 (5):1205–12. doi: 10.1093/jn/nxab007.
  • Mohammed, O., N. Dyab, E. Kheadr, and N. Dabour. 2021. Effectiveness of inulin-type on the iron bioavailability in anemic female rats fed bio-yogurt. RSC Advances 11 (4):1928–38. doi: 10.1039/D0RA08873K.
  • Murata, Y., M. Yoshida, N. Sakamoto, S. Morimoto, T. Watanabe, and K. Namba. 2021. Iron uptake mediated by the plant-derived chelator nicotianamine in the small intestine. Journal of Biological Chemistry 296:100195. doi: 10.1074/jbc.RA120.015861.
  • Pacifici, S., J. Song, C. Zhang, Q. Wang, R. P. Glahn, N. Kolba, and E. Tako. 2017. Intra amniotic administration of raffinose and stachyose affects the intestinal brush border functionality and alters gut microflora populations. Nutrients 9 (3):304. doi: 10.3390/nu9030304.
  • Paganini, D., M. A. Uyoga, C. I. Cercamondi, D. Moretti, E. Mwasi, C. Schwab, S. Bechtler, F. M. Mutuku, V. Galetti, C. Lacroix, et al. 2017. Consumption of galacto-oligosaccharides increases iron absorption from a micronutrient powder containing ferrous fumarate and sodium iron EDTA: A stable-isotope study in Kenyan infants. The American Journal of Clinical Nutrition 106 (4):1020–51. doi: 10.3945/ajcn.
  • Paganini, D., M. A. Uyoga, G. A. M. Kortman, C. I. Cercamondi, D. Moretti, T. Barth-Jaeggi, C. Schwab, J. Boekhorst, H. M. Timmerman, C. Lacroix, et al. 2017. Prebiotic galacto-oligosaccharides mitigate the adverse effects of iron fortification on the gut microbiome: A randomised controlled study in Kenyan infants. Gut 66 (11):1956–11. doi: 10.1136/gutjnl-2017-314418.
  • Page, M. J., J. E. McKenzie, P. M. Bossuyt, I. Boutron, T. C. Hoffmann, C. D. Mulrow, L. Shamseer, J. M. Tetzlaff, E. A. Akl, S. E. Brennan, et al. 2021. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Systematic Reviews 10 (1):372. doi: 10.1186/s13643-021-01626-4.
  • Petry, N., I. Egli, C. Chassard, C. Lacroix, and R. Hurrell. 2012. Inulin modifies the bifidobacteria population, fecal lactate concentration, and fecal pH but does not influence iron absorption in women with low iron status. The American Journal of Clinical Nutrition 96 (2):325–31. doi: 10.3945/ajcn.112.035717.
  • Podder, R., S. M. Khan, B. Tar’an, R. T. Tyler, C. J. Henry, C. Jalal, P. J. Shand, and A. Vandenberg. 2018. Sensory acceptability of iron-fortified red lentil (Lens culinaris Medik.) Dal. Journal of Food Science 83 (3):804–13. doi: 10.1111/1750-3841.14066.
  • Prentice, A. M., Y. A. Mendoza, D. Pereira, C. Cerami, R. Wegmuller, A. Constable, and J. Spieldenner. 2017. Dietary strategies for improving iron status: Balancing safety and efficacy. Nutrition Reviews 75 (1):49–60. doi: 10.1093/NUTRIT/NUW055.
  • Samolińska, W., W. Samolińska, B. Kiczorowska, and E. Grela. 2019. Effects of inulin extracts and inulin-containing plants on haematobiochemical responses, plasma mineral concentrations, and carcass traits in growing-finishing pigs. Journal of Elementology 24 (2/2019):711–26. doi: 10.5601/jelem.2018.23.4.1707.
  • Seyoum, Y., K. Baye, and C. Humblot. 2021. Iron homeostasis in host and gut bacteria—A complex interrelationship. Gut Microbes 13 (1):1–19. doi: 10.1080/19490976.2021.1874855.
  • Siddique, A., and Y. W. Park. 2019. Effect of iron fortification on microstructural, textural, and sensory characteristics of caprine milk Cheddar cheeses under different storage treatments. Journal of Dairy Science 102 (4):2890–902. doi: 10.3168/JDS.2018-15427.
  • Tako, E., and R. P. Glahn. 2012. Intra-amniotic administration and dietary inulin affect the iron status and intestinal functionality of iron-deficient broiler chickens. Poultry Science 91 (6):1361–70. doi: 10.3382/ps.2011-01864.
  • Tako, E., R. P. Glahn, M. Knez, and J. C. Stangoulis. 2014. The effect of wheat prebiotics on the gut bacterial population and iron status of iron deficient broiler chickens. Nutrition Journal 13 (58):58 1–10. doi: 10.1186/1475-2891-13-58.
  • Tiengtam, N., S. Khempaka, P. Paengkoum, and S. Boonanuntanasarn. 2015. Effects of inulin and Jerusalem artichoke (Helianthus tuberosus) as prebiotic ingredients in the diet of juvenile Nile tilapia (Oreochromis niloticus). Animal Feed Science and Technology 207:120–9. doi: 10.1016/j.anifeedsci.2015.05.008.
  • Tolkien, Z., L. Stecher, A. P. Mander, D. I. A. Pereira, and J. J. Powell. 2015. Ferrous sulfate supplementation causes significant gastrointestinal side-effects in adults: A systematic review and meta-analysis. PLoS One 10 (2):e0117383. doi: 10.1371/journal.pone.0117383.
  • Wang, X., N. Kolba, J. Liang, and E. Tako. 2019. Alterations in gut microflora populations and brush border functionality following intra-amniotic administration (Gallus gallus) of wheat bran prebiotic extracts. Food & Function 10 (8):4834–43. doi: 10.1039/c9fo00836e.
  • Weinborn, V., C. Valenzuela, M. Olivares, M. Arredondo, R. Weill, and F. Pizarro. 2017. Prebiotics increase heme iron bioavailability and do not affect non-heme iron bioavailability in humans. Food & Function 8 (5):1994–9. doi: 10.1039/C6FO01833E.
  • Yeung, C. K., R. P. Glahn, R. M. Welch, and D. D. Miller. 2005. Prebiotics and iron bioavailability—Is there a connection ? Journal of Food Science 70 (5):R88–92. doi: 10.1111/j.1365-2621.2005.tb09984.x.
  • Yilmaz, B., and H. Li. 2018. Gut microbiota and iron: The crucial actors in health and disease. Pharmaceuticals 11 (4):98–20. doi: 10.3390/ph11040098.
  • Zhang, F., K. K. L. Yung, and C. KongYeung. 2021. Effects of common prebiotics on iron status and production of colonic short-chain fatty acids in anemic rats. Food Science and Human Wellness 10 (3):327–34. doi: 10.1016/j.fshw.2021.02.024.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.