1,201
Views
4
CrossRef citations to date
0
Altmetric
Review Articles

Chemical inhibition of polyphenol oxidase and cut surface browning of fresh-cut apples

ORCID Icon

References

  • Aguayo, E., V. H. Escalona, and F. Artés. 2008. Effect of hot water treatment and various calcium salts on quality of fresh-cut ‘Amarillo’melon. Postharvest Biology and Technology 47 (3):397–406. doi: 10.1016/j.postharvbio.2007.08.001.
  • Aguayo, E., C. Requejo-Jackman, R. Stanley, and A. Woolf. 2010. Effects of calcium ascorbate treatments and storage atmosphere on antioxidant activity and quality of fresh-cut apple slices. Postharvest Biology and Technology 57 (1):52–60. doi: 10.1016/j.postharvbio.2010.03.001.
  • Ali, H. M., A. M. El-Gizawy, R. E. El-Bassiouny, and M. A. Saleh. 2015. Browning inhibition mechanisms by cysteine, ascorbic acid and citric acid, and identifying PPO-catechol-cysteine reaction products. Journal of Food Science and Technology 52 (6):3651–9. doi: 10.1007/s13197-014-1437-0.
  • Amiot, M. J., M. Tacchini, S. Aubert, and J. Nicolas. 1992. Phenolic composition and browning susceptibility of various apple cultivars at maturity. Journal of Food Science 57 (4):958–62. doi: 10.1111/j.1365-2621.1992.tb14333.x.
  • Arias, E., J. González, R. Oria, and P. Lopez‐Buesa. 2007. Ascorbic acid and 4-hexylresorcinol effects on pear PPO and PPO catalyzed browning reaction . Journal of Food Science 72 (8):C422–C429. doi: 10.1111/j.1750-3841.2007.00484.x.
  • Arias, E., Gonzalez, J. Peiró, J. Oria, R. Lopez, and Buesa, P. 2007. Browning prevention by ascorbic acid and 4-hexylresorcinol: Different mechanisms of action on polyphenol oxidase in the presence and in the absence of substrates. Journal of Food Science 72 (9):C464–C470. ‐ doi: 10.1111/j.1750-3841.2007.00514.x.
  • Asioli, D., J. Aschemann-Witzel, V. Caputo, R. Vecchio, A. Annunziata, T. Naes, and P. Varela. 2017. Making sense of the “clean label” trends: A review of consumer food choice behavior and discussion of industry implications. Food Research International (Ottawa, Ont.) 99 (Pt 1):58–71. doi: 10.1016/j.foodres.2017.07.022.
  • Aydin, B., I. Gulcin, and S. H. Alwasel. 2015. Purification and characterization of polyphenol oxidase from Hemşin apple (Malus communis L.). International Journal of Food Properties 18 (12):2735–45. doi: 10.1080/10942912.2015.1012725.
  • Bajwa, V. S., M. R. Shukla, S. M. Sherif, S. J. Murch, and P. K. Saxena. 2015. Identification and characterization of serotonin as an anti-browning compound of apple and pear. Postharvest Biology and Technology 110:183–9. doi: 10.1016/j.postharvbio.2015.08.018.
  • Bentley, R. 2006. From miso, saké and shoyu to cosmetics: A century of science for kojic acid. Natural Product Reports 23 (6):1046–62. doi: 10.1039/b603758p.
  • Bobo-García, G., C. Arroqui, G. Merino, and P. Vírseda. 2020. Antibrowning compounds for minimally processed potatoes: A review. Food Reviews International 36 (5):529–46. doi: 10.1080/87559129.2019.1650761.
  • Boss, P. K., R. C. Gardner, B.-J. Janssen, and G. S. Ross. 1995. An apple polyphenol oxidase cDNA is up-regulated in wounded tissues. Plant Molecular Biology 27 (2):429–33. doi: 10.1007/BF00020197.
  • Can, Z., B. Dincer, H. Sahin, N. Baltas, O. Yildiz, and S. Kolayli. 2014. Polyphenol oxidase activity and antioxidant properties of Yomra apple (Malus communis L.) from Turkey. Journal of Enzyme Inhibition and Medicinal Chemistry 29 (6):829–35. doi: 10.3109/14756366.2013.858144.
  • Chen, B.-N., R. Xing, F. Wang, A.-P. Zheng, and L. Wang. 2015. Inhibitory effects of α-Na8SiW11CoO40 on tyrosinase and its application in controlling browning of fresh-cut apples. Food Chemistry 188:177–83. doi: 10.1016/j.foodchem.2015.05.003.
  • Cheng, D., G. Wang, J. Tang, C. Yao, P. Li, Q. Song, and C. Wang. 2020. Inhibitory effect of chlorogenic acid on polyphenol oxidase and browning of fresh-cut potatoes. Postharvest Biology and Technology 168:111282. doi: 10.1016/j.postharvbio.2020.111282.
  • Chiabrando, V, and G. Giacalone. 2012. Effect of antibrowning agents on color and related enzymes in fresh‐cut apples during cold storage. Journal of Food Processing and Preservation 36 (2):133–40. doi: 10.1111/j.1745-4549.2011.00561.x.
  • Cybulska, J., A. Zdunek, and K. Konstankiewicz. 2011. Calcium effect on mechanical properties of model cell walls and apple tissue. Journal of Food Engineering 102 (3):217–23. doi: 10.1016/j.jfoodeng.2010.08.019.
  • Derardja, A. E., M. Pretzler, I. Kampatsikas, M. Barkat, and A. Rompel. 2017. Purification and characterization of latent polyphenol oxidase from apricot (Prunus armeniaca L.). Journal of Agricultural and Food Chemistry 65 (37):8203–12. doi: 10.1021/acs.jafc.7b03210.
  • Dong, T., Y. Cao, C.-Z. Jiang, G. Li, P. Liu, S. Liu, and Q. Wang. 2020. Cysteine protease inhibitors reduce enzymatic browning of potato by lowering the accumulation of free amino acids. Journal of Agricultural and Food Chemistry 68 (8):2467–76. doi: 10.1021/acs.jafc.9b07541.
  • Dudley, E. D, and J. H. Hotchkiss. 1989. Cysteine as an inhibitor of polyphenol oxidase. Journal of Food Biochemistry 13 (1):65–75. doi: 10.1111/j.1745-4514.1989.tb00385.x.
  • Eicken, C., B. Krebs, and J. C. Sacchettini. 1999. Catechol oxidase—structure and activity. Current Opinion in Structural Biology 9 (6):677–83. doi: 10.1016/S0959-440X(99)00029-9.
  • Fan, X., B. A. Niemera, J. E. Mattheis, H. Zhuang, and D. W. Olson. 2005. Quality of fresh‐cut apple slices as affected by low‐dose ionizing radiation and calcium ascorbate treatment. Journal of Food Science 70 (2):S143–S148. doi: 10.1111/j.1365-2621.2005.tb07119.x.
  • Fan, X., K. J. Sokorai, C. H. Liao, P. Cooke, and H. Q. Zhang. 2009. Antibrowning and antimicrobial properties of sodium acid sulfate in apple slices. Journal of Food Science 74 (9):M485–M492. doi: 10.1111/j.1750-3841.2009.01362.x.
  • Fan, X., K. Sokorai, and J. Phillips. 2018. Development of antibrowning and antimicrobial formulations to minimize Listeria monocytogenes contamination and inhibit browning of fresh-cut “Granny Smith” apples. Postharvest Biology and Technology 143:43–9. doi: 10.1016/j.postharvbio.2018.04.009.
  • Farina, V., R. Passafiume, I. Tinebra, E. Palazzolo, and G. Sortino. 2020. Use of aloe vera gel-based edible coating with natural anti-browning and anti-oxidant additives to improve post-harvest quality of fresh-cut ‘fuji’apple. Agronomy 10 (4):515. doi: 10.3390/agronomy10040515.
  • Feng, Y., X. Ma, B. Kong, Q. Chen, and Q. Liu. 2021. Ethanol induced changes in structural, morphological, and functional properties of whey proteins isolates: Influence of ethanol concentration. Food Hydrocolloids. 111:106379. doi: 10.1016/j.foodhyd.2020.106379.
  • Feng, S., J. Yi, X. Li, X. Wu, Y. Zhao, Y. Ma, and J. Bi. 2021. Systematic review of phenolic compounds in apple fruits: Compositions, distribution, absorption, metabolism, and processing stability. Journal of Agricultural and Food Chemistry 69 (1):7–27. doi: 10.1021/acs.jafc.0c05481.
  • Gao, H., S. Wu, Q. Zeng, P. Li, and W. Guan. 2018. Effects of exogenous γ-aminobutyric acid treatment on browning and food-borne pathogens in fresh-cut apples. Postharvest Biology and Technology 146:1–8. doi: 10.1016/j.postharvbio.2018.08.007.
  • Gómez, P. L., D. M. Salvatori, A. García-Loredo, and S. M. Alzamora. 2012. Pulsed light treatment of cut apple: Dose effect on color, structure, and microbiological stability. Food and Bioprocess Technology 5 (6):2311–22. doi: 10.1007/s11947-011-0598-3.
  • Guan, W, and X. Fan. 2010. Combination of sodium chlorite and calcium propionate reduces enzymatic browning and microbial population of ny Smith" apples “Granny Smith”. Journal of Food Science 75 (2):M72–M77. doi: 10.1111/j.1750-3841.2009.01470.x.
  • Guerreiro, A. C., C. M. Gago, M. L. Faleiro, M. G. Miguel, and M. D. Antunes. 2017. The effect of edible coatings on the nutritional quality of ‘Bravo de Esmolfe’fresh-cut apple through shelf-life. Lwt 75:210–9. doi: 10.1016/j.lwt.2016.08.052.
  • Guo, S., L. Zhang, L. Zhang, M. Zhao, and X. Meng. 2018. Inhibition kinetics of oligochitosan as an uncompetitive inhibitor on fuji apple polyphenol oxidase. Journal of Food Biochemistry 42 (5):e12585. doi: 10.1111/jfbc.12585.
  • Han, Q., F. Liu, Y. Hao, and Y. Ni. 2020. Characterization of membrane-bound polyphenol oxidase from Granny Smith apple (Malus × domestica Borkh. International Journal of Biological Macromolecules 158:977–84. ) doi: 10.1016/j.ijbiomac.2020.04.225.
  • Han, Q.-Y., F. Liu, M. Li, K.-L. Wang, and Y.-Y. Ni. 2019. Comparison of biochemical properties of membrane-bound and soluble polyphenol oxidase from Granny Smith apple (Malus × domestica Borkh.). Food Chemistry 289:657–63. doi: 10.1016/j.foodchem.2019.02.064.
  • Han, Q.-Y., F. Liu, X. Wen, and Y.-Y. Ni. 2021. Kinetic, spectroscopic, and molecular docking studies on the inhibition of membrane-bound polyphenol oxidase from Granny Smith apples (Malus domestica Borkh.). Food Chemistry 338:127928. doi: 10.1016/j.foodchem.2020.127928.
  • Harker, F. R., J. H. Maindonald, and P. J. Jackson. 1996. Penetrometer measurement of apple and kiwifruit firmness: operator and instrument differences. Journal of the American Society for Horticultural Science 121 (5):927–936.
  • Hu, W., K. Feng, Z. Xiu, A. Jiang, and Y. Lao. 2019. Efficacy of thyme oil‐alginate‐based coating in reducing foodborne pathogens on fresh‐cut apples. International Journal of Food Science & Technology 54:3128–37. doi: 10.1111/ijfs.14229.
  • Hu, W., A. Jiang, Z. Xiu, and K. Feng. 2018. Effect of thyme oil–alginate‐based coating on quality and microbial safety of fresh‐cut apples. Journal of the Science of Food and Agriculture 98:2302–11. doi: 10.1002/jsfa.8720.
  • Huque, R., R. Wills, P. Pristijono, and J. Golding. 2013. Effect of nitric oxide (NO) and associated control treatments on the metabolism of fresh-cut apple slices in relation to development of surface browning. Postharvest Biology and Technology 78:16–23. doi: 10.1016/j.postharvbio.2012.12.006.
  • Janovitz-Klapp, A., F. Richard, and J. Nicolas. 1989. Polyphenoloxidase from apple, partial purification and some properties. Phytochemistry 28 (11):2903–7. doi: 10.1016/0031-9422(89)80250-X.
  • Jin, T. Z., W. Chen, J. B. Gurtler, and X. Fan. 2020. Effectiveness of edible coatings to inhibit browning and inactivate foodborne pathogens on fresh‐cut apples. Journal of Food Safety 40 (4):e12802. doi: 10.1111/jfs.12802.
  • Jukanti, A. 2017. Polyphenol oxidases (PPOs) in plants. Singapore: Springer.
  • Kaintz, C., S. G. Mauracher, and A. Rompel. 2014. Type-3 copper proteins: Recent advances on polyphenol oxidases. Advances in Protein Chemistry and Structural Biology 97:1–35.
  • Kalathenos, P, and N. Russell. 2003. Ethanol as a food preservative, Food preservatives, 196–217. Boston, MA: Springer.
  • Kampatsikas, I., A. Bijelic, M. Pretzler, and A. Rompel. 2017. Three recombinantly expressed apple tyrosinases suggest the amino acids responsible for mono-versus diphenolase activity in plant polyphenol oxidases. Scientific Reports 7 (1):13. doi: 10.1038/s41598-017-08097-5.
  • Kampatsikas, I., A. Bijelic, and A. Rompel. 2019. Biochemical and structural characterization of tomato polyphenol oxidases provide novel insights into their substrate specificity. Scientific Reports 9 (1):13. doi: 10.1038/s41598-019-39687-0.
  • Karaibrahimoglu, Y., X. Fan, G. M. Sapers, and K. Sokorai. 2004. Effect of pH on the survival of Listeria innocua in calcium ascorbate solutions and on quality of fresh-cut apples. Journal of Food Protection 67 (4):751–7. doi: 10.4315/0362-028x-67.4.751.
  • Khunpon, B., J. Uthaibutra, B. Faiyue, and K. Saengnil. 2011. Reduction of enzymatic browning of harvested ‘Daw’longan exocarp by ­sodium chlorite. ScienceAsia 37 (3):234–9. doi: 10.2306/scienceasia1513-1874.2011.37.234.
  • Kumar, P., S. Sethi, R. Sharma, S. Singh, and E. Varghese. 2018. Improving the shelf life of fresh-cut ‘Royal Delicious’ apple with edible coatings and anti-browning agents. Journal of Food Science and Technology 55 (9):3767–78. doi: 10.1007/s13197-018-3308-6.
  • Lambrecht, H. 1995. Sulfite substitutes for the prevention of enzymatic browning in foods. Washington, DC: ACS Publications.
  • Laura, A. J. O. Moreno-Escamilla, J. Rodrigo-García, and E. Alvarez-Parrilla. 2019. In Postharvest Physiology and Biochemistry of Fruits and Vegetables eds. E.I Yahia, and A. Carrillo-Lopez: 253–71. Cambridge, MA: Woodhead Publishing.
  • Lee, J., H. J. Park, C. Lee, and W. Choi. 2003. Extending shelf-life of minimally processed apples with edible coatings and antibrowning agents. LWT – Food Science and Technology 36 (3):323–9. doi: 10.1016/S0023-6438(03)00014-8.
  • Li, H., K.-W. Cheng, C.-H. Cho, Z. He, and M. Wang. 2007. Oxyresveratrol as an antibrowning agent for cloudy apple juices and fresh-cut apples. Journal of Agricultural and Food Chemistry 55 (7):2604–10. doi: 10.1021/jf0630466.
  • Likhitwitayawuid, K. 2008. Stilbenes with tyrosinase inhibitory activity. Current Science 94:44–52.
  • Li, Y., M.-A. McLarin, M. J. Middleditch, S. J. Morrow, P. A. Kilmartin, and I. K. Leung. 2019. An approach to recombinantly produce mature grape polyphenol oxidase. Biochimie 165:40–7. doi: 10.1016/j.biochi.2019.07.002.
  • Lin, M.-Z., W.-M. Chai, C. Ou-Yang, Q. Huang, X.-H. Xu, and Y.-Y. Peng. 2018. Antityrosinase mechanism of omeprazole and its application on the preservation of fresh-cut Fuji apple. International Journal of Biological Macromolecules 117:538–45. doi: 10.1016/j.ijbiomac.2018.05.172.
  • Liu, F., J.-H. Zhao, Z.-L. Gan, and Y.-Y. Ni. 2015. Comparison of membrane-bound and soluble polyphenol oxidase in Fuji apple (Malus domestica Borkh. cv. Red Fuji). Food Chemistry 173:86–91. doi: 10.1016/j.foodchem.2014.09.169.
  • Liu, F., J.-H. Zhao, X. Wen, and Y.-Y. Ni. 2015. Purification and structural analysis of membrane-bound polyphenol oxidase from Fuji apple. Food Chemistry 183:72–7. doi: 10.1016/j.foodchem.2015.03.027.
  • Li, Y., R. Wills, and J. Golding. 2015. Sodium chloride, a cost effective partial replacement of calcium ascorbate and ascorbic acid to inhibit surface browning on fresh-cut apple slices. LWT – Food Science and Technology 64 (1):503–7. doi: 10.1016/j.lwt.2015.05.010.
  • Lu, S., Y. Luo, E. Turner, and H. Feng. 2007. Efficacy of sodium chlorite as an inhibitor of enzymatic browning in apple slices. Food Chemistry 104 (2):824–9. doi: 10.1016/j.foodchem.2006.12.050.
  • Luo, Y., S. Lu, B. Zhou, and H. Feng. 2011. Dual effectiveness of sodium chlorite for enzymatic browning inhibition and microbial inactivation on fresh-cut apples. LWT – Food Science and Technology 44 (7):1621–5. doi: 10.1016/j.lwt.2011.02.015.
  • Marrufo-Hernández, N. A., G. Palma-Orozco, H. Beltrán, and H. Nájera. 2017. Purification, partial biochemical characterization and inactivation of polyphenol oxidase from Mexican Golden Delicious apple (Malus domestica). Journal of Food Biochemistry 41 (3):e12356. ‐ doi: 10.1111/jfbc.12356.
  • Mayer, A. M. 2006. Polyphenol oxidases in plants and fungi: Going places? A review. Phytochemistry 67 (21):2318–31. doi: 10.1016/j.phytochem.2006.08.006.
  • McEvily, A. J., R. Iyengar, and W. S. Otwell. 1992. Inhibition of enzymatic browning in foods and beverages. Critical Reviews in Food Science and Nutrition 32 (3):253–73. doi: 10.1080/10408399209527599.
  • Moon, K. M., E.-B. Kwon, B. Lee, and C. Y. Kim. 2020. Recent trends in controlling the enzymatic browning of fruit and vegetable products. Molecules 25 (12):2754. doi: 10.3390/molecules25122754.
  • Munoz-Munoz, J. L., F. Garcia-Molina, P. A. García-Ruiz, R. Varon, J. Tudela, F. García-Cánovas, and J. N. Rodriguez-Lopez. 2009. Stereospecific inactivation of tyrosinase by L- and D-ascorbic acid . Biochimica et Biophysica Acta 1794 (2):244–53. doi: 10.1016/j.bbapap.2008.10.002.
  • Murata, M., C. Kurokami, and S. Homma. 1992. Purification and some properties of chlorogenic acid oxidase from apple (Malus pumila). Bioscience, Biotechnology, and Biochemistry 56 (11):1705–10. doi: 10.1271/bbb.56.1705.
  • Murata, M., M. Tsurutani, S. Hagiwara, and S. Homma. 1997. Subcellular location of polyphenol oxidase in apples. Bioscience, Biotechnology, and Biochemistry 61 (9):1495–9. doi: 10.1271/bbb.61.1495.
  • Najafi Marghmaleki, S., S. M. H. Mortazavi, H. Saei, and A. Mostaan. 2021. The effect of alginate-based edible coating enriched with citric acid and ascorbic acid on texture, appearance and eating quality of apple fresh-cut. International Journal of Fruit Science 21 (1):40–51. doi: 10.1080/15538362.2020.1856018.
  • Ni Eidhin, D. M., E. Murphy, and D. O’Beirne. 2006. Polyphenol oxidase from apple (Malus domestica Borkh. cv Bramley’s Seedling): Purification strategies and characterization. Journal of Food Science 71 (1):C51–C58. doi: 10.1111/j.1365-2621.2006.tb12388.x.
  • Nicolas, J. C. Billaud, J. Philippon, and M. Rouet-Mayer. 2003. Browning| enzymatic–biochemical aspects.
  • Nirmal, N. P, and S. Benjakul. 2012. Inhibition kinetics of catechin and ferulic acid on polyphenoloxidase from cephalothorax of Pacific white shrimp (Litopenaeus vannamei). Food Chemistry 131 (2):569–73. doi: 10.1016/j.foodchem.2011.09.025.
  • Ogata, N. 2007. Denaturation of protein by chlorine dioxide: Oxidative modification of tryptophan and tyrosine residues. Biochemistry 46 (16):4898–911. doi: 10.1021/bi061827u.
  • Olivas, G., D. Mattinson, and G. Barbosa-Cánovas. 2007. Alginate coatings for preservation of minimally processed ‘Gala’apples. Postharvest Biology and Technology 45 (1):89–96. doi: 10.1016/j.postharvbio.2006.11.018.
  • Oms-Oliu, G., M. A. Rojas-Graü, L. A. González, P. Varela, R. Soliva-Fortuny, M. I. H. Hernando, I. P. Munuera, S. Fiszman, and O. Martín-Belloso. 2010. Recent approaches using chemical treatments to preserve quality of fresh-cut fruit: A review. Postharvest Biology and Technology 57 (3):139–48. doi: 10.1016/j.postharvbio.2010.04.001.
  • Ortiz-Ruiz, C. V., J. Berna, J. N. Rodriguez-Lopez, V. Tomas, and F. Garcia-Canovas. 2015. Tyrosinase-catalyzed hydroxylation of 4-hexylresorcinol, an antibrowning and depigmenting agent: A kinetic study. Journal of Agricultural and Food Chemistry 63 (31):7032–40. doi: 10.1021/acs.jafc.5b02523.
  • Pan, S.-Y., C.-H. Chen, and L.-S. Lai. 2013. Effect of tapioca starch/decolorized hsian-tsao leaf gum-based active coatings on the qualities of fresh-cut apples. Food and Bioprocess Technology 6 (8):2059–69. doi: 10.1007/s11947-012-0907-5.
  • Panadare, D, and V. K. Rathod. 2018. Extraction and purification of polyphenol oxidase: A review. Biocatalysis and Agricultural Biotechnology 14:431–7. doi: 10.1016/j.bcab.2018.03.010.
  • Pilizota, V, and G. Sapers. 2004. Novel browning inhibitor formulation for fresh‐cut apples. Journal of Food Science 69 (4):SNQ140–SNQ143. doi: 10.1111/j.1365-2621.2004.tb06354.x.
  • Pinheiro, S. C, and D. P. Almeida. 2008. Modulation of tomato pericarp firmness through pH and calcium: Implications for the texture of fresh-cut fruit. Postharvest Biology and Technology 47 (1):119–25. doi: 10.1016/j.postharvbio.2007.06.002.
  • Produce Marketing Association. 2014. U.S. Fresh-Cut Fruit and Vegetable Market.
  • Putnik, P., D. Bursać Kovačević, K. Herceg, and B. Levaj. 2017. Influence of antibrowning solutions, air exposure, and ultrasound on color changes in fresh‐cut apples during storage. Journal of Food Processing and Preservation 41 (6):e13288. doi: 10.1111/jfpp.13288.
  • Qi, H., W. Hu, A. Jiang, M. Tian, and Y. Li. 2011. Extending shelf-life of fresh-cut ‘Fuji’apples with chitosan-coatings. Innovative Food Science & Emerging Technologies 12 (1):62–6. doi: 10.1016/j.ifset.2010.11.001.
  • Queiroz, C., M. L. Mendes Lopes, E. Fialho, and V. L. Valente-Mesquita. 2008. Polyphenol oxidase: Characteristics and mechanisms of browning control. Food Reviews International 24 (4):361–75. doi: 10.1080/87559120802089332.
  • Quiles, A., Hernando, I. Pérez, Munuera, I, and Lluch, M. Á. 2007. Effect of calcium propionate on the microstructure and pectin methy‐lesterase activity in the parenchyma of fresh‐cut Fuji apples. Journal of the Science of Food and Agriculture 87 (3):511–9. ‐ doi: 10.1002/jsfa.2749.
  • Ramsden, C. A., and P. A. Riley. 2014. Tyrosinase: The four oxidation states of the active site and their relevance to enzymatic activation, oxidation and inactivation. Bioorganic & Medicinal Chemistry 22 (8):2388–95. doi: 10.1016/j.bmc.2014.02.048.
  • Reyes, L. F., J. E. Villarreal, and L. Cisneros-Zevallos. 2007. The increase in antioxidant capacity after wounding depends on the type of fruit or vegetable tissue. Food Chemistry 101 (3):1254–62. doi: 10.1016/j.foodchem.2006.03.032.
  • Ribeiro, J. A., R. F. F. Cantillano, F. R. Nora, and L. Nora. 2020. Effect of 4-hexylresorcinol on post-cut browning and quality of minimally processed ‘Fuji’apple fruits. Journal of Food Measurement and Characterization 14 (5):2461–71. doi: 10.1007/s11694-020-00494-1.
  • Richardson, T, and D. Hyslop. 1985. Enzymes. Dalam Fennema, or food chemistry, 371–476. Marcel Dekker, Inc. New York.
  • Rojas‐Graü, M. Grasa, Guillem, R. Martín, and Belloso, O. 2007. Quality changes in fresh‐cut Fuji apple as affected by ripeness stage, antibrowning agents, and storage atmosphere. Journal of Food Science 72:S036–S043.
  • Rojas‐Graü, M. A., R. M. Raybaudi-Massilia, R. C. Soliva-Fortuny, R. J. Avena-Bustillos, T. H. McHugh, and O. Martín-Belloso. 2007. Apple puree-alginate edible coating as carrier of antimicrobial agents to prolong shelf-life of fresh-cut apples. Postharvest Biology and Technology 45 (2):254–64. doi: 10.1016/j.postharvbio.2007.01.017.
  • Rojas‐Graü, M., A. Sobrino, López, A. Soledad Tapia, M. Martín, and Belloso, O. 2006. Browning inhibition in fresh‐cut ‘Fuji’apple slices by natural antibrowning agents. Journal of Food Science 71 (1):S59–S65. doi: 10.1111/j.1365-2621.2006.tb12407.x.
  • Rojas‐Graü, M. Soliva, Fortuny, R. Martín, and Belloso, O. 2008. Effect of natural antibrowning agents on color and related enzymes in fresh‐cut Fuji apples as an alternative to the use of ascorbic acid. Journal of Food Science 73:S267–S272.
  • Rojas‐Graü, M., M. Tapia, F. Rodríguez, A. Carmona, and O. Martin-Belloso. 2007. Alginate and gellan-based edible coatings as carriers of antibrowning agents applied on fresh-cut Fuji apples. Food Hydrocolloids. 21 (1):118–27. doi: 10.1016/j.foodhyd.2006.03.001.
  • Rojas‐Graü, M., A. Oms, Oliu, G. Soliva, Fortuny, R. Martín, and Belloso, O. 2009. The use of packaging techniques to maintain freshness in fresh‐cut fruits and vegetables: A review. International Journal of Food Science & Technology 44:875–89.
  • Salminen, W. F, and G. Russotti. 2017. Synergistic interaction of ascorbic acid and green tea extract in preventing the browning of fresh cut apple slices. Journal of Food Processing and Preservation 41 (5):e13192. doi: 10.1111/jfpp.13192.
  • Sánchez-Ferrer, Á., J. N. Rodríguez-López, F. García-Cánovas, and F. García-Carmona. 1995. Tyrosinase: A comprehensive review of its mechanism. Biochimica et Biophysica Acta (BBA) – Protein Structure and Molecular Enzymology 1247 (1):1–11. doi: 10.1016/0167-4838(94)00204-T.
  • Shao, L.-L., X.-L. Wang, K. Chen, X.-W. Dong, L.-M. Kong, D.-Y. Zhao, R. C. Hider, and T. Zhou. 2018. Novel hydroxypyridinone derivatives containing an oxime ether moiety: Synthesis, inhibition on mushroom tyrosinase and application in anti-browning of fresh-cut apples. Food Chemistry 242:174–81. doi: 10.1016/j.foodchem.2017.09.054.
  • Shah, H.M.S., A.S. Khan, and S. Ali. 2017. Pre-storage kojic acid application delays pericarp browning and maintains antioxidant activities of litchi fruit. Postharvest Biology and Technology 132:154–161.
  • Shi, C., X. Zhang, Y. Sun, M. Yang, K. Song, Z. Zheng, Y. Chen, X. Liu, Z. Jia, R. Dong, et al. 2016. Antimicrobial activity of ferulic acid against Cronobacter sakazakii and possible mechanism of action. Foodborne Pathogens and Disease 13 (4):196–204. doi: 10.1089/fpd.2015.1992.
  • Siddiq, M., D. Sogi, and K. Dolan. 2013. Antioxidant properties, total phenolics, and quality of fresh-cut ‘Tommy Atkins’ mangoes as affected by different pre-treatments. LWT – Food Science and Technology 53 (1):156–62. doi: 10.1016/j.lwt.2013.01.017.
  • Singh, B. K. Suri, K. Shevkani, A. Kaur, A. Kaur, and N. Singh. 2018. Enzymatic browning of fruit and vegetables: A review, enzymes in food technology. In: Enzymes in Food Technology eds. M. Kuddus, Springer, 63–78.
  • Singh, A. D. Walia, and N. Batra. 2018. Fresh-cut fruits: Microbial degradation and preservation, microbial contamination and food degradation. In Microbial Contamination and Food Degradation, eds. A. M. Holban, and A. M. I Grumezescu, 149–76. London, UK: Academic Press.
  • Solís-Contreras, G. A., M. C. Rodríguez-Guillermo, M. Reyes-Vega, C. N. Aguilar, O. N. Rebolloso-Padilla, J. Corona-Flores, L. Soriano-Melgar, and X. Ruelas-Chacon. 2021. Extending shelf-life and quality of minimally processed golden delicious apples with three bioactive coatings combined with cinnamon essential oil. Foods 10 (3):597. doi: 10.3390/foods10030597.
  • Soliva-Fortuny, R. C, and O. Martı́n-Belloso. 2003. New advances in extending the shelf-life of fresh-cut fruits: A review. Trends in Food Science & Technology 14 (9):341–53. doi: 10.1016/S0924-2244(03)00054-2.
  • Son, S., K. Moon, and C. Lee. 2001. Inhibitory effects of various antibrowning agents on apple slices. Food Chemistry 73 (1):23–30. doi: 10.1016/S0308-8146(00)00274-0.
  • Soysal, Ç. I. Ğ. D. E. M. 2008. Kinetics and thermal activation/inactivation of starking apple polyphenol oxidase. Journal of Food Processing and Preservation 32 (6):1034–46. Ç doi: 10.1111/j.1745-4549.2008.00298.x.
  • Statista Research Department. 2014. Fresh-cut fruit dollar sales distribution share in United States supermarkets in 2014, by type.
  • Sullivan, M. L. 2014. Beyond brown: Polyphenol oxidases as enzymes of plant specialized metabolism. Frontiers in Plant Science 5:783. doi: 10.3389/fpls.2014.00783.
  • Supapvanich, S., A. Yimpong, and J. Srisuwanwichan. 2020. Browning inhibition on fresh-cut apple by the immersion of liquid endosperm from mature coconuts. Journal of Food Science and Technology 57 (12):4424–31. doi: 10.1007/s13197-020-04479-2.
  • Thipyapong, P., M. D. Hunt, and J. C. Steffens. 1995. Systemic wound induction of potato (Solanum tuberosum) polyphenol oxidase. Phytochemistry 40 (3):673–6. doi: 10.1016/0031-9422(95)00359-F.
  • Thipyapong, P, and J. C. Steffens. 1997. Tomato polyphenol oxidase (differential response of the polyphenol oxidase F promoter to injuries and wound signals). Plant Physiology 115 (2):409–18. doi: 10.1104/pp.115.2.409.
  • Tinello, F, and A. Lante. 2018. Recent advances in controlling polyphenol oxidase activity of fruit and vegetable products. Innovative Food Science & Emerging Technologies 50:73–83. doi: 10.1016/j.ifset.2018.10.008.
  • Tortoe, C., J. Orchard, and A. Beezer. 2007. Prevention of enzymatic browning of apple cylinders using different solutions. International Journal of Food Science & Technology 42 (12):1475–81. doi: 10.1111/j.1365-2621.2006.01367.x.
  • Treutter, D. 2001. Biosynthesis of phenolic compounds and its regulation in apple. Plant Growth Regulation 34 (1):71–89. doi: 10.1023/A:1013378702940.
  • US Food and Drug Administration. 2018. Guide to Minimize Food Safety Hazards of Fresh-cut Produce: Draft Guidance for Industry. Draft Guidance.
  • Whitaker, J. R. 1995. Polyphenol oxidase, In: Food Enzymes: Structure and Mechanism, eds. D. W. S. Wong. New York, NY: Springer, 271–307.
  • Wills, R, and Y. Li. 2016. Use of arginine to inhibit browning on fresh cut apple and lettuce. Postharvest Biology and Technology 113:66–8. doi: 10.1016/j.postharvbio.2015.11.006.
  • Wu, S, and J. Chen. 2013. Using pullulan-based edible coatings to extend shelf-life of fresh-cut ‘Fuji’apples. International Journal of Biological Macromolecules 55:254–7. doi: 10.1016/j.ijbiomac.2013.01.012.
  • Yan, S., Y. Luo, B. Zhou, and D. T. Ingram. 2017. Dual effectiveness of ascorbic acid and ethanol combined treatment to inhibit browning and inactivate pathogens on fresh-cut apples. LWT 80:311–20. doi: 10.1016/j.lwt.2017.02.021.
  • Yan, S., T. Yang, and Y. Luo. 2015. The mechanism of ethanol treatment on inhibiting lettuce enzymatic browning and microbial growth. LWT – Food Science and Technology 63 (1):383–90. doi: 10.1016/j.lwt.2015.03.004.
  • Yoruk, R, and M. R. Marshall. 2003. Physicochemical properties and function of plant polyphenol oxidase: A review 1. Journal of Food Biochemistry 27 (5):361–422. doi: 10.1111/j.1745-4514.2003.tb00289.x.
  • Zhao, H., Z. Fan, J. Wu, and S. Zhu. 2021. Effects of pre-treatment with S-nitrosoglutathione-chitosan nanoparticles on quality and antioxidant systems of fresh-cut apple slices. LWT 139:110565. doi: 10.1016/j.lwt.2020.110565.
  • Zhou, L., T. Liao, W. Liu, L. Zou, C. Liu, and N. S. Terefe. 2020. Inhibitory effects of organic acids on polyphenol oxidase: From model systems to food systems. Critical Reviews in Food Science and Nutrition 60 (21):3594–621. doi: 10.1080/10408398.2019.1702500.
  • Zhou, P., N. L. Smith, and C. Y. Lee. 1993. Potential purification and some properties of Monroe apple peel polyphenol oxidase. Journal of Agricultural and Food Chemistry 41 (4):532–6. doi: 10.1021/jf00028a004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.