649
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

Mycotoxins along the tea supply chain: A dark side of an ancient and high valued aromatic beverage

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abd El-Aty, A. M., J.-H. Choi, M. M. Rahman, S.-W. Kim, A. Tosun, and J.-H. Shim. 2014. Residues and contaminants in tea and tea infusions: A review. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 31 (11):1794–18. doi: 10.1080/19440049.2014.958575.
  • Abdolmaleki, K., S. Khedri, L. Alizadeh, F. Javanmardi, C. A. F. Oliveira, and A. M. Khaneghah. 2021. The mycotoxins in edible oils: An overview of prevalence, concentration, toxicity, detection and decontamination techniques. Trends in Food Science & Technology 115:500–11. doi: 10.1016/j.tifs.2021.06.057.
  • Abe, M., N. Takaoka, Y. Idemoto, C. Takagi, T. Imai, and K. Nakasaki. 2008. Characteristic fungi observed in the fermentation process for Puer tea. International Journal of Food Microbiology 124 (2):199–203. doi: 10.1016/j.ijfoodmicro.2008.03.008.
  • Abrunhosa, L., H. Morales, C. Soares, T. Calado, A. S. Vila-Chã, M. Pereira, and A. Venâncio. 2016. A review of mycotoxins in food and feed products in Portugal and estimation of probable daily intakes. Critical Reviews in Food Science and Nutrition 56 (2):249–65. doi: 10.1080/10408398.2012.720619.
  • Afzali, D., M. Ghanbarian, A. Mostafavi, T. Shamspur, and S. Ghaseminezhad. 2012. A novel method for high preconcentration of ultra trace amounts of B₁, B₂, G₁ and G₂ aflatoxins in edible oils by dispersive liquid-liquid microextraction after immunoaffinity column clean-up. Journal of Chromatography. A 1247:35–41. doi: 10.1016/j.chroma.2012.05.051.
  • AHPA. 2016. Recommended microbial limits for botanical ingredients (in Colony-Forming Units (CFU)/g). Silver Spring, MD: American Herbal Products Association.
  • Aiko, V., and A. Mehta. 2015. Occurrence, detection and detoxification of mycotoxins. Journal of Biosciences 40 (5):943–54. doi: 10.1007/s12038-015-9569-6.
  • Akbar, A., A. Medina, and N. Magan. 2020. Resilience of Aspergillus westerdijkiae strains to interacting climate-related abiotic factors: Effects on growth and ochratoxin a production on coffee-based medium and in stored coffee. Microorganisms 8 (9):1268. doi: 10.3390/microorganisms8091268.
  • Al-Anati, L., and E. Petzinger. 2006. Immunotoxic activity of ochratoxin A. Journal of Veterinary Pharmacology and Therapeutics 29 (2):79–90. doi: 10.1111/j.1365-2885.2006.00718.x.
  • Alshannaq, A., and J. H. Yu. 2017. Occurrence, toxicity, and analysis of major mycotoxins in food. International Journal of Environmental Research and Public Health 14 (6):632. doi: 10.3390/ijerph14060632.
  • Ałtyn, I., and M. Twarużek. 2020. Mycotoxin contamination concerns of herbs and medicinal plants. Toxins 12 (3):182. doi: 10.3390/toxins12030182.
  • Amini, M., and M. Ghorannevi. 2016. Black and green tea decontamination by cold plasma. Research Journal of Microbiology 11 (1):42–6. doi: 10.3923/jm.2016.42.46.
  • Anonymous. 2017. China food safety national standard maximum levels of mycotoxins in food (GB 2761-2017). https://www.fas.usda.gov/data/china-china-releases-standard-maximum-levels-mycotoxins-foods
  • Anonymous. 2018. International Organization for Standardization ISO 3103:1980—Tea—Preparation of liquor for use in sensory tests, 4p. https://www.iso.org/standard/8250.html.
  • Anukul, N., K. Vangnai, and W. Mahakarnchanakul. 2013. Significance of regulation limits in mycotoxin contamination in Asia and risk management programs at the national level. Journal of Food and Drug Analysis 21 (3):227–41. doi: 10.1016/j.jfda.2013.07.009.
  • Arcella, D., M. Eskola, J. A. Gómez Ruiz, and European Food Safety Authority. 2016. Dietary exposure assessment to Alternaria toxins in the European population. EFSA Journal 14 (12):4654. doi: 10.2903/j.efsa.2016.4654.
  • Baert, K., B. D. Meulenaer, C. Kasase, A. Huyghebaert, W. Ooghe, and F. Devlieghere. 2007. Free and bound patulin in cloudy apple juice. Food Chemistry 100 (3):1278–82. doi: 10.1016/j.foodchem.2005.10.012.
  • Battilani, P., P. Toscano, H. J. Van der Fels-Klerx, A. Moretti, M. Camardo Leggieri, C. Brera, A. Rortais, T. Goumperis, and T. Robinson. 2016. Aflatoxin B1 contamination in maize in Europe increases due to climate change. Scientific Reports 6:24328. doi: 10.1038/srep24328.
  • Bennett, J. W., and M. Klich. 2003. Mycotoxins. Clinical Microbiology Reviews 16 (3):497–516. doi: 10.1128/CMR.16.3.497-516.2003.
  • Bhat, R., R. V. Rai, and A. A. Karim. 2010. Mycotoxins in food and feed: Present status and future concerns. Comprehensive Reviews in Food Science and Food Safety 9 (1):57–81. doi: 10.1111/j.1541-4337.2009.00094.x.
  • Bogdanova, E., I. Pugajeva, I. Reinholds, and V. Bartkevics. 2020. Two-dimensional liquid chromatography - High resolution mass spectrometry method for simultaneous monitoring of 70 regulated and emerging mycotoxins in pu-erh tea. Journal of Chromatography. A 1622:461145. doi: 10.1016/j.chroma.2020.461145.
  • Bokuchava, M. A., and N. I. Skobeleva. 1980. The biochemistry and technology of tea manufacture. Critical Reviews in Food Science and Nutrition 12 (4):303–70. doi: 10.1080/10408398009527280.
  • Breen, A. P., and J. A. Murphy. 1995. Reactions of oxyl radicals with DNA. Free Radical Biology & Medicine 18 (6):1033–77. doi: 10.1016/0891-5849(94)00209-3.
  • Bullerman, L. B., and A. Bianchini. 2007. Stability of mycotoxins during food processing. International Journal of Food Microbiology 119 (1-2):140–6. doi: 10.1016/j.ijfoodmicro.2007.07.035.
  • Cajka, T., C. Sandy, V. Bachanova, L. Drabova, K. Kalachova, J. Pulkrabova, and J. Hajslova.,. 2012. Streamlining sample preparation and gas chromatography-tandem mass spectrometry analysis of multiple pesticide residues in tea. Analytica Chimica Acta 743:51–60. doi: 10.1016/j.aca.2012.06.051.
  • Carraturo, F., O. De Castro, J. Troisi, A. De Luca, A. Masucci, P. Cennamo, M. Trifuoggi, F. Aliberti, and M. Guida. 2018. Comparative assessment of the quality of commercial black and green tea using microbiology analyses. BMC Microbiology 18 (1):4. doi: 10.1186/s12866-017-1142-z.
  • Cervini, C., C. Verheecke-Vaessen, M. Ferrara, E. García-Cela, D. Magistà, A. Medina, A. Gallo, N. Magan, and G. Perrone. 2021. Interacting climate change factors (CO2 and temperature cycles) effects on growth, secondary metabolite gene expression and phenotypic ochratoxin A production by Aspergillus carbonarius strains on a grape-based matrix. Fungal Biology 125 (2):115–22. doi: 10.1016/j.funbio.2019.11.001.
  • Chaly, Z. A., I. B. Sedova, and M. G. Kiseleva. 2018. Occurrence of mycotoxins in tea. Nutrition Problems 87:199–200.
  • Chalyy, Z., M. Kiseleva, I. Sedova, and V. Tutelyan. 2021. Mycotoxins in herbal tea: Transfer into the infusion. World Mycotoxin Journal 14 (4):539–51.
  • Chen, W., F. Cai, Q. Wu, Y. Wu, B. Yao, and J. Xu. 2020. Prediction, evaluation, confirmation, and elimination of matrix effects for lateral flow test strip based rapid and on-site detection of aflatoxin B1 in tea soups. Food Chemistry 328:127081.
  • Chen, Q., M. Yang, X. Yang, H. Li, Z. Guo, and M. H. Rahma. 2018. A large Raman scattering cross-section molecular embedded SERS aptasensor for ultrasensitive Aflatoxin B1 detection using CS-Fe3O4 for signal enrichment. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 189:147–53. doi: 10.1016/j.saa.2017.08.029.
  • Chung, M., N. Zhao, D. Wang, M. Shams-White, M. Karlsen, A. Cassidy, M. Ferruzzi, P. F. Jacques, E. J. Johnson, and T. C. Wallace. 2020. Dose–response relation between tea consumption and risk of cardiovascular disease and all-cause mortality: A systematic review and meta-analysis of population-based studies. Advances in Nutrition 11 (4):790–814. doi: 10.1093/advances/nmaa010.
  • Cladiere, M., G. Delaporte, E. Le Roux, and V. Camel. 2018. Multi-class analysis for simultaneous determination of pesticides, mycotoxins, process-induced toxicants and packaging contaminants in tea. Food Chemistry 242:113–21. doi: 10.1016/j.foodchem.2017.08.108.
  • Cui, P., H. Yan, D. Granato, C.-T. Ho, Z. Ye, Y. Wang, L. Zhang, and Y. Zhou. 2020. Quantitative analysis and dietary risk assessment of aflatoxins in Chinese post-fermented dark tea. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 146:111830. doi: 10.1016/j.fct.2020.111830.
  • Dai, Q., S. Liu, Y. Jiang, J. Gao, H. Jin, Y. Zhang, Z. Zhang, and T. Xia. 2019. Recommended storage temperature for green tea based on sensory quality. Journal of Food Science and Technology 56 (9):4333–48. doi: 10.1007/s13197-019-03902-7.
  • Dall’Asta, C., M. Mangia, F. Berthiller, A. Molinelli, M. Sulyok, R. Schuhmacher, R. Krska, G. Galaverna, A. Dossena, and R. Marchelli. 2009. Difficulties in fumonisin determination: The issue of hidden fumonisins. Analytical and Bioanalytical Chemistry 395 (5):1335–45. doi: 10.1007/s00216-009-2933-3.
  • Dayananda, K. R. T. L. K., K. M. E. P. Fernando, and S. Perera. 2017. Assessment of microbial contaminations in dried tea and tea brew. International Journal of Pharmaceutical Science Invention 6 (10):6–13.
  • De Silva, A. R., R. M. N. P. Rathnayake, R. D. R. R. Ranasinghe, and C. V. L. Jayasinghe. 2019. Impact of gamma irradiation on physical parameters, microbial safety and the total polyphenolic content of commercially available Ceylon black tea (Camellia sinensis L.). Pertanika Journal of Science and Technology 27:29–39.
  • Del Fiore, A., M. Reverberi, A. Ricelli, F. Pinzari, S. Serranti, A. A. Fabbri, G. Bonifazi, and C. Fanelli. 2010. Early detection of toxigenic fungi on maize by hyperspectral imaging analysis. International Journal of Food Microbiology 144 (1):64–71. doi: 10.1016/j.ijfoodmicro.2010.08.001.
  • Diby, L., J. Kahia, C. Kouame, and E. Aynekulu. 2017. Tea, coffee, and cocoa. Encyclopedia of Applied Plant Sciences 3:420–5.
  • Dong, X., B. Zou, X. Zhao, S. Liu, W. Xu, T. Huang, Q. Zong, and S. Wang. 2018. Rapid qualitative and quantitative analysis of aflatoxin B1 in pu-erh tea by liquid chromatography-isotope dilution tandem mass spectrometry coupled with the QuEChERS purification method. Analytical Methods 10 (39):4776–83. doi: 10.1039/C8AY01730A.
  • Dorner, J. W. 2008. Management and prevention of mycotoxins in peanuts. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 25 (2):203–8. doi: 10.1080/02652030701658357.
  • Dridi, F., M. Marrakchi, M. Gargouri, A. Garcia-Cruz, S. Dzyadevych, F. Vocanson, J. Saulnier, N. Jaffrezic-Renault, and F. Lagarde. 2015. Thermolysin entrapped in a gold nanoparticles/polymer composite for direct and sensitive conductometric biosensing of ochratoxin A in olive oil. Sensors and Actuators B: Chemical 221:480–90. doi: 10.1016/j.snb.2015.06.120.
  • Duarte, S. C., N. Salvador, F. Machado, E. Costa, A. Almeida, L. J. Silva, A. M. Pereira, C. Lino, and A. Pena. 2020. Mycotoxins in teas and medicinal plants destined to prepare infusions in Portugal. Food Control. 115:107290. doi: 10.1016/j.foodcont.2020.107290.
  • Dutta, B. K., S. Dutta, and P. K. Nath. 2008. Mycotoxin production potential of mycoflora in tea. In Economic crisis in tea industry, eds. N. K. Jain, F. Rahman, and P. Baker, 221–32. New Delhi, India: Studium Press.
  • Dzuman, Z., M. Zachariasova, Z. Veprikova, M. Godula, and J. Hajslova. 2015. Multi-analyte high performance liquid chromatography coupled to high resolution tandem mass spectrometry method for control of pesticide residues, mycotoxins, and pyrrolizidine alkaloids. Analytica Chimica Acta 863:29–40. doi: 10.1016/j.aca.2015.01.021.
  • EFSA. 2013. Panel on Contaminants in the Food Chain (CONTAM). Scientific opinion on the risk for public and animal health related to the presence of sterigmatocystin in food and feed. EFSA Journal 11:3254.
  • EFSA. 2014. European Food Safety Authority (EFSA) panel on Contaminants in the Food Chain (CONTAM), scientific opinion on the risks to human and animal health related to the presence of beauvericin and enniatins in food and feed. EFSA Journal 12:3802. doi: 10.2903/j.efsa.2014.3802.
  • EFSA. 2016. EFSA Panel on Contaminants in the Food Chain (CONTAM). Appropriateness to set a group health-based guidance value for zearalenone and its modified forms. EFSA Journal 14:e04425.
  • El Jai, A., C. Juan, A. Juan-García, J. Mañes, and A. Zinedine. 2021. Multi-mycotoxin contamination of green tea infusion and dietary exposure assessment in Moroccan population. Food Research International (Ottawa, ON) 140:109958. doi: 10.1016/j.foodres.2020.109958.
  • Elshafie, A. E., T. Al-Lawatia, and S. Al-Bahry. 1999. Fungi associated with black tea and tea quality in the Sultanate of Oman. Mycopathologia 145 (2):89–93.
  • European Union (EU). 2006. European Commission Regulation No 1881/2006. Regulation of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Official Journal of European Union 364:5–24.
  • European Union (EU). 2010. European Commission Regulation No 165/2010 of 26 February 2010 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards aflatoxins. Official Journal of European Union 50:8–12.
  • European Union (EU). 2012. European Commission Regulation No 594/2012 of 5 July 2012 amending regulation (EC) 1881/2006 as regards the maximum levels of the contaminants ochratoxin A, non dioxin-like PCBs and melamine in foodstuffs. Official Journal of European Union 176:43–5.
  • Fanaro, G. B., N. M. A. Hassimotto, D. H. M. Bastos, and A. L. C. H. Villavicencio. 2015. Effects of γ-radiation on microbial load and antioxidant proprieties in green tea irradiated with different water activities. Radiation Physics and Chemistry 107:40–6. doi: 10.1016/j.radphyschem.2014.09.008.
  • Fanaro, G. B., N. M. A. Hassimotto, D. H. M. Bastos, and A. L. C. H. Villavicencio. 2014. Effects of γ-radiation on microbial load and antioxidant proprieties in black tea irradiated with different water activities. Radiation Physics and Chemistry 97:217–22. doi: 10.1016/j.radphyschem.2013.11.036.
  • FAOCCP. 2018a. Intergovernmental Group on Tea, emerging trends in tea consumption: Informing a generic promotion process. CCP: TE 18/2. 2018, 1–9. http://www.fao.org/3/MW522EN/mw522en.pdf.
  • FAOCCP. 2018b. Intergovernmental Group on Tea, current market situation and medium term outlook. CCP:TE 18/CRS1. 2018, 1–16. http://www.fao.org/3/BU642en/bu642en.pdf.
  • Farkas, J. 2006. Irradiation for better foods. Trends in Food Science & Technology 17 (4):148–52. doi: 10.1016/j.tifs.2005.12.003.
  • Freitas, A., C. Brites, S. Barros, J. Barbosa, and A. Sanches-Silva. 2019. Validation of a biochip chemiluminescent immunoassay for multi-mycotoxins screening in maize (Zea mays L.). Food Analytical Methods 12 (12):2675–84. doi: 10.1007/s12161-019-01625-1.
  • Gambacorta, L., N. El Darra, R. Fakhoury, A. F. Logrieco, and M. Solfrizzo. 2019. Incidence and levels of Alternaria mycotoxins in spices and herbs produced worldwide and commercialised in Lebanon. Food Control. 106:106724. doi: 10.1016/j.foodcont.2019.106724.
  • Gerolis, L. G. L., F. S. Lameiras, K. Krambrock, and M. J. Neves. 2017. Effect of gamma radiation on antioxidant capacity of green tea, yerba mate, and chamomile tea as evaluated by different methods. Radiation Physics and Chemistry 130:177–85. doi: 10.1016/j.radphyschem.2016.08.017.
  • Gimenez, B., A. L. Lacey, E. Perez-Santin, M. E. Lopez-Caballero, and P. Montero. 2013. Release of active compounds from agar and agaregelatin films with green tea extract. Food Hydrocolloids. 30 (1):264–71. doi: 10.1016/j.foodhyd.2012.05.014.
  • González-Curbelo, M. Á., B. Socas-Rodríguez, A. V. Herrera-Herrera, J. González-Sálamo, J. Hernández-Borges, and M. Á. Rodríguez-Delgado. 2015. Evolution and applications of the QuEChERS method. Trends in Analytical Chemistry 71:169–85. doi: 10.1016/j.trac.2015.04.012.
  • Haas, D., B. Pfeifer, C. Reiterich, R. Partenheimer, B. Reck, and W. Buzina. 2013. Identification and quantification of fungi and mycotoxins from pu-erh tea. International Journal of Food Microbiology 166 (2):316–22. doi: 10.1016/j.ijfoodmicro.2013.07.024.
  • Hacıbekiroğlu, I., and U. Kolak. 2013. Aflatoxins in various food from Istanbul, Turkey. Food Additives & Contaminants. Part B, Surveillance 6 (4):260–4. doi: 10.1080/19393210.2013.813080.
  • Halt, M. 1998. Moulds and mycotoxins in herb tea and medicinal plants. European Journal of Epidemiology 14 (3):269–74. doi: 10.1023/A:1007498613538.
  • Hamed, M. A., T. M. A. Ghany, N. I. Elhussieny, and M. A. Nabih. 2016. Exploration of fungal infection in agricultural grains, aflatoxin and zearalenone synthesis under pH stress. International Journal of Current Microbiology and Applied Sciences 5 (4):1007–17. doi: 10.20546/ijcmas.2016.504.115.
  • Hemmati, V., F. Garavand, N. Khorshidian, I. Cacciotti, M. Goudarzi, M. Chaichi, and B. K. Tiwari. 2021. Impact of cold atmospheric plasma on microbial safety, total phenolic and flavonoid contents, antioxidant activity, volatile compounds, surface morphology, and sensory quality of green tea powder. Food Bioscience 44:101348. doi: 10.1016/j.fbio.2021.101348.
  • Hocking, A. D. 1997. Toxigenic Aspergillus species. In Food microbiology: Fundamentals and frontiers, eds. M. P. Doyle, L.R. Beuchat, and T. J. Montville, 393–405. Washington: ASM Press.
  • Hou, R.-Y., W.-T. Jiao, X.-S. Qian, X.-H. Wang, Y. Xiao, and X.-C. Wan. 2013. Effective extraction method for determination of neonicotinoid residues in tea. Journal of Agricultural and Food Chemistry 61 (51):12565–71. doi: 10.1021/jf404100x.
  • Hu, Q., G. Pan, and J. Zhu. 2001. Effect of selenium on green tea preservation quality and amino acid composition of tea protein. The Journal of Horticultural Science and Biotechnology 76 (3):344–6. doi: 10.1080/14620316.2001.11511374.
  • Iha, M. H., and M. W. Trucksess. 2010. Aflatoxins and ochratoxin a in tea prepared from naturally contaminated powdered ginger. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 27 (8):1142–7. doi: 10.1080/19440041003795319.
  • Ismail, A., S. Akhtar, M. Riaz, Y. Y. Gong, M. N. Routledge, and I. Naeem. 2020. Prevalence and exposure assessment of aflatoxins through black tea consumption in the Multan city of Pakistan and the impact of tea making process on aflatoxins. Frontiers in Microbiology 11:446. doi: 10.3389/fmicb.2020.00446.
  • Jayabalan, R., S. Marimuthu, P. Thangaraj, M. Sathishkumar, A. R. Binupriya, K. Swaminathan, and S. E. Yun. 2008. Preservation of kombucha tea-effect of temperature on tea components and free radical scavenging properties. Journal of Agricultural and Food Chemistry 56 (19):9064–71. doi: 10.1021/jf8020893.
  • Jestoi, M. 2008. Emerging fusarium-mycotoxins fusaproliferin, beauvericin, enniatins, and moniliformin: A review. Critical Reviews in Food Science and Nutrition 48 (1):21–49. doi: 10.1080/10408390601062021.
  • Jian, F., D. S. Jayas, and N. D. G. White. 2013. Can ozone be a new control strategy for pests of stored grain? Agricultural Research 2 (1):1–8. doi: 10.1007/s40003-012-0046-2.
  • Juglal, S., R. Govinden, and B. Odhav. 2002. Spice oils for the control of co-occurring mycotoxin-producing fungi. Journal of Food Protection 65 (4):683–7. doi: 10.4315/0362-028x-65.4.683.
  • Kausar, T., K. Akram, and J. H. Kwon. 2013. Comparative effects of irradiation, fumigation, and storage on the free amino acids and sugar contents of green, black and oolong teas. Radiation Physics and Chemistry 86:96–101. doi: 10.1016/j.radphyschem.2012.12.011.
  • Khan, N., and H. Mukhtar. 2013. Tea and health: Studies in humans. Current Pharmaceutical Design 19 (34):6141–7. doi: 10.2174/1381612811319340008.
  • Kiseleva, M. G., Z. Chalyy, and I. Sedova. 2021. Tea: Transfer of mycotoxins from the spiked matrix into an infusion. Toxins 13 (6):404. doi: 10.3390/toxins13060404.
  • Kiseleva, M. G., Z. A. Chalyy, I. B. Sedova, L. P. Minaeva, and S. A. Sheveleva. 2020. Studying the contamination of tea and herbal infusions with myсotoxins (message 2). UDC 542.06; 543.544.5.068.7; 579.674. doi: 10.21668/health.risk/2020.1.04.eng.
  • Klingelhöfer, D., Y. Zhu, M. Braun, M. H. Bendels, D. Brüggmann, and D. A. Groneberg. 2018. Aflatoxin-Publication analysis of a global health threat. Food Control 89:280–90. doi: 10.1016/j.foodcont.2018.02.017.
  • Knutsen, H. K., L. Barregard, M. Bignami, and B. Brüschweiler. 2016. Appropriateness to set a group health-based guidance value for zearalenone and its modified forms. EFSA Journal 14:4425.
  • Kumhar, K. C., and A. Babu. 2019. Biocontrol potency of Trichoderma isolates against tea (Camellia sp.) pathogens and their susceptibility towards fungicides. International Journal of Chemical Studies 7:4192–5.
  • Latvia Cabinet of Ministers (LCM). 2014. Requirements for food quality schemes, their implementation, operation, monitoring and control arrangements. Regulations of Cabinet of Ministers No. 461.
  • Li, Q., S. Chai, Y. Li, J. Huang, Y. Luo, L. Xiao, and Z. Liu. 2018. Biochemical components associated with microbial community shift during the pile-fermentation of primary dark tea. Frontiers in Microbiology 9:1509. doi: 10.3389/fmicb.2018.01509.
  • Li, Q., J. Huang, Y. Li, Y. Zhang, Y. Luo, Y. Chen, H. Lin, K. Wang, and Z. Liu. 2017. Fungal community succession and major components change during manufacturing process of Fu brick tea. Scientific Reports 7 (1):6947. doi: 10.1038/s41598-017-07098-8.
  • Lima, C. M. G., H. R. D. Costa, J. P. Pagnossa, N. d C. Rollemberg, J. F. da Silva, F. M. Dalla Nora, G. E.-S. Batiha, and S. Verruck. 2022. Influence of grains postharvest conditions on mycotoxins occurrence in milk and dairy products. Food Science and Technology 42, 16421. doi: 10.1590/fst.16421.
  • Li, Z., Y. Mao, J. Teng, N. Xia, L. Huang, B. Wei, and Q. Chen. 2020. Evaluation of mycoflora and citrinin occurrence in Chinese Liupao tea. Journal of Agricultural and Food Chemistry 68 (43):12116–23. doi: 10.1021/acs.jafc.0c04522.
  • Liu, C., Y. Guo, L. Sun, X. Lai, Q. Li, W. Zhang, L. Xiang, S. Sun, and F. Cao. 2019. Six types of tea reduce high-fat diet-induced fat accumulation in mice by increasing lipid metabolism and suppressing inflammation. Food & Function 10 (4):2061–74. doi: 10.1039/c8fo02334d.
  • Li, W. G., K. L. Xu, R. Xiao, G. F. Yin, and W. W. Liu. 2015. Development of an HPLC-based method for the detection ofaflatoxins in pu-erh tea. International Journal of Food Properties 18 (4):842–8. doi: 10.1080/10942912.2014.885043.
  • Li, X., Z. Zhang, P. Li, Q. Zhang, W. Zhang, and X. Ding. 2013. Determination for major chemical contaminants in tea (Camellia sinensis) matrices: A review. Food Research International 53 (2):649–58. doi: 10.1016/j.foodres.2012.12.048.
  • Luo, Y., X. Liu, and J. Li. 2018. Updating techniques on controlling mycotoxins—A review. Food Control. 89:123–32. doi: 10.1016/j.foodcont.2018.01.016.
  • Mahtabani, A. 2011. Assessment of ochratoxin a and aflatoxin B1, B2, G1, G2 rates in breakfast grains of supermarkets in Tehran using HPLC method in 2010. Hakim Research Journal 14 (1):10–15.
  • Malir, F., V. Ostry, A. Pfohl-Leszkowicz, J. Toman, I. Bazin, and T. Roubal. 2014. Transfer of Ochratoxin A into tea and coffee beverages. Toxins 6 (12):3438–53. doi: 10.3390/toxins6123438.
  • Mannani, N., Tabarani, A. Hassane, Abdennebi, El, H, and Zinedine, A. 2020. Assessment of aflatoxin levels in herbal green tea available on the Moroccan market. Food Control 108:106882. doi: 10.1016/j.foodcont.2019.106882.
  • Mao, Y., B. Wei, J. Teng, L. Huang, and N. Xia. 2017. Analyses of fungal community by Illumina MiSeq platforms and characterization of Eurotium species on Liupao tea, a distinctive post-fermented tea from China. Food Research International (Ottawa, ON) 99 (Pt 1):641–9. doi: 10.1016/j.foodres.2017.06.032.
  • Marin, S., A. J. Ramos, G. Cano-Sancho, and V. Sanchis. 2013. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 60:218–37. doi: 10.1016/j.fct.2013.07.047.
  • Maroufi, L. Y., M. Ghorbani, and M. Tabibiazar. 2020. A gelatin-based film reinforced by covalent interaction with oxidized guar gum containing green tea extract as an active food packaging system. Food and Bioprocess Technology 13 (9):1633–44. doi: 10.1007/s11947-020-02509-7.
  • Marshall, H., J. P. Meneely, B. Quinn, Z. Yueju, P. Bourke, B. F. Gilmore, G. Zhang, and C. T. Elliott. 2020. Novel decontamination approaches and their potential application for post-harvest aflatoxin control. Trends in Food Science & Technology 106:489–96. doi: 10.1016/j.tifs.2020.11.001.
  • Martinez-Dominguez, G., R. Romero-González, and A. F. Garrido. 2016. Multi-class methodology to determine pesticides and mycotoxins in green tea and royal jelly supplements by liquid chromatography coupled to Orbitrap high-resolution mass spectrometry. Food Chemistry 197:907–15. doi: 10.1016/j.foodchem.2015.11.070.
  • Martins, M. L., H. M. Martins, and F. Bernardo. 2001. Fumonisins B1 and B2 in black tea and medicinal plants. Journal of Food Protection 64 (8):1268–70. doi: 10.4315/0362-028x-64.8.1268.
  • Mastovska, K., and P. L. Wylie. 2012. Evaluation of a new column backflushing set-up in the gas chromatographic-tandem mass spectrometric analysis of pesticide residues in dietary supplements. Journal of Chromatography. A 1265:155–64. doi: 10.1016/j.chroma.2012.09.094.
  • Mateus, A. R. S., A. Barros, A. Pena, and A. Sanches-Silva. 2021. Development and validation of QuEChERS followed by UHPLC-ToF-MS method for determination of multi-mycotoxins in pistachio nuts. Molecules 26 (19):5754. doi: 10.3390/molecules26195754.
  • Milani, J. M. 2013. Ecological conditions affecting mycotoxin production in cereals: A review. Veterinární Medicína 58 (8):405–11. doi: 10.17221/6979-VETMED.
  • Minaeva, L. P., A. I. Aleshkina, Y. M. Markova, A. S. Polyanina, T. V. Pichugina, I. B. Bykova, V. V. Stetsenko, N. R. Efimochkina, and S. A. Sheveleva. 2019. Studying the contamination of tea and herbal infusions with mold fungi as potential mycotoxin producers: The first step to risk assessment. Health Risk Analysis 1 (1):93–102. doi: 10.21668/health.risk/2019.1.10.eng.
  • Mishra, B. B., S. Gautam, and A. Sharma. 2006. Microbial decontamination of tea (Camellia sinensis) by gamma radiation. Journal of Food Science 71 (6):M151–156. doi: 10.1111/j.1750-3841.2006.00057.x.
  • Mitsui, A., R. Sakai, K. Miwa, and S. Shibahara. 2020. Elucidation of the antiviral mechanism of cystine and theanine through transcriptome analysis of mice and comparison with COVID-19 gene set data. bioRxiv. doi: 10.1101/2020.06.25.149427.
  • Mogensen, J. M., J. Varga, U. Thrane, and J. C. Frisvad. 2009. Aspergillus acidus from Pu erh tea and black tea does not produce ochratoxin A and fumonisin B2. International Journal of Food Microbiology 132 (2–3):141–4. doi: 10.1016/j.ijfoodmicro.2009.04.011.
  • Monbaliu, S., A. Wu, D. Zhang, C. Van Peteghem, and S. De Saeger. 2010. Multimycotoxin UPLC-MS/MS for tea, herbal infusions and the derived drinkable products. Journal of Agricultural and Food Chemistry 58 (24):12664–71. doi: 10.1021/jf1033043.
  • Monyethabeng, M. M., and M. Krugel. 2016. The effect of UV-C treatment on various spoilage microorganisms inoculated into Rooibos iced tea. Lwt 73:419–25. doi: 10.1016/j.lwt.2016.06.045.
  • Moses, J. A., D. S. Jayas, and K. Alagusundaram. 2014. Simulation and validation of airflow 642 distribution patterns in bins filled with canola. Journal of Agricultural Engineering 51:14–20.
  • Mukherjee, A., M. Sharma, S. Latkar, and P. Maurya. 2018. A study on aflatoxin content in black tea available in domestic market in India. Journal of Chemistry and Chemical Sciences 8 (3):562–8. doi: 10.29055/jccs/615.
  • Nonaka, Y., K. Saito, N. Hanioka, S. Narimatsu, and H. Kataoka. 2009. Determination of aflatoxins in food samples by automated on-line in-tube solid-phase microextraction coupled with liquid chromatography-mass spectrometry. Journal of Chromatography A 1216 (20):4416–22. doi: 10.1016/j.chroma.2009.03.035.
  • Omogbai, B. A., and I. Marcel. 2013. Microbiological characteristics and phytochemical screening of some herbal teas in Nigeria. European Scientific Journal 9:149.
  • Omurtag, G. Z., and D. Yazicioğlu. 2004. Determination of fumonisins B1 and B2 in herbal tea and medicinal plants in Turkey by high-performance liquid chromatography. Journal of Food Protection 67 (8):1782–6. doi: 10.4315/0362-028x-67.8.1782.
  • Pakshir, K., Z. Mirshekari, H. Nouraei, Z. Zareshahrabadi, K. Zomorodian, H. Khodadadi, and A. Hadaegh. 2020. Mycotoxins detection and fungal contamination in black and green tea by HPLC-based method. Journal of Toxicology 2020:2456210. doi: 10.1155/2020/2456210.
  • Pallarés, N., G. Font, J. Mañes, and E. Ferrer. 2017. Multimycotoxin LC-MS/MS analysis in tea beverages after dispersive liquid-liquid microextraction (DLLME). Journal of Agricultural and Food Chemistry 65 (47):10282–9. doi: 10.1021/acs.jafc.7b03507.
  • Pallarés, N., J. Tolosa, J. Manes, and E. Ferrer. 2019. Occurrence of mycotoxins in botanical dietary supplement infusion beverages. Journal of Natural Products 82 (2):403–6. doi: 10.1021/acs.jnatprod.8b00283.
  • Pandey, A. K., B. Deka, R. Varshney, E. C. Cheramgoi, and A. Babu. 2021b. Do the beneficial fungi manage phytosanitary problems in the tea agro-ecosystem? BioControl 66 (4):445–62. doi: 10.1007/s10526-021-10084-9.
  • Pandey, A. K., G. Sinniah, A. Babu, and A. Tanti. 2021a. How the global tea industry copes with fungal diseases - Challenges and opportunities. Plant Disease 105 (7):1868–79. doi: 10.1094/PDIS-09-20-1945-FE.
  • Pandey, A. K., N. Sonker, and P. Singh. 2016. Efficacy of some essential oils against Aspergillus flavus with special reference to Lippia alba oil an inhibitor of fungal proliferation and aflatoxin b 1 production in green gram seeds during storage. Journal of Food Science 81 (4):M928–934. doi: 10.1111/1750-3841.13254.
  • Panza, F., V. Solfrizzi, M. R. Barulli, C. Bonfiglio, V. Guerra, A. Osella, D. Seripa, C. Sabbà, A. Pilotto, and G. Logroscino. 2015. Coffee, tea, and caffeine consumption and prevention of late-life cognitive decline and dementia: A systematic review. The Journal of Nutrition, Health & Aging 19 (3):313–28. doi: 10.1007/s12603-014-0563-8.
  • Park, J. W., P. M. Scott, B. P. Lau, and D. A. Lewis. 2004. Analysis of heat-processed corn foods for fumonisins and bound fumonisins. Food Additives and Contaminants 21 (12):1168–78. doi: 10.1080/02652030400021873.
  • Paterson, R. R. M., and N. Lima. 2010. How will climate change affect mycotoxins in food? Food Research International 43 (7):1902–14. doi: 10.1016/j.foodres.2009.07.010.
  • Paterson, R., A. Venancio, N. Lima, M. Guilloux-Benatier, and S. Rousseaux. 2018. Predominant mycotoxins, mycotoxigenic fungi and climate change related to wine. Food Research International (Ottawa, ON) 103:478–91. doi: 10.1016/j.foodres.2017.09.080.
  • Pereira, V. L., J. O. Fernandes, and S. C. Cunha. 2014. Mycotoxins in cereals and related foodstuffs: A review on occurrence and recent methods of analysis. Trends in Food Science & Technology 36 (2):96–136. doi: 10.1016/j.tifs.2014.01.005.
  • Pleadin, J., J. Frece, and K. Markov. 2019. Mycotoxins in food and feed. Advances in Food and Nutrition Research 89:297–345.
  • Pouretedal, Z., and M. Mazaheri. 2013. Aflatoxins in black tea in Iran. Food Additives & Contaminants. Part B, Surveillance 6 (2):127–9. doi: 10.1080/19393210.2013.764551.
  • Prado, G., A. F. Altoé, T. C. B. Gomes, A. S. Leal, V. A. D. Morais, M. S. Oliveira, M. B. Ferreira, M. B. Gomes, F. N. Paschoal, R. v S. Souza, et al. 2012. Occurrence of aflatoxin B1 in natural products. Brazilian Journal of Microbiology 43 (4):1428–35. doi: 10.1590/S1517-83822012000400026.
  • Punyasiri, P. A. N., S. B. Abeysinghe, and V. Kumar. 2005. Preformed and induced chemical resistance of tea leaf against Exobasidium vexans infection. Journal of Chemical Ecology 31 (6):1315–24. doi: 10.1007/s10886-005-5288-z.
  • Qin, L., J.-Y. Jiang, L. Zhang, X.-W. Dou, Z. Ouyang, L. Wan, and M.-H. Yang. 2020. Occurrence and analysis of mycotoxins in domestic Chinese herbal medicines. Mycology 11 (2):126–46. doi: 10.1080/21501203.2020.1727578.
  • Rashid, M. H., M. A. Z. Chowdhury, Z. Fardous, E. M. Tanvir, M. K. Pramanik, I. Jahan, M. K. Alam, M. Moniruzzaman, and S. H. Gan. 2016. Microbial decontamination of gamma irradiated black tea and determination of major minerals in black tea, fresh tea leaves and tea garden soil. Lwt 73:185–90. doi: 10.1016/j.lwt.2016.05.044.
  • Reinholds, I., E. Bogdanova, I. Pugajeva, L. Alksne, D. Stalberga, O. Valcina, and V. Bartkevics. 2020. Determination of fungi and multi-class mycotoxins in Camelia sinensis and herbal teas and dietary exposure assessment. Toxins 12 (9):555. doi: 10.3390/toxins12090555.
  • Reinholds, I., E. Bogdanova, I. Pugajeva, and V. Bartkevics. 2019. Mycotoxins in herbal teas marketed in Latvia and dietary exposure assessment. Food Additives & Contaminants. Part B, Surveillance 12 (3):199–208. doi: 10.1080/19393210.2019.1597927.
  • Rezacova, V., and A. Kubatova. 2005. Saprobic microfungi in tea based on Camellia sinensis and on other dried herbs. Czech Mycology 57:79–89.
  • Richard, J. L. 2007. Some major mycotoxins and their mycotoxicoses: An overview. International Journal of Food Microbiology 119 (1-2):3–10. doi: 10.1016/j.ijfoodmicro.2007.07.019.
  • Rodsamran, P., and R. Sothornvit. 2018. Microencapsulation of Thai rice grass (O. sativa cv. Khao Dawk Mali 105) extract incorporated to form bioactive carboxymethyl cellulose edible film. Food Chemistry 242:239–46. doi: 10.1016/j.foodchem.2017.09.064.
  • Romagnoli, B., V. Menna, N. Gruppioni, and C. Bergamini. 2007. Aflatoxins in spices, aromatic herbs, herb-teas andmedicinal plants marketed in Italy. Food Control 18 (6):697–701. doi: 10.1016/j.foodcont.2006.02.020.
  • Roshanak, S., M. Rahimmalek, and S. A. H. Goli. 2016. Evaluation of seven different drying treatments in respect to total flavonoid, phenolic, vitamin C content, chlorophyll, antioxidant activity and color of green tea (Camellia sinensis or C. assamica) leaves. Journal of Food Science and Technology 53 (1):721–9. doi: 10.1007/s13197-015-2030-x.
  • Ruhland, M., G. Engelhardt, and P. Wallnöfer. 1997. Transformation of the mycotoxin ochratoxin A in artificially contaminated vegetables and cereals. Mycotoxin Research 13 (2):54–60. doi: 10.1007/BF02945066.
  • Sainz, M. A. L. Botana, L. Botana, and M. Sainz. 2015. Considerations about international mycotoxin legislation, food security, and climate change. In Climate change and mycotoxins, 153–80. Berlin: De Gruyter.
  • Sanchis, V. 2004. Environmental conditions affecting mycotoxins. In Mycotoxins in food: Detection and control, eds. N. Magan, and M. Olsen, 174–89. Boca Raton, FL: CRC Press.
  • Santos, L., S. Marin, V. Sanchis, and A. J. Ramos. 2009. Screening of mycotoxin multi contamination in medicinal and aromatic herbs sampled in Spain. Journal of the Science of Food and Agriculture 89 (10):1802–7. doi: 10.1002/jsfa.3647.
  • Sarrocco, S., A. Mauro, and P. Battilani. 2019. Use of competitive filamentous fungi as an alternative approach for mycotoxin risk reduction in staple cereals: State of art and future perspectives. Toxins 11 (12):701. doi: 10.3390/toxins11120701.
  • Schrenk, D., M. Bignami, L. Bodin, J. K. Chipman, J. Del Mazo, B. Grasl-Kraupp, C. Hogstrand, L. R. Hoogenboom, J.-C. Leblanc, C. S. Nebbia, et al. 2020a. Risk assessment of aflatoxins in food. EFSA Journal. European Food Safety Authority 18 (3):e06040. doi: 10.2903/j.efsa.2020.6040.
  • Schrenk, D., L. Bodin, J. K. Chipman, J. del Mazo, B. Grasl‐Kraupp, C. Hogstrand, L. Hoogenboom, J. Leblanc, C. S. Nebbia, E. Nielsen, et al. 2020b. Risk assessment of ochratoxin A in food. EFSA Journal 18 (5):e06113. doi: 10.2903/j.efsa.2020.6113.
  • Sedova, I., M. Kiseleva, and V. Tutelyan. 2018. Mycotoxins in tea: Occurrence, methods of determination and risk evaluation. Toxins 10 (11):444. doi: 10.3390/toxins10110444.
  • Senghor, L. A., A. Ortega-Beltran, J. Atehnkeng, K. A. Callicott, P. J. Cotty, and R. Bandyopadhyay. 2020. The atoxigenic biocontrol product Aflasafe SN01 is a valuable tool to mitigate Aflatoxin contamination of both maize and groundnut cultivated in Senegal. Plant Disease 104 (2):510–20.
  • Senthilkumar, T., D. S. Jayas, N. D. G. White, P. G. Fields, and T. Gräfenhan. 2016. Near742 Infrared (NIR) hyperspectral imaging: Theory and applications to detect fungal infection 743 and mycotoxin contamination in food products. Indian Journal of Entomology 744 (78 special):91.
  • Sereshti, H., S. Samadi, and M. Jalali-Heravi. 2013. Determination of volatile components of green, black, oolong and white tea by optimized ultrasound-assisted extraction-dispersive liquid-liquid microextraction coupled with gas chromatography. Journal of Chromatography A 1280:1–8. doi: 10.1016/j.chroma.2013.01.029.
  • Sharma, N., M. Muthamilarasan, A. Prasad, and M. Prasad. 2020. Genomics approaches to synthesize plant-based biomolecules for therapeutic applications to combat SARS-CoV-2 . Genomics 112 (6):4322–31. doi: 10.1016/j.ygeno.2020.07.033.
  • Shetty, P. H., and L. Jespersen. 2006. Saccharomyces cerevisiae and lactic acid bacteria as potential mycotoxin decontaminating agents. Trends in Food Science & Technology 17 (2):48–55. doi: 10.1016/j.tifs.2005.10.004.
  • Siegel, D., K. Andrae, M. Proske, C. Kochan, M. Koch, M. Weber, and I. Nehls. 2010. Dynamic covalent hydrazine chemistry as a selective extraction and cleanup technique for the quantification of the Fusarium mycotoxin zearalenone in edible oils. Journal of Chromatography. A 1217 (15):2206–15. doi: 10.1016/j.chroma.2010.02.019.
  • Srianujata, S. 2011. Regulatory update and control measures for prevention and reduction of mycotoxins contamination in foods and feeds. Proceedings of FFTCeKU conference, International seminar on risk assessment and risk management of mycotoxins for food safety in Asia. Thailand: Kasetsart University.
  • Soni, R. P., M. Katoch, A. Kumar, R. Ladohiya, and P. Verma. 2015. Tea: Production, composition, consumption and its potential an antioxidant and antimicrobial agent. International Journal of Food and Fermentation Technology 5 (2):95–106. doi: 10.5958/2277-9396.2016.00002.7.
  • Storari, M., G. Francesca, L. Dennert, C. G. Bigler, and G. A. L. Broggini. 2012. Isolation of mycotoxins producing black aspergilli in herbal teas available on the Swiss market. Food Control 26 (1):157–61. doi: 10.1016/j.foodcont.2012.01.026.
  • Tan, Y., Y. Kuang, R. Zhao, B. Chen, and J. Wu. 2011. Determination of T-2 and HT-2 toxins in traditional Chinese medicine marketed in China by LC–ELSD after sample clean-up by two solid-phase extractions. Chromatographia 73 (3–4):407–10. doi: 10.1007/s10337-010-1890-5.
  • Tea and Herbal Infusions Europe (THIE). 2018a. Compendium of guidelines for tea (Camellia sinensis), Issue 5. https://thie-online.eu/files/thie/docs/2018-08-20_Compendium_of_Guidelines_for_Tea_ISSUE_5.pdf
  • Tea and Herbal Infusions Europe (THIE). 2018b. Compendium of guidelines for herbal and fruit infusions, Issue 6. https://www.teeverband.de/files/bilder/Publikationen/Recht/2018-07-17_Compendium_of_Guidelines_for_Herbal_Infusions_- _ISSUE_6.pdf
  • Thomas, J., R. S. Senthilkumar, R. R. Kumar, A. K. A. Mandal, and N. Muraleedharan. 2008. Induction of γ irradiation for decontamination and to increase the storage stability of black teas. Food Chemistry 106 (1):180–4. doi: 10.1016/j.foodchem.2007.05.064.
  • Toman, J., F. Malir, V. Ostry, M. A. Kilic, T. Roubal, Y. Grosse, and A. Pfohl-Leszkowicz. 2018. Transfer of ochratoxin A from raw black tea to tea infusions prepared according to the Turkish tradition. Journal of the Science of Food and Agriculture 98 (1):261–5. doi: 10.1002/jsfa.8464.
  • Tosun, H., P. G. Ergönül, and E. F. Üçok. 2016. Occurrence of aflatoxins (B1, B2, G1, G2) in herbal tea consumed in Turkey. Journal Für Verbraucherschutz Und Lebensmittelsicherheit 11 (3):265–9. doi: 10.1007/s00003-016-1032-6.
  • Tran, S. T., and T. K. Smith. 2011. Determination of optimal conditions for hydrolysis of conjugated deoxynivalenol in corn and wheat with trifluoromethanesulfonic acid. Animal Feed Science and Technology 163 (2–4):84–92. doi: 10.1016/j.anifeedsci.2010.10.008.
  • TRCU. 2011. Technical Regulations of the Customs Union (TRCU021/2011) on food safety. http://www.eurexcert.com/TRCUpdf/TRCU-0021-On-food-safety.pdf.
  • Turner, N. W., H. Bramhmbhatt, M. Szabo-Vezse, A. Poma, R. Coker, and S. A. Piletsky. 2015. Analytical methods for determination of mycotoxins: An update (2009–2014). Analytica Chimica Acta 901:12–33. doi: 10.1016/j.aca.2015.10.013.
  • Umesha, S., H. M. G. Manukumar, B. Chandrasekhar, P. Shivakumara, J. Shiva Kumar, S. Raghava, P. Avinash, M. Shirin, T. R. Bharathi, S. B. Rajini, et al. 2017. Aflatoxins and food pathogens: Impact of biologically active aflatoxins and their control strategies. Journal of the Science of Food and Agriculture 97 (6):1698–707. doi: 10.1002/jsfa.8144.
  • Vaclavik, L., M. Vaclavikova, T. H. Begley, A. J. Krynitsky, and J. I. Rader. 2013. Determination of multiple mycotoxins in dietary supplements containing green coffee bean extracts using Ultrahigh-Performance Liquid Chromatography–Tandem Mass Spectrometry (UHPLC-MS/MS). Journal of Agricultural and Food Chemistry 61 (20):4822–30. doi: 10.1021/jf401139u.
  • Viswanath, P., D. K. Nanjegowda, H. Govindegowda, A. M. Dattatreya, and V. Siddappa. 2012. Aflatoxin determination in black tea (Camellia sinensis): Status and development of a protocol. Journal of Food Safety 32 (1):13–21. doi: 10.1111/j.1745-4565.2011.00339.x.
  • Vithu, P., and J. A. Moses. 2016. Machine vision system for food grain quality evaluation: A review. Trends in Food Science & Technology 56:13–20. doi: 10.1016/j.tifs.2016.07.011.
  • Wang, L. M., D. F. Huang, Y. Fang, F. Wang, F. L. Li, and M. Liao. 2017a. Soil fungal communities in tea plantation after 10 years of chemical vs. integrated fertilization. Chilean Journal of Agricultural Research 77 (4):355–64. doi: 10.4067/S0718-58392017000400355.
  • Wang, L., H. Yang, G. X. Xie, and W. Jia. 2017b. Determination of mycotoxins in pu-erh tea, black tea, and green tea samples. Zhongguo Zhong Yao za Zhi = Zhongguo Zhongyao Zazhi = China Journal of Chinese Materia Medica 42 (24):4801–6.
  • Weidenbörner, M. 2013. Mycotoxins in foodstuffs. 2nd ed. New York, NY: Springer Science + Business Media, 483p.
  • Wielogorska, E., Y. Ahmed, J. Meneely, W. G. Graham, C. T. Elliott, and B. F. A. Gilmore. 2019. A holistic study to understand the detoxification of mycotoxins in maize and impact on its molecular integrity using cold atmospheric plasma treatment. Food Chemistry 301:125281. doi: 10.1016/j.foodchem.2019.125281.
  • World Health Organization (WHO). 2007. Guidelines for assessing quality of herbal medicines with reference to contaminants and residues. 118р. http://apps.who.int/medicinedocs/documents/s14878e/s14878e.pdf.
  • Wu, J. Y., G. Y. Yang, J. L. Chen, and W. X. Li. 2014. Investigation for pu-erh tea contamination caused by mycotoxins in a tea market in Guangzhou. Journal of Basic and Applied Sciences 10:349–56.
  • Xu, A., Y. Wang, J. Wen, P. Liu, Z. Liu, and Z. Li. 2011. Fungal community associated with fermentation and storage of Fuzhuan brick-tea. International Journal of Food Microbiology 146 (1):14–22. doi: 10.1016/j.ijfoodmicro.2011.01.024.
  • Yang, H., X. Xue, H. Li, S. N. Apandi, S. C. Tay-Chan, S. P. Ong, and E. F. Tian. 2018. The relative antioxidant activity and steric structure of green tea catechins - A kinetic approach . Food Chemistry 257:399–405. doi: 10.1016/j.foodchem.2018.03.043.
  • Ye, Z., X. Wang, R. Fu, H. Yan, S. Han, K. Gerelt, P. Cui, J. Chen, K. Qi, and Y. Zhou. 2020. Determination of six groups of mycotoxins in Chinese dark tea and the associated risk assessment. Environmental Pollution (Barking, Essex: 1987) 261:114180. doi: 10.1016/j.envpol.2020.114180.
  • Younes, M., P. Aggett, F. Aguilar, R. Crebelli, B. Dusemund, M. Filipič, M. J. Frutos, P. Galtier, D. Gott, U. Gundert-Remy, et al. 2018. Scientific Opinion on the safety of green tea catechins. EFSA Journal. European Food Safety Authority 16 (4):e05239.
  • Zeng, L., N. Watanabe, and Z. Yang. 2019. Understanding the biosyntheses and stress response mechanisms of aroma compounds in tea (Camellia sinensis) to safely and effectively improve tea aroma. Critical Reviews in Food Science and Nutrition 59 (14):2321–34. doi: 10.1080/10408398.2018.1506907.
  • Zhan, J., R. Zhang, X. Shi, Z. Huang, G. Cao, X. Chen, and L. Hu. 2021. A novel sample-preparation method for the generic and rapid determination of pesticides and mycotoxins in tea by ultra-performance liquid chromatography-tandem mass spectrometry. Journal of Chromatography. A 1636:461794. doi: 10.1016/j.chroma.2020.461794.
  • Zhang, L., X. W. Dou, C. Zhang, A. F. Logrieco, and M. H. Yang. 2018. A review of current methods for analysis of mycotoxins in herbal medicines. Toxins 10 (2):65. doi: 10.3390/toxins10020065.
  • Zhang, X., M. Feng, L. Liu, C. Xing, H. Kuang, C. Peng, L. Wang, and C. Xu. 2013a. Detection of aflatoxins in tea samples based on a class-specific monoclonal antibody. International Journal of Food Science & Technology 48 (6):1269–74. doi: 10.1111/ijfs.12086.
  • Zhang, Y., I. Skaar, M. Sulyok, X. Liu, M. Rao, and J. W. Taylor. 2016b. The microbiome and metabolites in fermented pu-erh tea as revealed by high-throughput sequencing and quantitative multiplex metabolite analysis. PloS One 11 (6):e0157847. doi: 10.1371/journal.pone.0157847.
  • Zhang, W., R. J. Yang, W. J. Fang, L. Yan, J. Lu, J. Sheng, and J. Lv. 2016a. Characterization of thermophilic fungal community associated with pile fermentation of pu-erh tea. International Journal of Food Microbiology 227:29–33. doi: 10.1016/j.ijfoodmicro.2016.03.025.
  • Zhang, L., Z. Zhang, Y. Zhou, T. Ling, and X. Wan. 2013b. Chinese dark teas: Post-fermentation, chemistry and biological activities. Food Research International 53 (2):600–7. doi: 10.1016/j.foodres.2013.01.016.
  • Zhao, Z. J., X. C. Hu, and Q. J. Liu. 2015b. Recent advances on the fungi of pu-erh ripe tea. Food Research International 22:1240–6.
  • Zhao, L., F. Li, G. Chen, Y. Fang, X. An, Y. Zheng, Z. Xin, M. Zhang, Y. Yang, and Q. Hu. 2012. Effect of nanocomposite-based packaging on preservation quality of green tea. International Journal of Food Science & Technology 47 (3):572–8. doi: 10.1111/j.1365-2621.2011.02879.x.
  • Zhao, Z. J., Y. Z. Pan, Q. J. Liu, and X. H. Li. 2013. Exposure assessment of lovastatin in pu-erh tea. International Journal of Food Microbiology 164 (1):26–31. doi: 10.1016/j.ijfoodmicro.2013.03.018.
  • Zhao, Z. J., H. R. Tong, L. Zhou, E. X. Wang, and Q. J. Liu. 2010. Fungal colonisation of pu-erh tea in Yunnan. Journal of Food Safety 30 (4):769–84. doi: 10.1111/j.1745-4565.2010.00240.x.
  • Zhao, W., R. Yang, and M. Wang. 2009. Cold storage temperature following pulsed electric fields treatment to inactivate sublethally injured microorganisms and extend the shelf life of green tea infusions. International Journal of Food Microbiology 129 (2):204–8. doi: 10.1016/j.ijfoodmicro.2008.12.006.
  • Zhao, M., D.-L. Zhang, X.-Q. Su, S.-M. Duan, J.-Q. Wan, W.-X. Yuan, B.-Y. Liu, Y. Ma, and Y.-H. Pan. 2015a. An integrated metagenomics/metaproteomics investigation of the microbial communities and enzymes in solid-state fermentation of pu-erh tea. Scientific Reports 5:10117. doi: 10.1038/srep10117.
  • Zhou, H., N. Liu, Z. Yan, D. Yu, L. Wang, K. Wang, X. Wei, and A. Wu. 2021. Development and validation of the one-step purification method coupled to LC-MS/MS for simultaneous determination of four aflatoxins in fermented tea. Food Chemistry 354:129497. doi: 10.1016/j.foodchem.2021.129497.
  • Zhou, B., C. Ma, C. Wang, H. Wang, and T. Xia. 2018. Biodegradation of caffeine by whole cells of tea-derived fungi Aspergillus sydowii, Aspergillus niger and optimization for caffeine degradation. BMC Microbiology 18 (1):53.
  • Zhu, Z., M. Feng, L. Zuo, Z. Zhu, F. Wang, L. Chen, J. Li, G. Shan, and S.-Z. Luo. 2015. An aptamer based surface plasmon resonance biosensor for the detection of ochratoxin A in wine and peanut oil. Biosensors & Bioelectronics 65:320–6. doi: 10.1016/j.bios.2014.10.059.
  • Zinedine, A., and J. Manes. 2009. Occurrence and legislation of mycotoxins in food and feed from Morocco. Food Control 20 (4):334–44. doi: 10.1016/j.foodcont.2008.07.002.
  • Zweifel, C., and R. Stephan. 2012. Spices and herbs as source of Salmonella-related food borne diseases. Food Research International 45 (2):765–9. doi: 10.1016/j.foodres.2011.02.024.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.