784
Views
3
CrossRef citations to date
0
Altmetric
Review Articles

Lonicera caerulea (Haskap berries): a review of development traceability, functional value, product development status, future opportunities, and challenges

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, , , & ORCID Icon show all

References

  • Amararathna, M., D. W. Hoskin, and H. P. V. Rupasinghe. 2020. Anthocyanin-rich haskap (Lonicera caerulea L.) berry extracts reduce nitrosamine-induced DNA damage in human normal lung epithelial cells in vitro. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 141 (3):111404. doi: 10.1016/j.fct.2020.111404.
  • Auzanneau, N., P. Weber, A. Kosińska-Cagnazzo, and W. Andlauer. 2018. Bioactive compounds and antioxidant capacity of Lonicera caerulea berries: Comparison of seven cultivars over three harvesting years. Journal of Food Composition and Analysis 66 (1):81–9. doi: 10.1016/j.jfca.2017.12.006.
  • Becker, R., S. Dashbaldan, C. Pączkowski, T. Golis, and A. Szakiel. 2019. Comparison of steroids and triterpenoids in leaf cuticular waxes of selected Polish and Russian cultivars and genotypes of edible honeysuckle. Phytochemistry Letters 30 (10):238–44. doi: 10.1016/j.phytol.2019.01.009.
  • Belyaeva, O. V., I. Y. Sergeeva, E. E. Belyaeva, and E. V. Chernobrovkina. 2021. Study of antioxidant activity of juices and beverages from blue honeysuckle and black chokeberry. IOP Conference Series: Earth and Environmental Science 640 (5):052008. doi: 10.1088/1755-1315/640/5/052008.
  • Boyarskih, I. G., A. I. Syso, and T. I. Siromlya. 2019. Variability of chemical elements and biologically active polyphenols in Lonicera caerulea subsp. Altaica (Caprifoliaceae) plant organs along an altitudinal gradient. Contemporary Problems of Ecology 12 (6):594–606. doi: 10.1134/S1995425519060039.
  • Caprioli, G., R. Iannarelli, M. Innocenti, M. Bellumori, D. Fiorini, G. Sagratini, S. Vittori, M. Buccioni, C. Santinelli, M. Bramucci, et al. 2016. Blue honeysuckle fruit (Lonicera caerulea L.) from eastern Russia: Phenolic composition, nutritional value and biological activities of its polar extracts. Food & Function 7 (4):1892–903. doi: 10.1039/c6fo00203j.
  • Celli, G. B., A. Ghanem, and M. S. L. Brooks. 2014. Haskap berries (Lonicera caerulea L.) a critical review of antioxidant capacity and health-related studies for potential value-added products. Food and Bioprocess Technology 7 (6):1541–54. doi: 10.1007/s11947-014-1301-2.
  • Česonien, L., J. Labokas, I. Jasutienė, A. Šarkinas, V. Kaškonienė, P. Kaškonas, R. Kazernavičiūtė, A. Pažereckaitė, and R. Daubaras. 2021. Bioactive compounds, antioxidant, and antibacterial properties of Lonicera caerulea berries: Evaluation of 11 cultivars. Plants 10 (4):624. 3390/plants10040624 doi: 10.3390/plants10040624.
  • Cheng, Z., X. Si, H. Tan, Z. Zang, J. Tian, C. Shu, X. Sun, Z. Li, Q. Jiang, X. Meng, et al. 2021. Cyanidin-3-O-glucoside and its phenolic metabolites ameliorate intestinal diseases via modulating intestinal mucosal immune system: Potential mechanisms and therapeutic strategies. Critical Reviews in Food Science and Nutrition:1–19. doi: 10.1080/10408398.2021.1966381.
  • Chen, Y., Q. Li, W. P. Zhang, J. J. Cui, and X. J. Wu. 2013. Effect of honeysuckle extract for color protection of human hair exposed to sunlight radiation. Advanced Materials Research 821–822:28–31. doi: 10.4028/www.scientific.net/AMR.821-822.28.
  • Chen, L., X. Xin, Q. Yuan, D. Su, and W. Liu. 2014. Phytochemical properties and antioxidant capacities of various colored berries. Journal of the Science of Food and Agriculture 94 (2):180–8. doi: 10.1002/jsfa.6216.
  • Chmiel, T., D. Abogado, and W. Wardencki. 2014. Optimization of capillary isotachophoretic method for determination of major macroelements in blue honeysuckle berries (Lonicera caerulea L.) and related products. Analytical and Bioanalytical Chemistry 406 (20):4965–86. doi: 10.1007/s00216-014-7879-4.
  • Chong, K. Y., Y. Yuryev, A. Jain, B. Mason, and M. S. L. Brooks. 2021. Development of pea protein films with Haskap (Lonicera caerulea) leaf extracts from aqueous two-phase systems. Food and Bioprocess Technology 14 (9):1733–50. doi: 10.1007/s11947-021-02671-6.
  • Dayar, E., M. Cebova, J. Lietava, E. Panghyova, and O. Pechanova. 2021. Antioxidant effect of Lonicera caerulea L. In the cardiovascular system of obese zucker rats. Antioxidants 10 (8)1–10.1199. doi: 10.3390/antiox1008:.
  • De Silva, A. B. K. H., and H. P. V. Rupasinghe. 2020. Polyphenols composition and anti-diabetic properties in vitro of haskap (Lonicera caerulea L.) berries in relation to cultivar and harvesting date. Journal of Food Composition and Analysis 88:103402. (October 2019), doi: 10.1016/j.jfca.2019.103402.
  • Diez-Echave, P., T. Vezza, A. Rodríguez-Nogales, L. Hidalgo-Garcia, J. Garrido-Mesa, A. Ruiz-Malagon, J. A. Molina-Tijeras, M. Romero, I. Robles-Vera, F. J. Leyva-Jiménez, et al. 2020. The beneficial effects of Lippia citriodora extract on diet-induced obesity in mice are associated with modulation in the gut microbiota composition. Molecular Nutrition & Food Research 64 (13):2000005–20. doi: 10.1002/mnfr.202000005.
  • Du, X. Q., L. P. Shi, W. F. Cao, Z. W. Chen, B. Zuo, and J. Y. Hu. 2021. Add-on effect of honeysuckle in the treatment of coronavirus disease 2019: A systematic review and meta-analysis. Frontiers in Pharmacology 12 (September):1–10. doi: 10.3389/fphar.2021.708636.
  • Dziedzic, E., J. Błaszczyk, M. Bieniasz, K. Dziadek, and A. Kopeć. 2020. Effect of modified (MAP) and controlled atmosphere (CA) storage on the quality and bioactive compounds of blue honeysuckle fruits (Lonicera caerulea L.). Scientia Horticulturae 265:109226. doi: 10.1016/j.scienta.2020.109226.
  • Feng, J., Y. Liu, X. Shi, and Q. Wang. 2018. Potential of hyperspectral imaging for rapid identification of true and false honeysuckle tea leaves. Journal of Food Measurement and Characterization 12 (3):2184–92. doi: 10.1007/s11694-018-9834-0.
  • Fujita, R., T. Hayasaka, S. Jin, S. P. Hui, and Y. Hoshino. 2020. Comparison of anthocyanin distribution in berries of Haskap (Lonicera caerulea subsp. edulis (Turcz. ex. Herder) Hultén), Miyama-uguisukagura (Lonicera gracilipes Miq.), and their interspecific hybrid using imaging mass spectrometry. Plant Science: An International Journal of Experimental Plant Biology 300 (7):110633. doi: 10.1016/j.plantsci.2020.110633.
  • Fujita, R., S. Jin, T. Hayasaka, K. Matoba, and Y. Hoshino. 2020. Evaluation of fruit anthocyanin composition by lc/ms in interspecific hybrids between haskap (Lonicera caerulea subsp. edulis (turcz. ex. herder) hultén) and miyama-uguisukagura (Lonicera gracilipes miq.). The Horticulture Journal 89 (4):343–50. doi: 10.2503/hortj.UTD-139.
  • Gerbrandt, E. M., R. H. Bors, R. N. Chibbar, and T. E. Baumann. 2017. Spring phenological adaptation of improved blue honeysuckle (Lonicera caerulea L.) germplasm to a temperate climate. Euphytica 213 (8):1–17. doi: 10.1007/s10681-017-1958-5.
  • Grobelna, A., S. Kalisz, and M. Kieliszek. 2019a. Effect of processing methods and storage time on the content of bioactive compounds in blue honeysuckle berry purees. Agronomy 9 (12):860–11. doi: 10.3390/agronomy9120860.
  • Grobelna, A., S. Kalisz, and M. Kieliszek. 2019b. The effect of the addition of blue honeysuckle berry juice to apple juice on the selected quality characteristics, anthocyanin stability, and antioxidant properties. Biomolecules 9 (11). doi: 10.3390/biom9110744.
  • Grobelna, A., S. Kalisz, M. Kieliszek, and L. Giurgiulescu. 2020. Blue Honeysuckle Berry (Lonicera Caerulea L.), as Raw Material, is Particularly Predisposed to the Production of Functional Foods. Carpathian Journal of Food Science and Technology 12 (3):144–55. doi: 10.34302/crpjfst/2020.12.3.12.
  • Hayes, D. J., and B. J. Peterson. 2020. Growth of Lonicera caerulea across fertility and moisture conditions: Comparisons with Lonicera villosa and invasive congeners. HortScience 55 (2):149–55. doi: 10.21273/HORTSCI14318-19.
  • Heinrich, J., I. Švarcová, and K. Valentová. 2008. Plody Lonicera caerulea: Perspektivní funkční potravina a zdroj biologicky aktivních látek. Chemicke Listy 102 (4):245–54.
  • Holubec, V., T. Smekalova, and L. Leisova-Svobodova. 2019. Morphological and molecular evaluation of the Far East fruit genetic resources of Lonicera caerulea L.—Vegetation, ethnobotany, use and conservation. Genetic Resources and Crop Evolution 66 (1):121–41. doi: 10.1007/s10722-018-0701-y.
  • Huang, Y., H. Liu, X. Sun, M. Ding, G. Tao, and X. Li. 2019. Honeysuckle-derived microRNA2911 directly inhibits varicella-zoster virus replication by targeting IE62 gene. Journal of Neurovirology 25 (4):457–63. doi: 10.1007/s13365-019-00741-2.
  • Huo, J. W., G. H. Yang, W. Sui, and Z. Yang. 2005. Review of study on germ plasm resources of blue honeysuckle (Lonicera caerulea L.). Journal of Horticulture 32 (1):159–64.
  • Jin, X. H., K. Ohgami, K. Shiratori, Y. Suzuki, Y. Koyama, K. Yoshida, I. Ilieva, T. Tanaka, K. Onoe, and S. Ohno. 2006. Effects of blue honeysuckle (Lonicera caerulea L.) extract on lipopolysaccharide-induced inflammation in vitro and in vivo. Experimental Eye Research 82 (5):860–7. doi: 10.1016/j.exer.2005.10.024.
  • Jurgoński, A., J. Juśkiewicz, and Z. Zduńczyk. 2013. An anthocyanin-rich extract from Kamchatka honeysuckle increases enzymatic activity within the gut and ameliorates abnormal lipid and glucose metabolism in rats. Nutrition (Burbank, Los Angeles County, Calif.) 29 (6):898–902. doi: 10.1016/j.nut.2012.11.006.
  • Jurikova, T., S. Ercişli, O. Rop, J. Mlcek, S. Balla, R. Zitny, J. Sochor, A. Hegedusova, D. Benedikova, and L. Ďurišová. 2014. The evaluation of anthocyanin content of honeyberry (Lonicera kamtschatica) clones during freezing in relation to antioxidant activity and parameters of nutritional value. Zemdirbyste-Agriculture 101 (2):215–20. doi: 10.13080/z-a.2014.101.028.
  • Khattab, R., M. S. L. Brooks, and A. Ghanem. 2016. Phenolic analyses of haskap berries (Lonicera caerulea L.): Spectrophotometry versus high performance liquid chromatography. International Journal of Food Properties 19 (8):1708–25. doi: 10.1080/10942912.2015.1084316.
  • Khattab, R., G. B. Celli, A. Ghanem, and M. S. L. Brooks. 2015. Effect of frozen storage on polyphenol content and antioxidant activity of haskap berries (Lonicera caerulea L.). Journal of Berry Research 5 (4):231–42. doi: 10.3233/JBR-150105.
  • Khattab, R., A. Ghanem, and M. S. L. Brooks. 2017. Quality of dried haskap berries (Lonicera caerulea L.) as affected by prior juice extraction, osmotic treatment, and drying conditions. Drying Technology 35 (3):375–91. doi: 10.1080/07373937.2016.1175472.
  • Kim, J., H. Kim, and E. L. Giovannucci. 2021. Plant-based diet quality and the risk of total and disease-specific mortality: A population-based prospective study. Clinical Nutrition 40 (12):5718–25. doi: 10.1016/j.clnu.2021.10.013.
  • Kim, J. W., Y. S. Lee, D. J. Seol, I. J. Cho, S. Kwang Ku, J. S. Choi, and H. J. Lee. 2018. Anti-obesity and fatty liver-preventing activities of Lonicera caerulea in high-fat diet-fed mice . International Journal of Molecular Medicine 42 (6):3047–64. doi: 10.3892/ijmm.2018.3879.
  • Kirina, I. B., F. G. Belosokhov, L. V. Titova, I. A. Suraykina, and V. F. Pulpitow. 2020. Biochemical assessment of berry crops as a source of production of functional food products. IOP Conference Series: Earth and Environmental Science 548 (8):082068. doi: 10.1088/1755-1315/548/8/082068.
  • Kmiecik, W., Z. Lisiewska, and G. Jaworska. 2001. Effect of aronia berry honey syrup used for sweetening jams on their quality. Nahrung/Food 45 (4):273–9. doi: 10.1002/1521-3803(20010801)45:4 < 273::AID-FOOD273 > 3.0.CO;2-F.
  • Kosińska-Cagnazzo, A., B. Weber, R. Chablais, J. F. Vouillamoz, B. Molnár, J. Crovadore, F. Lefort, and W. Andlauer. 2017. Bioactive compound profile and antioxidant activity of fruits from six goji cultivars cultivated in Switzerland. Journal of Berry Research 7 (1):43–59. doi: 10.3233/JBR-160144.
  • Krotova, I. V., L. N. Demina, P. A. Zhdanova, N. A. Osmolovskaya, and A. S. Shchitnikov. 2020. The study of biologically active substances of blue honeysuckle (Lonicera caerulea L.) leaves. IOP Conference Series: Earth and Environmental Science 421 (2):022027–8. doi: 10.1088/1755-1315/421/2/022027.
  • Kucharska, A. Z., and I. Fecka. 2016. Identification of iridoids in edible honeysuckle berries (Lonicera caerulea L. var. kamtschatica Sevast.) by UPLC-ESI-qTOF-MS/MS. Molecules 21 (9):1157. doi: 10.3390/molecules21091157.
  • Kucharska, A., A. Sokół-Łętowska, J. Oszmiański, N. Piórecki, and I. Fecka. 2017. Iridoids, phenolic compounds and antioxidant activity of edible honeysuckle berries (Lonicera caerulea var. kamtschatica Sevast.). Molecules 22 (3):405. doi: 10.3390/molecules22030.
  • Kula, M., D. Głód, and M. Krauze-Baranowska. 2016. Application of on-line and off-line heart-cutting LC in determination of secondary metabolites from the flowers of Lonicera caerulea cultivar varieties. Journal of Pharmaceutical and Biomedical Analysis 131:316–26. doi: 10.1016/j.jpba.2016.09.010.
  • Kupska, M., T. Chmiel, R. Jędrkiewicz, W. Wardencki, and J. Namieśnik. 2014. Comprehensive two-dimensional gas chromatography for determination of the terpenes profile of blue honeysuckle berries. Food Chemistry 152:88–93. doi: 10.1016/j.foodchem.2013.11.129.
  • Kusznierewicz, B., A. Piekarska, B. Mrugalska, P. Konieczka, J. Namieśnik, and A. Bartoszek. 2012. Phenolic composition and antioxidant properties of polish blue-berried honeysuckle genotypes by HPLC-DAD-MS, HPLC postcolumn derivatization with ABTS or FC, and TLC with DPPH visualization. Journal of Agricultural and Food Chemistry 60 (7):1755–63. doi: 10.1021/jf2039839.
  • Lamoureux, D., A. Sorokin, I. Lefèvre, S. Alexanian, P. Eyzaguirre, and J. F. Hausman. 2011. Investigation of genetic diversity in Russian collections of raspberry and blue honeysuckle. Plant Genetic Resources 9 (2):202–5. doi: 10.1017/S1479262111000323.
  • Lee, Y.-R., C.-M. Chang, Y.-C. Yeh, C.-Y. Huang, F.-M. Lin, J.-T. Huang, C.-C. Hsieh, J.-R. Wang, and H.-S. Liu. 2021. Replication and pathogenesis in vitro and in vivo and is predicted to inhibit SARS-CoV-2. Viruses 13 (2):308. doi: 10.3390/v13020308.
  • Lee, Y. S., I. J. Cho, J. W. Kim, M. K. Lee, S. K. Ku, J. S. Choi, and H. J. Lee. 2019. Hepatoprotective effects of blue honeysuckle on CCl4-induced acute liver damaged mice. Food Science & Nutrition 7 (1):322–38. doi: 10.1002/fsn3.893.
  • Lee, Y. S., I. J. Cho, J. W. Kim, S. K. Lee, S. K. Ku, and H. J. Lee. 2018. Evaluation of in vitro anti-oxidant and anti-inflammatory activities of Korean and Chinese Lonicera caerulea. Nutrition Research and Practice 12 (6):486–93. doi: 10.4162/nrp.2018.12.6.486.
  • Lee, D., J. Ham, K. S. Kang, and H. J. Lee. 2016. Cyanidin 3-O-glucoside isolated from Lonicera caerulea fruit improves glucose response in INS-1 cells by improving insulin secretion and signaling. Bulletin of the Korean Chemical Society 37 (12):2015–8. doi: 10.1002/bkcs.11017.
  • Lee, Y. S., E. J. Park, S. M. Kim, J. Y. Kim, and H. J. Lee. 2021. Anti-sarcopenic obesity effects of Lonicera caerulea extract in high-fat diet-fed mice. Antioxidants 10 (10):1633. 3390/antiox10101633 doi: 10.3390/antiox10101633.
  • Lee, Y.-R., S.-F. Yeh, X.-M. Ruan, H. Zhang, S.-D. Hsu, H.-D. Huang, C.-C. Hsieh, Y.-S. Lin, T.-M. Yeh, H.-S. Liu, et al. 2017. Honeysuckle aqueous extract and induced let-7a suppress dengue virus type 2 replication and pathogenesis. Journal of Ethnopharmacology 198 (6):109–21. doi: 10.1016/j.jep.2016.12.049.
  • Lefèvre, I., J. Ziebel, C. Guignard, A. Sorokin, O. Tikhonova, N. Dolganova, L. Hoffmann, P. Eyzaguirre, and J. F. Hausman. 2011. Evaluation and comparison of nutritional quality and bioactive compounds of berry fruits from Lonicera caerulea, Ribes L. species and Rubus idaeus grown in Russia. Journal of Berry Research 1 (3):159–67. doi: 10.3233/BR-2011-017.
  • Li, B., Z. Cheng, X. Sun, X. Si, E. Gong, Y. Wang, J. Tian, C. Shu, F. Ma, D. Li, et al. 2020. Lonicera caerulea L. polyphenols alleviate oxidative stress-induced intestinal environment imbalance and lipopolysaccharide-induced liver injury in HFD-fed rats by regulating the Nrf2/HO-1/NQO1 and MAPK pathways. Molecular Nutrition & Food Research 64 (10):1901315– doi: 10.1002/mnfr.201901315.
  • Lin, Y., B. Li, J. Zhao, L. Wei, Y. Wang, M. Wang, V. P. Dia, and X. Meng. 2019. Combinatorial effect of blueberry extracts and oxaliplatin in human colon cancer cells. Journal of Cellular Physiology 234 (10):17242–53. doi: 10.1002/jcp.28341.
  • Liu, X., Y. Lv, M. Zheng, L. Yin, X. Wang, Y. Fu, B. Yu, and J. Li. 2021. Inhibit lipid accumulation in adipocytes by suppressing lipogenesis 279 (6).
  • Liu, M. W., S. A. McNaughton, Q. Q. He, and R. Leech. 2021. Longitudinal trajectories of diet quality and subsequent mortality among Chinese adults: Results from the China health and nutrition survey 1997–2015. International Journal of Behavioral Nutrition and Physical Activity 18 (1):1–11. doi: 10.1186/s12966-021-01118-7.
  • Liu, S., Q. Sui, Y. Zhao, and X. Chang. 2019. Lonicera caerulea berry polyphenols activate SIRT1, enhancing inhibition of Raw264.7 macrophage foam cell formation and promoting cholesterol efflux [Research-article]. Journal of Agricultural and Food Chemistry 67 (25):7157–66. doi: 10.1021/acs.jafc.9b02045.
  • Liu, M., J. Tan, Z. He, X. He, D. X. Hou, J. He, and S. Wu. 2018. Inhibitory effect of blue honeysuckle extract on high-fat-diet-induced fatty liver in mice. Animal Nutrition (Zhongguo xu mu Shou yi Xue Hui) 4 (3):288–93. doi: 10.1016/j.aninu.2018.06.001.
  • Liu, S., Z. Wu, S. Guo, X. Meng, and X. Chang. 2018. Polyphenol-rich extract from wild Lonicera caerulea berry reduces cholesterol accumulation by mediating the expression of hepatic miR-33 and miR-122, HMGCR, and CYP7A1 in rats. Journal of Functional Foods 40:648–58. (November 2017), doi: 10.1016/j.jff.2017.11.048.
  • Liu, C., M. Xu, L. Yan, Y. Wang, Z. Zhou, S. Wang, Y. Sun, J. Zhang, and L. Dong. 2021. Honeysuckle-derived microRNA2911 inhibits tumor growth by targeting TGF-β1. Chinese Medicine 16 (1):1–9. doi: 10.1186/s13020-021-00453-y.
  • Liu, J., H. Yong, Y. Liu, Y. Qin, J. Kan, and J. Liu. 2019. Preparation and characterization of active and intelligent films based on fish gelatin and haskap berries (Lonicera caerulea L.) extract. Food Packaging and Shelf Life 22(October):100417. doi: 10.1016/j.fpsl.2019.100417.
  • Liu, S., L. You, Y. Zhao, and X. Chang. 2018. Wild Lonicera caerulea berry polyphenol extract reduces cholesterol accumulation and enhances antioxidant capacity in vitro and in vivo. Food Research International 107(February):73–83. doi: 10.1016/j.foodres.2018.02.016.
  • Liu, S., J. Yu, S. Guo, H. Fang, and X. Chang. 2020. Inhibition of pancreatic α-amylase by Lonicera caerulea berry polyphenols in vitro and their potential as hyperglycemic agents. LWT 126:109288. doi: 10.1016/j.lwt.2020.109288.
  • Li, M., Y. Wang, J. Jin, J. Dou, Q. Guo, X. Ke, C. Zhou, and M. Guo. 2021. inhibitory activity of honeysuckle extracts against influenza A virus in vitro and in vivo. Virologica Sinica 36 (3):490–500. doi: 10.1007/s12250-020-00302-6.
  • Li, C., M. Yang, L. Zhu, and Y. Zhu. 2017. Honeysuckle flowers extract loaded Bombyx mori silk fibroin films for inducing apoptosis of HeLa cells. Microscopy Research and Technique 80 (12):1297–303. doi: 10.1002/jemt.22928.
  • Li, F., H. Zhao, R. Xu, X. Zhang, W. Zhang, M. Du, X. Liu, and L. Fan. 2019. Simultaneous optimization of the acidified water extraction for total anthocyanin content, total phenolic content, and antioxidant activity of blue honeysuckle berries (Lonicera caerulea L.) using response surface methodology. Food Science & Nutrition 7 (9):2968–76. doi: 10.1002/fsn3.1152.
  • Luan, Z., D. Shao, Q. Qi, Q. Zhang, X. Gao, J. Luan, M. Lin, and W. Jiang. 2021. Variation of leaf traits with altitude in Lonicera caerulea var. Edulis (caprifoliaceae) from Northeastern China. Pakistan Journal of Botany 53 (3):949–57. doi: 10.30848/PJB2021-3(43).
  • Luo, Z. F., Y. Yang, L. S. Wang, and H. Li. P 2017. Isolation of three cyanins from Lonicera caerulea L. fruits and its anticancer activity. Journal of Central South University 24 (7):1573–81. doi: 10.1007/s11771-017-3562-1.
  • Luo, L., B. Yang, W. Zhu, G. X, Ren, X. Y, Duan, and X. Y. Kang. 2016. Degradation kinetics of functional components of honeysuckle flowers during controlled-atmosphere heat pump drying. International Journal of Agricultural and Biological Engineering 9 (4):159–68. doi: 10.3965/j.ijabe.20160904.1940.
  • Łyko, L., M. Olech, and R. Nowak. 2022. LC-ESI-MS/MS characterization of concentrated polyphenolic fractions from rhododendron luteum and their anti-inflammatory and antioxidant activities. Molecules 27 (3):827. doi: 10.3390/molecules27030827.
  • Ma, C., J. Bai, C. Shao, J. Liu, Y. Zhang, X. Li, Y. Yang, Y. Xu, and L. Wang. 2021. Degradation of blue honeysuckle polysaccharides, structural characteristics and antiglycation and hypoglycemic activities of degraded products. Food Research International (Ottawa, Ont.) 143:110281. doi: 10.1016/j.foodres.2021.110281.
  • McNeish, R. E., and R. W. McEwan. 2016. A review on the invasion ecology of Amur honeysuckle (Lonicera maackii, Caprifoliaceae) a case study of ecological impacts at multiple scales. The Journal of the Torrey Botanical Society 143 (4):367–85. doi: 10.3159/TORREY-D-15-00049.1.
  • Meng, X. L., Z. X. Zhu, R. H. Lu, S. Li, W. P. Hu, C. B. Qin, X. Yan, G. K. Yang, and G. X. Nie. 2019. Regulation of growth performance and lipid metabolism in juvenile grass carp (Ctenopharyngodon idella) with honeysuckle (Lonicera japonica) extract. Fish Physiology and Biochemistry 45 (5):1563–73. doi: 10.1007/s10695-019-00644-3.
  • Minami, M., M. Nakamura, and T. Makino. 2019. Effect of Lonicera caerulea var. emphyllocalyx extracts on murine Streptococcus pyogenes infection by modulating immune system. BioMed Research International 2019:1797930. doi: 10.1155/2019/1797930.
  • Minami, M., H. Takase, M. Nakamura, and T. Makino. 2019a. Effect of Lonicera caerulea var. emphyllocalyx fruit on biofilm formed by Porphyromonas gingivalis. BioMed Research International 2019:3547858. doi: 10.1155/2019/3547858.
  • Minami, M., H. Takase, M. Nakamura, and T. Makino. 2019b. Methanol extract of Lonicera caerulea var. emphyllocalyx fruit has antibacterial and anti-biofilm activity against Streptococcus pyogenes in vitro. Bioscience Trends 13 (2):145–51. doi: 10.5582/bst.2019.01005.
  • Miyashita, T., and Y. Hoshino. 2015. Interploid and intraploid hybridizations to produce polyploid Haskap (Lonicera caerulea var. emphyllocalyx) plants. Euphytica 201 (1):15–27. doi: 10.1007/s10681-014-1159-4.
  • Molina, A. K., E. N. Vega, C. Pereira, M. I. Dias, S. A. Heleno, P. Rodrigues, I. P. Fernandes, M. F. Barreiro, M. Kostić, M. Soković, et al. 2019. Promising antioxidant and antimicrobial food colourants from Lonicera caerulea L. var. Kamtschatica. Antioxidants 8 (9):394. doi: 10.3390/antiox8090.
  • Muturi, E. J., K. Doll, M. Berhow, L. B. Flor-Weiler, and A. P. Rooney. 2019. Honeysuckle essential oil as a potential source of ecofriendly larvicides for mosquito control. Pest Management Science 75 (7):2043–8. doi: 10.1002/ps.5327.
  • Oszmiański, J., and A. Z. Kucharska. 2018. Effect of pre-treatment of blue honeysuckle berries on bioactive iridoid content. Food Chemistry 240 (8):1087–91. doi: 10.1016/j.foodchem.2017.08.049.
  • Park, S. I., Y. J. Lee, S. H. Choi, S. J. Park, C. H. Song, and S. K. Ku. 2016. Therapeutic effects of blue honeysuckle on lesions of hyperthyroidism in rats. The American Journal of Chinese Medicine 44 (7):1441–56. doi: 10.1142/S0192415X16500804.
  • Park, M., J. H. Yoo, Y. S. Lee, and H. J. Lee. 2019. Lonicera caerulea extract attenuates non-alcoholic fatty liver disease in free fatty acid-induced HepG2 hepatocytes and in high fat diet-fed mice. Nutrients 11 (3):494. doi: 10.3390/nu11030494.
  • Parr, A. J., and G. P. Bolwell. 2000. Phenols in the plant and in man. The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. Journal of the Science of Food and Agriculture 80 (7):985–1012. doi: 10.1002/(sici)1097-0010(20000515)80:7 < 985::aid-jsfa572 > 3.3.co;2-z.
  • Piasek, A., B. Kusznierewicz, I. Grzybowska, E. Malinowska-Pańczyk, A. Piekarska, A. Azqueta, A. R. Collins, J. Namieśnik, and A. Bartoszek. 2011. The influence of sterilization with EnbioJet® Microwave Flow Pasteurizer on composition and bioactivity of aronia and blue-berried honeysuckle juices. Journal of Food Composition and Analysis 24 (6):880–8. doi: 10.1016/j.jfca.2011.04.005.
  • Pokorna-Jurikova, T., and J. Matuškovič. 2008. The study of irrigation influence on nutritional value of Lonicera kamtschatica – Cultivar Gerda 25 and Lonicera edulis berries under the Nitra conditions during 2001-2003. Horticultural Science 34 ( 1):11–6. doi: 10.17221/1841-HORTSCI.
  • Rajnochová Svobodová, A., A. Galandáková, I. Palíková, D. Doležal, D. Kylarová, J. Ulrichová, and J. Vostálová. 2013. Effects of oral administration of Lonicera caerulea berries on UVB-induced damage in SKH-1 mice. A pilot study. Photochemical & Photobiological Sciences: Official Journal of the European Photochemistry Association and the European Society for Photobiology 12 (10):1830–40. doi: 10.1039/c3pp50120e.
  • Raudonė, L., M. Liaudanskas, G. Vilkickytė, D. Kviklys, V. Žvikas, J. Viškelis, and P. Viškelis. 2021. Phenolic profiles, antioxidant activity and phenotypic characterization of Lonicera caerulea L. Berries, Cultivated in Lithuania. Antioxidants 10 (1):115. doi: 10.3390/antiox10010115.
  • Rehder, A. 1903. Synopsis of the genus Lonicera. Missouri Botanical Garden Annual Report 1903 (1903):27–232. doi: 10.2307/2400049.
  • Seeram, N. P., and B. Shukitt-Hale. 2016. Advances in berry research: The sixth biennial berry health benefits symposium 1. Journal of Berry Research 6 (2):93–5. doi: 10.3233/JBR-160139.
  • Senica, M., M. Bavec, F. Stampar, and M. Mikulic-Petkovsek. 2018. Blue honeysuckle (Lonicera caerulea subsp. edulis (Turcz. ex Herder) Hultén.) berries and changes in their ingredients across different locations. Journal of the Science of Food and Agriculture 98 (9):3333–42. doi: 10.1002/jsfa.8837.
  • Senica, M., F. Stampar, S. Ercisli, B. Sladonja, D. Poljuha, and M. Mikulic-Petkovsek. 2020. The impact of drying on bioactive compounds of blue honeysuckle berries (Lonicera caerulea var. Acta Botanica Croatica 79 (1):68–77. doi: 10.37427/botcro-2020-007.
  • Senica, M., F. Stampar, and M. Mikulic-Petkovsek. 2019. Different extraction processes affect the metabolites in blue honeysuckle (Lonicera caerulea L. subsp. edulis) food products. Turkish Journal of Agriculture and FORESTRY 43 (6):576–85. doi: 10.3906/tar-1907-48.
  • Shamsudin, R., S. Buang, and N. A. Aziz. 2015. Effect of different extraction methods on the physicochemical properties of pomelo juice. Chemical Engineering Transactions 44:265–70. doi: 10.3303/CET1544045.
  • Shang, X., H. Pan, M. Li, X. Miao, and H. Ding. 2011. Lonicera japonica Thunb.: Ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. Journal of Ethnopharmacology 138 (1):1–21. doi: 10.1016/j.jep.2011.08.016.
  • Sharma, A., J. W. Kim, S. K. Ku, J. S. Choi, and H. J. Lee. 2019. Anti-diabetic effects of blue honeyberry on high-fed-diet-induced type II diabetic mouse. Nutrition Research and Practice 13 (5):367–76. doi: 10.4162/nrp.2019.13.5.367.
  • Shen, J. Y. Yang, and D. J. Liu. 2015. Comparison between Nutrition of Wild and Cultivated Lonieera edulis Fruit from Different Regions. doi: 10.13989/j.cnki.0517-6611.2015.30.088.
  • Šic Žlabur, J., D. Colnar, S. Voća, J. M. Lorenzo, P. E. S. Munekata, F. J. Barba, N. Dobričević, A. Galić, F. Dujmić, S. Pliestić, et al. 2019. Effect of ultrasound pre-treatment and drying method on specialized metabolites of honeyberry fruits (Lonicera caerulea var. kamtschatica). Ultrasonics Sonochemistry 56 (4):372–7. doi: 10.1016/j.ultsonch.2019.04.034.
  • Smolik, M., I. Ochmian, and J. Grajkowski. 2010. Genetic variability of Polish and Russian accessions of cultivated blue honeysuckle (Lonicera caerulea). Russian Journal of Genetics 46 (8):960–6. doi: 10.1134/S1022795410080077.
  • Sochor, J., T. Jurikova, M. Pohanka, H. Skutkova, M. Baron, L. Tomaskova, S. Balla, B. Klejdus, R. Pokluda, J. Mlcek, et al. 2014. Evaluation of antioxidant activity, polyphenolic compounds, amino acids and mineral elements of representative genotypes of Lonicera edulis. Molecules (Basel, Switzerland) 19 (5):6504–23. doi: 10.3390/molecules19056504.
  • Stefanelli, D., I. Goodwin, and R. Jones. 2010. Minimal nitrogen and water use in horticulture: Effects on quality and content of selected nutrients. Food Research International 43 (7):1833–43. doi: 10.1016/j.foodres.2010.04.022.
  • Sun, C., Y. Liu, L. Zhan, G. R. Rayat, J. Xiao, H. Jiang, X. Li, and K. Chen. 2021. Anti-diabetic effects of natural antioxidants from fruits. Trends in Food Science & Technology 117:3–14. doi: 10.1016/j.tifs.2020.07.024.
  • Svobodová, A., A. Zdarilová, and J. Vostálová. 2009. Lonicera caerulea and Vaccinium myrtillus fruit polyphenols protect HaCaT keratinocytes against UVB-induced phototoxic stress and DNA damage. Journal of Dermatological Science 56 (3):196–204. doi: 10.1016/j.jdermsci.2009.08.004.
  • Tzeng, T. F., S. S. Liou, C. J. Chang, and I. M. Liu. 2014. The ethanol extract of Lonicera japonica (Japanese honeysuckle) attenuates diabetic nephropathy by inhibiting p-38 MAPK activity in streptozotocin-induced diabetic rats. Planta Medica 80 (2-3):121–9. doi: 10.1055/s-0033-1360196.
  • Vasantha Rupasinghe, H. P., L. J. Yu, K. S. Bhullar, and B. Bors. 2012. Short Communication: Haskap (Lonicera caerulea): A new berry crop with high antioxidant capacity. Canadian Journal of Plant Science 92 (7):1311–7. doi: 10.4141/cjps2012-073.
  • Vostálová, J., A. Galandáková, I. Palíková, J. Ulrichová, D. Doležal, R. Lichnovská, J. Vrbková, and A. Rajnochová Svobodová. 2013. Lonicera caerulea fruits reduce UVA-induced damage in hairless mice. Journal of Photochemistry and Photobiology. B, Biology 128:1–11. doi: 10.1016/j.jphotobiol.2013.07.024.
  • Wallace, T. C., R. L. Bailey, J. B. Blumberg, B. Burton-Freeman, C.-Y O. Chen, K. M. Crowe-White, A. Drewnowski, S. Hooshmand, E. Johnson, R. Lewis, et al. 2020. Fruits, vegetables, and health: A comprehensive narrative, umbrella review of the science and recommendations for enhanced public policy to improve intake. Critical Reviews in Food Science and Nutrition 60 (13):2174–211. doi: 10.1080/10408398.2019.1632258.
  • Wang, M. Y., M. Srinivasan, S. Dasari, P. Narvekar, A. L. P. A. Samy, V. S. Dontaraju, L. Peng, G. L. Anderson, and G. Munirathinam. 2017. Antioxidant activity of yichun blue honeysuckle (YBHS) berry counteracts CCl4-induced toxicity in liver injury model of mice. Antioxidants 6 (3)1–11:50. doi: 10.3390/antiox6030050.
  • Wang, L., Q. Wang, J. Tong, and J. Zhou. 2017. Physicochemical properties of chitosan films incorporated with honeysuckle flower extract for active food packaging. Journal of Food Process Engineering 40 (1):e12305–8. doi: 10.1111/jfpe.12305.
  • Wang, Y., X. Xie, X. Ran, S. Chou, X. Jiao, E. Li, Q. Zhang, X. Meng, and B. Li. 2018. Comparative analysis of the polyphenols profiles and the antioxidant and cytotoxicity properties of various blue honeysuckle varieties. Open Chemistry 16 (1):637–46. doi: 10.1515/chem-2018-0072.
  • Wojdyło, A., P. N. N. Jáuregui, Á. A. Carbonell-Barrachina, J. Oszmiański, and T. Golis. 2013. Variability of phytochemical properties and content of bioactive compounds in Lonicera caerulea L. var. kamtschatica Berries. Journal of Agricultural and Food Chemistry 61 (49):12072–84. doi: 10.1021/jf404109t.
  • Wu, S., X. He, X. Wu, S. Qin, J. He, S. Zhang, and D. X. Hou. 2015. Inhibitory effects of blue honeysuckle (Lonicera caerulea L) on adjuvant-induced arthritis in rats: Crosstalk of anti-inflammatory and antioxidant effects. Journal of Functional Foods 17:514–23. doi: 10.1016/j.jff.2015.06.007.
  • Wu, S., R. Hu, H. Nakano, K. Chen, M. Liu, X. He, H. Zhang, J. He, and D. X. Hou. 2018. Modulation of gut microbiota by Lonicera caerulea L. Berry polyphenols in a mouse model of fatty liver induced by high fat diet. Molecules 23 (12):3213. doi: 10.3390/molecules23123213.
  • Wu, S., S. Yano, J. Chen, A. Hisanaga, K. Sakao, X. He, J. He, and D. X. Hou. 2017. Polyphenols from Lonicera caerulea L. Berry Inhibit LPS-induced inflammation through dual modulation of inflammatory and antioxidant mediators. Journal of Agricultural and Food Chemistry 65 (25):5133–41. doi: 10.1021/acs.jafc.7b01599.
  • Wu, S., S. Yano, A. Hisanaga, X. He, J. He, K. Sakao, and D. X. Hou. 2017. Polyphenols from Lonicera caerulea L. berry attenuate experimental nonalcoholic steatohepatitis by inhibiting proinflammatory cytokines productions and lipid peroxidation. Molecular Nutrition and Food Research 61 (4):1–20. doi: 10.1002/mnfr.201600858.
  • Wu, T., Z. Yu, Q. Tang, H. Song, Z. Gao, W. Chen, and X. Zheng. 2013. Honeysuckle anthocyanin supplementation prevents diet-induced obesity in C57BL/6 mice. Food & Function 4 (11):1654–61. doi: 10.1039/c3fo60251f.
  • Wu, X., S. Zhang, X. Li, F. Zhang, Y. Fan, Q. Liu, X. Wan, and T. Lin. 2021. Postharvest UV-B radiation increases enzyme activity, polysaccharide and secondary metabolites in honeysuckle (Lonicera japonica Thunb.). Industrial Crops and Products 171 (4)113907. doi: 10.1016/j.indcrop.2021.113907.
  • Xiang, Z. N., and Z. X. Ning. 2008. Scavenging and antioxidant properties of compound derived from chlorogenic acid in South-China honeysuckle. LWT – Food Science and Technology 41 (7):1189–203. doi: 10.1016/j.lwt.2007.08.006.
  • Xie, L., K. Y. Chong, R. Stefanova, J. P. M. Hui, J. Zhang, and M. S. L. Brooks. 2021. Recovery of chlorogenic acid from haskap leaves (Lonicera caerulea) using aqueous two-phase extraction. Biomass Conversion and Biorefinery doi: 10.1007/s13399-021-01524-8.
  • Xu, X., L. Yang, K. Zhuo, Z. Zhang, Q. Du, C. Wang, Y. Chen, and Y. Zhao. 2021. Honeysuckle flowers-derived hierarchical porous carbon matching with ionic liquid electrolyte for high-energy supercapacitors. Journal of Energy Storage 41 (7):102988. doi: 10.1016/j.est.2021.102988.
  • Xu, W. J., J. W. Zhai, Q. Cui, J. Z. Liu, M. Luo, Y. J. Fu, and Y. G. Zu. 2016. Ultra-turrax based ultrasound-assisted extraction of five organic acids from honeysuckle (Lonicera japonica Thunb.) and optimization of extraction process. Separation and Purification Technology 166:73–82. doi: 10.1016/j.seppur.2016.04.003.
  • Yan, K., M. Cui, S. Zhao, X. Chen, and X. Tang. 2016. Salinity stress is beneficial to the accumulation of chlorogenic acids in honeysuckle (Lonicera Japonica Thunb.). Frontiers in Plant Science 7 (10):1–10. doi: 10.3389/fpls.2016.01563.
  • Yan, K., S. Zhao, L. Bian, and X. Chen. 2017. Saline stress enhanced accumulation of leaf phenolics in honeysuckle (Lonicera japonica Thunb.) without induction of oxidative stress. Plant Physiology and Biochemistry : PPB 112:326–34. doi: 10.1016/j.plaphy.2017.01.020.
  • Zdarilová, A., A. Rajnochová Svobodová, K. Chytilová, V. Simánek, and J. Ulrichová. 2010. Polyphenolic fraction of Lonicera caerulea L. fruits reduces oxidative stress and inflammatory markers induced by lipopolysaccharide in gingival fibroblasts. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 48 (6):1555–61. doi: 10.1016/j.fct.2010.03.024.
  • Zhang, Y., M. Gao, R. Gao, L. Xue, F. Gao, L. Shen, and X. Zheng. 2021. Effects of process parameters on texture quality of blue honeysuckle berry snack under continuous microwave puffing conditions. Journal of Food Processing and Preservation 45 (12):e16047. doi: 10.1111/jfpp.16047.
  • Zhang, B., T. G. Nan, Z. L. Zhan, L. P. Kang, J. Yang, C. J. S. Lai, Y. Yuan, B. M. Wang, and L. Q. Huang. 2018. A monoclonal antibody-based enzyme-linked immunosorbent assay for the determination of chlorogenic acid in honeysuckle. Journal of Pharmaceutical and Biomedical Analysis 148:1–5. doi: 10.1016/j.jpba.2017.09.023.
  • Zhang, J., L. Sun, Y. Dong, Z. Fang, T. Nisar, T. Zhao, Z. C. Wang, and Y. Guo. 2019. Chemical compositions and α-glucosidase inhibitory effects of anthocyanidins from blueberry, blackcurrant and blue honeysuckle fruits. Food Chemistry 299(June), :125102. doi: 10.1016/j.foodchem.2019.125102.
  • Zhang, S., and J. Wang. 2021. Removal of chlortetracycline from water by immobilized Bacillus subtilis on honeysuckle residue–derived biochar. Water, Air, and Soil Pollution 232 (6):1–14. doi: 10.1007/s11270-021-05193-1.
  • Zhang, R., S. Zhan, S. Li, Z. Zhu, J. He, J. M. Lorenzo, and F. J. Barba. 2018. Anti-hyperuricemic and nephroprotective effects of extracts from: Chaenomeles sinensis (Thouin) Koehne in hyperuricemic mice. In Food and Function 9 (11).
  • Zhao, J., Y. Lin, Y. Zhao, Y. Wang, C. Ning, Y. Ma, and X. Meng. 2018. Polyphenol-rich blue honeysuckle extract alleviates silica particle-induced inflammatory responses and macrophage apoptosis via NRF2/HO-1 and MAPK signaling. Journal of Functional Foods 46 (1):463–74. doi: 10.1016/j.jff.2018.05.024.
  • Zhao, Y. T., Y. Tang, J. He, Y. Xu, R. Gao, J. Zhang, T. Chong, L. Wang, and X. Tang. 2018. Surface imprinted polymers based on amino-hyperbranched magnetic nanoparticles for selective extraction and detection of chlorogenic acid in Honeysuckle tea. Talanta 181 (9):271–7. doi: 10.1016/j.talanta.2018.01.037.
  • Zhao, H., Z. Wang, C. Cheng, F. Ma, X. Yang, and L. Yao. 2012. UV protective effect of anthocyanin extract from Lonicera caerulea var. Applied Mechanics and Materials 195-196:1294–9. doi: 10.4028/www.scientific.net/AMM.195-196.1294.
  • Zhao, J., J. Zang, Y. Lin, Y. Wang, D. Li, and X. Meng. 2019. Polyphenol-rich blue honeysuckle extract alleviates silica-induced lung fibrosis by modulating Th immune response and NRF2/HO-1 MAPK signaling. Journal of Functional Foods 53 (12):176–86. doi: 10.1016/j.jff.2018.12.030.
  • Zhao, Y. M., Y. Zhang, Y. Zhu, C. Liu, S. Feng, W. Ma, M. Gao, and X. Zheng. 2021. Optimization of processing technology for blue honeysuckle berry snack: From microwave vacuum concentration to freeze-drying. Journal of Food Processing and Preservation 45 (2):0–2. doi: 10.1111/jfpp.15151.
  • Zheng, L., and Y. P. Hu. 2014. Ethanol extract of Julu Honeysuckle may be an potentially promising preservative material. Advanced Materials Research 881–883:741–5. doi: 10.4028/www.scientific.net/AMR.881-883.741.
  • Zhou, Y., Z. Ruan, Y. Wen, Y. Yang, S. Mi, L. Zhou, X. Wu, S. Ding, Z. Deng, G. Wu, et al. 2016. Chlorogenic acid from honeysuckle improves hepatic lipid dysregulation and modulates hepatic fatty acid composition in rats with chronic endotoxin infusion. Journal of Clinical Biochemistry and Nutrition 58 (2):146–55. doi: 10.3164/jcbn.14-138.
  • Zhou, Y., and R. C. Tang. 2018. Facile and eco-friendly fabrication of AgNPs coated silk for antibacterial and antioxidant textiles using honeysuckle extract. Journal of Photochemistry and Photobiology. B, Biology 178 (9):463–71. doi: 10.1016/j.jphotobiol.2017.12.003.
  • Zhou, L., H. Wang, J. Yi, B. Yang, M. Li, D. He, W. Yang, Y. Zhang, and H. Ni. 2018. Anti-tumor properties of anthocyanins from Lonicera caerulea ‘Beilei’ fruit on human hepatocellular carcinoma: In vitro and in vivo study. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 104(January), :520–9. doi: 10.1016/j.biopha.2018.05.057.
  • Zhou, L. K., Z. Zhou, X. M. Jiang, Y. Zheng, X. Chen, Z. Fu, G. Xiao, C. Y. Zhang, L. K. Zhang, and Y. Yi. 2020. Absorbed plant MIR2911 in honeysuckle decoction inhibits SARS-CoV-2 replication and accelerates the negative conversion of infected patients. Cell Discovery 6 (1):4–7. doi: 10.1038/s41421-020-00197-3.
  • Zuo, A., S. Wang, L. Liu, Y. Yao, and J. Guo. 2019. Understanding the effect of anthocyanin extracted from Lonicera caerulea L. on alcoholic hepatosteatosis. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 117 (6):109087. doi: 10.1016/j.biopha.2019.109087.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.