576
Views
3
CrossRef citations to date
0
Altmetric
Review Articles

The modulation and mechanism of probiotic-derived polysaccharide capsules on the immune response in allergic diseases

, , , & ORCID Icon

References

  • Adams, C. A. 2010. The probiotic paradox: Live and dead cells are biological response modifiers. Nutrition Research Reviews 23 (1):37–46. doi: 10.1017/S0954422410000090.
  • Aguilar-Toalá, J., R. Garcia-Varela, H. Garcia, V. Mata-Haro, A. González-Córdova, B. Vallejo-Cordoba, and A. Hernández-Mendoza. 2018. Postbiotics: An evolving term within the functional foods field. Trends in Food Science & Technology 75:105–14. doi: 10.1016/j.tifs.2018.03.009.
  • Aitoro, R., L. Paparo, A. Amoroso, M. Di Costanzo, L. Cosenza, V. Granata, C. Di Scala, R. Nocerino, G. Trinchese, M. Montella, et al. 2017. Gut microbiota as a target for preventive and therapeutic intervention against food allergy. Nutrients 9 (7):672. doi: 10.3390/nu9070672.
  • Albuquerque‐Souza, E., D. Balzarini, E. S. Ando‐Suguimoto, K. H. Ishikawa, M. R. Simionato, M. Holzhausen, and M. P. Mayer. 2019. Probiotics alter the immune response of gingival epithelial cells challenged by Porphyromonas gingivalis. Journal of Periodontal Research 54 (2):115–27. doi: 10.1111/jre.12608.
  • Ale, E. C., M. J. Perezlindo, P. Burns, E. Tabacman, J. A. Reinheimer, and A. G. Binetti. 2016. Exopolysaccharide from Lactobacillus fermentum Lf2 and its functional characterization as a yogurt additive. The Journal of Dairy Research 83 (4):487–92. doi: 10.1017/S0022029916000571.
  • Ale, E. C., M. J.-B. Bourin, G. H. Peralta, P. G. Burns, O. B. Ávila, L. Contini, J. Reinheimer, and A. G. Binetti. 2019. Functional properties of exopolysaccharide (EPS) extract from Lactobacillus fermentum Lf2 and its impact when combined with Bifidobacterium animalis INL1 in yoghurt. International Dairy Journal 96:114–25. doi: 10.1016/j.idairyj.2019.04.014.
  • Altmann, F., P. Kosma, A. O’Callaghan, S. Leahy, F. Bottacini, E. Molloy, S. Plattner, E. Schiavi, M. Gleinser, D. Groeger, et al. 2016. Genome analysis and characterisation of the exopolysaccharide produced by Bifidobacterium longum subsp. longum 35624™. PloS One 11 (9):e0162983. doi: 10.1371/journal.pone.0162983.
  • Angelin, J., and M. Kavitha. 2020. Exopolysaccharides from probiotic bacteria and their health potential. International Journal of Biological Macromolecules 162:853–65. doi: 10.1016/j.ijbiomac.2020.06.190.
  • Audy, J., S. Labrie, D. Roy, and G. Lapointe. 2010. Sugar source modulates exopolysaccharide biosynthesis in Bifidobacterium longum subsp. longum CRC 002. Microbiology 156 (3):653–64. doi: 10.1099/mic.0.033720-0.
  • Bacher, P., and A. Scheffold. 2018. The effect of regulatory T cells on tolerance to airborne allergens and allergen immunotherapy. The Journal of Allergy and Clinical Immunology 142 (6):1697–709. doi: 10.1016/j.jaci.2018.10.016.
  • Bagchi, A., E. A. Herrup, H. S. Warren, J. Trigilio, H.-S. Shin, C. Valentine, and J. Hellman. 2007. MyD88-dependent and MyD88-independent pathways in synergy, priming, and tolerance between TLR agonists. Journal of Immunology (Baltimore, MD: 1950) 178 (2):1164–71. doi: 10.4049/jimmunol.178.2.1164.
  • Bashir, M. E. H., S. Louie, H. N. Shi, and C. Nagler-Anderson. 2004. Toll-like receptor 4 signaling by intestinal microbes influences susceptibility to food allergy. Journal of Immunology (Baltimore, MD: 1950) 172 (11):6978–87. doi: 10.4049/jimmunol.172.11.6978.
  • Basturk, A., İ. Isik, A. Atalay, and A. Yılmaz. 2020. Investigation of the efficacy of Lactobacillus rhamnosus GG in infants with cow’s milk protein allergy: a randomised double-blind placebo-controlled trial . Probiotics and Antimicrobial Proteins 12 (1):138–43. doi: 10.1007/s12602-019-9516-1.
  • Bergman, M. P., A. Engering, H. H. Smits, S. J. Van Vliet, A. A. Van Bodegraven, H.-P. Wirth, M. L. Kapsenberg, C. M. Vandenbroucke-Grauls, Y. Van Kooyk, and B. J. Appelmelk. 2004. Helicobacter pylori modulates the T helper cell 1/T helper cell 2 balance through phase-variable interaction between lipopolysaccharide and DC-SIGN. The Journal of Experimental Medicine 200 (8):979–90. doi: 10.1084/jem.20041061.
  • Bloem, K., J. J. García-Vallejo, I. M. Vuist, B. Cobb, S. J. Van Vliet, and Y. Van Kooyk. 2013. Interaction of the capsular polysaccharide A from Bacteroides fragilis with DC-SIGN on human dendritic cells is necessary for its processing and presentation to T cells. Frontiers in Immunology 4:103. doi: 10.3389/fimmu.2013.00103.
  • Caggianiello, G., M. Kleerebezem, and G. Spano. 2016. Exopolysaccharides produced by lactic acid bacteria: From health-promoting benefits to stress tolerance mechanisms. Applied Microbiology and Biotechnology 100 (9):3877–86. doi: 10.1007/s00253-016-7471-2.
  • Casaro, M., A. Crisma, A. Vieira, G. Silva, E. Mendes, W. Ribeiro, F. Martins, and C. Ferreira. 2018. Prophylactic Bifidobacterium adolescentis ATTCC 15703 supplementation reduces partially allergic airway disease in Balb/c but not in C57BL/6 mice. Beneficial Microbes 9 (3):465–76. doi: 10.3920/BM2017.0073.
  • Castro-Bravo, N., J. M. Wells, A. Margolles, and P. Ruas-Madiedo. 2018. Interactions of surface exopolysaccharides from Bifidobacterium and Lactobacillus within the intestinal environment. Frontiers in Microbiology 9:2426. doi: 10.3389/fmicb.2018.02426.
  • Chen, K., J. Huang, W. Gong, P. Iribarren, N. M. Dunlop, and J. M. Wang. 2007. Toll-like receptors in inflammation, infection and cancer. International Immunopharmacology 7 (10):1271–85. doi: 10.1016/j.intimp.2007.05.016.
  • Chen, Y., J. Huang, and C. Xu. 2020. Lipopolysaccharide-induced DC-SIGN/TLR4 crosstalk activates NLRP3 inflammasomes via MyD88-independent signaling in gastric epithelial cells. Experimental Cell Research 396 (1):112292. doi: 10.1016/j.yexcr.2020.112292.
  • Ciszek-Lenda, M., B. Nowak, M. Sróttek, A. Gamian, and J. Marcinkiewicz. 2011. Immunoregulatory potential of exopolysaccharide from Lactobacillus rhamnosus KL37: effects on the production of inflammatory mediators by mouse macrophages. International Journal of Experimental Pathology 92 (6):382–91. doi: 10.1111/j.1365-2613.2011.00788.x.
  • Cuthbertson, L., I. L. Mainprize, J. H. Naismith, and C. Whitfield. 2009. Pivotal roles of the outer membrane polysaccharide export and polysaccharide copolymerase protein families in export of extracellular polysaccharides in gram-negative bacteria. Microbiology and Molecular Biology Reviews: MMBR 73 (1):155–77. doi: 10.1128/MMBR.00024-08.
  • Cvetkovic, J., N. Ilic, A. Gruden-Movsesijan, S. Tomic, N. Mitic, E. Pinelli, and L. Sofronic-Milosavljevic. 2020. DC-SIGN signalling induced by Trichinella spiralis products contributes to the tolerogenic signatures of human dendritic cells. Scientific Reports 10 (1):1–14. doi: 10.1038/s41598-020-77497-x.
  • Eslami, M., A. Bahar, M. Keikha, M. Karbalaei, N. Kobyliak, and B. Yousefi. 2020. Probiotics function and modulation of the immune system in allergic diseases. Allergologia et Immunopathologia 48 (6):771–88. doi: 10.1016/j.aller.2020.04.005.
  • Fanning, S., L. J. Hall, M. Cronin, A. Zomer, J. MacSharry, D. Goulding, M. O. Motherway, F. Shanahan, K. Nally, G. Dougan, et al. 2012. Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection. Proceedings of the National Academy of Sciences of the United States of America 109 (6):2108–13. doi: 10.1073/pnas.1115621109.
  • Feng, D., Y. Wang, Y. Liu, L. Wu, X. Li, Y. Chen, Y. Chen, Y. Chen, C. Xu, K. Yang, et al. 2018. DC-SIGN reacts with TLR-4 and regulates inflammatory cytokine expression via NF-κB activation in renal tubular epithelial cells during acute renal injury. Clinical and Experimental Immunology 191 (1):107–15. doi: 10.1111/cei.13048.
  • Frischmeyer‐Guerrerio, P., A. L. Guerrerio, K. Chichester, A. Bieneman, R. Hamilton, R. A. Wood, and J. T. Schroeder. 2011. Dendritic cell and T cell responses in children with food allergy. Clinical and Experimental Allergy: Journal of the British Society for Allergy and Clinical Immunology 41 (1):61–71. doi: 10.1111/j.1365-2222.2010.03606.x.
  • Fu, L., M. Xie, C. Wang, Y. Qian, J. Huang, Z. Sun, H. Zhang, and Y. Wang. 2020. Lactobacillus Casei Zhang alleviates shrimp tropomyosin‐induced food allergy by switching antibody isotypes through the NF‐κB‐dependent immune tolerance. Molecular Nutrition & Food Research 64 (10):1900496. doi: 10.1002/mnfr.201900496.
  • Garcia-Vello, P., G. Sharma, I. Speciale, A. Molinaro, S.-H. Im, and C. D. Castro. 2020. Structural features and immunological perception of the cell surface glycans of Lactobacillus plantarum: A novel rhamnose-rich polysaccharide and teichoic acids. Carbohydrate Polymers 233:115857. doi: 10.1016/j.carbpol.2020.115857.
  • Geurtsen, J., S. Chedammi, J. Mesters, M. Cot, N. N. Driessen, T. Sambou, R. Kakutani, R. Ummels, J. Maaskant, H. Takata, et al. 2009. Identification of mycobacterial alpha-glucan as a novel ligand for DC-SIGN: involvement of mycobacterial capsular polysaccharides in host immune modulation. Journal of Immunology (Baltimore, MD: 1950) 183 (8):5221–31. doi: 10.4049/jimmunol.0900768.
  • Górska, S., C. Sandstrőm, J. Wojas-Turek, J. Rossowska, E. Pajtasz-Piasecka, E. Brzozowska, and A. Gamian. 2016. Structural and immunomodulatory differences among lactobacilli exopolysaccharides isolated from intestines of mice with experimentally induced inflammatory bowel disease. Scientific Reports 6 (1):37613–6. doi: 10.1038/srep37613.
  • Gorska, S., M. Schwarzer, D. Srutkova, P. Hermanova, E. Brzozowska, H. Kozakova, and A. Gamian. 2017. Polysaccharides L900/2 and L900/3 isolated from Lactobacillus rhamnosus LOCK 0900 modulate allergic sensitization to ovalbumin in a mouse model. Microbial Biotechnology 10 (3):586–93. doi: 10.1111/1751-7915.12606.
  • Górska, S., M. Schwarzer, W. Jachymek, D. Srutkova, E. Brzozowska, H. Kozakova, and A. Gamian. 2014. Distinct immunomodulation of bone marrow-derived dendritic cell responses to Lactobacillus plantarum WCFS1 by two different polysaccharides isolated from Lactobacillus rhamnosus LOCK 0900. Applied and Environmental Microbiology 80 (20):6506–16. doi: 10.1128/AEM.02104-14.
  • Górska, S., P. Hermanova, J. Ciekot, M. Schwarzer, D. Srutkova, E. Brzozowska, H. Kozakova, and A. Gamian. 2016. Chemical characterization and immunomodulatory properties of polysaccharides isolated from probiotic Lactobacillus casei LOCK 0919. Glycobiology 26 (9):1014–24. doi: 10.1093/glycob/cww047.
  • Hayen, S. M., A. I. Kostadinova, J. Garssen, H. G. Otten, and L. E. Willemsen. 2014. Novel immunotherapy approaches to food allergy. Current Opinion in Allergy and Clinical Immunology 14 (6):549–56. doi: 10.1097/ACI.0000000000000109.
  • Hsieh, S. A., and P. M. Allen. 2020. Immunomodulatory roles of polysaccharide capsules in the intestine. Frontiers in Immunology 11:690. doi: 10.3389/fimmu.2020.00690.
  • Hughes, K. R., L. C. Harnisch, C. Alcon-Giner, S. Mitra, C. J. Wright, J. Ketskemety, D. Van Sinderen, A. J. Watson, and L. Hall. 2017. Bifidobacterium breve reduces apoptotic epithelial cell shedding in an exopolysaccharide and MyD88-dependent manner. Open Biology 7 (1):160155. doi: 10.1098/rsob.160155.
  • Ishida, Y., F. Nakamura, H. Kanzato, D. Sawada, N. Yamamoto, H. Kagata, M. Oh-Ida, H. Takeuchi, and S. Fujiwara. 2005. Effect of milk fermented with Lactobacillus acidophilus strain L-92 on symptoms of Japanese cedar pollen allergy: A randomized placebo-controlled trial. Bioscience, Biotechnology, and Biochemistry 69 (9):1652–60. doi: 10.1271/bbb.69.1652.
  • Jeon, S. G., H. Kayama, Y. Ueda, T. Takahashi, T. Asahara, H. Tsuji, N. M. Tsuji, H. Kiyono, J. S. Ma, T. Kusu, et al. 2012. Probiotic Bifidobacterium breve induces IL-10-producing Tr1 cells in the colon. PLoS Pathogens 8 (5):e1002714. doi: 10.1371/journal.ppat.1002714.
  • Johnson, J. L., M. B. Jones, and B. A. Cobb. 2015. Bacterial capsular polysaccharide prevents the onset of asthma through T-cell activation. Glycobiology 25 (4):368–75. doi: 10.1093/glycob/cwu117.
  • Jones, S. E., M. L. Paynich, D. B. Kearns, and K. L. Knight. 2014. Protection from intestinal inflammation by bacterial exopolysaccharides. Journal of Immunology (Baltimore, MD: 1950) 192 (10):4813–20. doi: 10.4049/jimmunol.1303369.
  • Krogulska, A., M. Borowiec, E. Polakowska, J. Dynowski, W. Młynarski, and K. Wasowska-Królikowska. 2011. FOXP3, IL-10, and TGF-β genes expression in children with IgE-dependent food allergy. Journal of Clinical Immunology 31 (2):205–15. doi: 10.1007/s10875-010-9487-1.
  • Kuitunen, M., K. Kukkonen, K. Juntunen-Backman, R. Korpela, T. Poussa, T. Tuure, T. Haahtela, and E. Savilahti. 2009. Probiotics prevent IgE-associated allergy until age 5 years in cesarean-delivered children but not in the total cohort. The Journal of Allergy and Clinical Immunology 123 (2):335–41. doi: 10.1016/j.jaci.2008.11.019.
  • Kumar, S., A. K. Verma, M. Das, and P. D. Dwivedi. 2012. Molecular mechanisms of IgE mediated food allergy. International Immunopharmacology 13 (4):432–9. doi: 10.1016/j.intimp.2012.05.018.
  • Lee, K. H., Y. Song, W. Wu, K. Yu, and G. Zhang. 2020. The gut microbiota, environmental factors, and links to the development of food allergy. Clinical and Molecular Allergy 18 (1):1–11. doi: 10.1186/s12948-020-00120-x.
  • Liu, L., H. Li, R.-H. Xu, and P.-L. Li. 2017. Expolysaccharides from Bifidobacterium animalis RH activates RAW 264.7 macrophages through toll-like receptor 4. Food and Agricultural Immunology 28 (1):149–61. doi: 10.1080/09540105.2016.1230599.
  • Lluis, A., M. Depner, B. Gaugler, P. Saas, V. I. Casaca, D. Raedler, S. Michel, J. Tost, J. Liu, J. Genuneit, Protection Against Allergy: Study in Rural Environments Study Group, et al. 2014. Increased regulatory T-cell numbers are associated with farm milk exposure and lower atopic sensitization and asthma in childhood. The Journal of Allergy and Clinical Immunology 133 (2):551–559. e510. doi: 10.1016/j.jaci.2013.06.034.
  • Lou, W., C. Wang, Y. Wang, D. Han, and L. Zhang. 2012. Responses of CD4+ CD25+ Foxp3+ and IL‐10‐secreting type IT regulatory cells to cluster‐specific immunotherapy for allergic rhinitis in children. Pediatric Allergy and Immunology 23 (2):141–50. doi: 10.1111/j.1399-3038.2011.01249.x.
  • Luo, M., M. Gan, X. Yu, X. Wu, and F. Xu. 2020. Study on the regulatory effects and mechanisms of action of bifidobacterial exopolysaccharides on anaphylaxes in mice. International Journal of Biological Macromolecules 165 (Pt A):1447–54. doi: 10.1016/j.ijbiomac.2020.09.224.
  • Matsuzaki, C., C. Takagaki, Y. Higashimura, Y. Nakashima, K. Hosomi, J. Kunisawa, K. Yamamoto, and K. Hisa. 2018. Immunostimulatory effect on dendritic cells of the adjuvant-active exopolysaccharide from Leuconostoc mesenteroides strain NTM048. Bioscience, Biotechnology, and Biochemistry 82 (9):1647–51. doi: 10.1080/09168451.2018.1482195.
  • Meijerink, M., S. Van Hemert, N. Taverne, M. Wels, P. De Vos, P. A. Bron, H. F. Savelkoul, J. Van Bilsen, M. Kleerebezem, and J. M. Wells. 2010. Identification of genetic loci in Lactobacillus plantarum that modulate the immune response of dendritic cells using comparative genome hybridization. PloS One 5 (5):e10632. doi: 10.1371/journal.pone.0010632.
  • Meulenbroek, L. A., B. C. Van Esch, G. A. Hofman, C. F. Den Hartog Jager, A. J. Nauta, L. E. Willemsen, C. A. Bruijnzeel‐Koomen, J. Garssen, E. Van Hoffen, and L. M. Knippels. 2013. Oral treatment with β-lactoglobulin peptides prevents clinical symptoms in a mouse model for cow’s milk allergy. Pediatric Allergy and Immunology: Official Publication of the European Society of Pediatric Allergy and Immunology 24 (7):656–64. doi: 10.1111/pai.12120.
  • Mezouar, S., Y. Chantran, J. Michel, A. Fabre, J.-C. Dubus, M. Leone, Y. Sereme, J.-L. Mège, S. Ranque, B. Desnues, et al. 2018. Microbiome and the immune system: From a healthy steady-state to allergy associated disruption. Human Microbiome Journal 10:11–20. doi: 10.1016/j.humic.2018.10.001.
  • Mitchell, W. M. 2016. Efficacy of rintatolimod in the treatment of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME). Expert Review of Clinical Pharmacology 9 (6):755–70. doi: 10.1586/17512433.2016.1172960.
  • Morisset, M., C. Aubert-Jacquin, P. Soulaines, D. Moneret-Vautrin, and C. Dupont. 2011. A non-hydrolyzed, fermented milk formula reduces digestive and respiratory events in infants at high risk of allergy. European Journal of Clinical Nutrition 65 (2):175–83. doi: 10.1038/ejcn.2010.250.
  • Murofushi, Y., J. Villena, K. Morie, P. Kanmani, M. Tohno, T. Shimazu, H. Aso, Y. Suda, K. Hashiguchi, T. Saito, et al. 2015. The toll-like receptor family protein RP105/MD1 complex is involved in the immunoregulatory effect of exopolysaccharides from Lactobacillus plantarum N14. Molecular Immunology 64 (1):63–75. doi: 10.1016/j.molimm.2014.10.027.
  • Nakata, J., T. Hirota, H. Umemura, T. Nakagawa, N. Kando, M. Futamura, Y. Nakamura, and K. Ito. 2019. Additive effect of Lactobacillus acidophilus L-92 on children with atopic dermatitis concomitant with food allergy. Asia Pacific Allergy 9 (2):e18. doi: 10.5415/apallergy.2019.9.e18.
  • Neff, C. P., M. E. Rhodes, K. L. Arnolds, C. B. Collins, J. Donnelly, N. Nusbacher, P. Jedlicka, J. M. Schneider, M. D. McCarter, M. Shaffer, et al. 2016. Diverse intestinal bacteria contain putative zwitterionic capsular polysaccharides with anti-inflammatory properties. Cell Host & Microbe 20 (4):535–47. doi: 10.1016/j.chom.2016.09.002.
  • Nocerino, R., M. Di Costanzo, G. Bedogni, L. Cosenza, Y. Maddalena, C. Di Scala, G. Della Gatta, L. Carucci, L. Voto, S. Coppola, et al. 2019. Dietary treatment with extensively hydrolyzed casein formula containing the probiotic Lactobacillus rhamnosus GG prevents the occurrence of functional gastrointestinal disorders in children with cow’s milk allergy. The Journal of Pediatrics 213:137–142. e132. doi: 10.1016/j.jpeds.2019.06.004.
  • Noda, M., N. Sultana, I. Hayashi, M. Fukamachi, and M. Sugiyama. 2019. Exopolysaccharide produced by Lactobacillus paracasei IJH-SONE68 prevents and improves the picryl chloride-induced contact dermatitis. Molecules 24 (16):2970. doi: 10.3390/molecules24162970.
  • Noda, M., S. Sugimoto, I. Hayashi, N. Danshiitsoodol, M. Fukamachi, and M. Sugiyama. 2018. A novel structure of exopolysaccharide produced by a plant-derived lactic acid bacterium Lactobacillus paracasei IJH-SONE68. Journal of Biochemistry 164 (2):87–92. doi: 10.1093/jb/mvy048.
  • Noh, J., G. Noh, H. S. Kim, A.-R. Kim, and W. S. Choi. 2012. Allergen-specific responses of CD19(+)CD5(+)Foxp3(+) regulatory B cells (Bregs) and CD4(+)Foxp3(+) regulatory T cell (Tregs) in immune tolerance of cow milk allergy of late eczematous reactions. Cellular Immunology 274 (1–2):109–14. doi: 10.1016/j.cellimm.2012.01.005.
  • Palazzo, M., S. Gariboldi, L. Zanobbio, G. F. Dusio, S. Selleri, M. Bedoni, A. Balsari, and C. Rumio. 2008. Cross-talk among Toll-like receptors and their ligands. International Immunology 20 (5):709–18. doi: 10.1093/intimm/dxn027.
  • Paynich, M. L., S. E. Jones-Burrage, and K. L. Knight. 2017. Exopolysaccharide from Bacillus subtilis induces anti-inflammatory M2 macrophages that prevent T Cell-Mediated Disease. Journal of Immunology (Baltimore, MD: 1950) 198 (7):2689–98. doi: 10.4049/jimmunol.1601641.
  • Püngel, D., A. Treveil, M. J. Dalby, S. Caim, I. J. Colquhoun, C. Booth, J. Ketskemety, T. Korcsmaros, D. van Sinderen, M. A. Lawson, et al. 2020. Bifidobacterium breve UCC2003 exopolysaccharide modulates the early life microbiota by acting as a potential dietary substrate. Nutrients 12 (4):948. doi: 10.3390/nu12040948.
  • Pyclik, M., D. Srutkova, M. Schwarzer, and S. Górska. 2020. Bifidobacteria cell wall-derived exo-polysaccharides, lipoteichoic acids, peptidoglycans, polar lipids and proteins–their chemical structure and biological attributes. International Journal of Biological Macromolecules 147:333–49.
  • Rajoka, M. S. R., Y. Wu, H. M. Mehwish, M. Bansal, and L. Zhao. 2020. Lactobacillus exopolysaccharides: New perspectives on engineering strategies, physiochemical functions, and immunomodulatory effects on host health. Trends in Food Science & Technology 103:36–48. doi: 10.1016/j.tifs.2020.06.003.
  • Rather, I. A., B.-C. Kim, L.-C. Lew, S.-K. Cha, J. H. Lee, G.-J. Nam, R. Majumder, J. Lim, S.-K. Lim, Y.-J. Seo, et al. 2021. Oral administration of live and dead cells of Lactobacillus sakei proBio65 alleviated atopic dermatitis in children and adolescents: A randomized, double-blind, and placebo-controlled study. Probiotics and Antimicrobial Proteins 13 (2):315–26. doi: 10.1007/s12602-020-09654-7.
  • Reisacher, W. R., and W. Davison. 2017. Immunotherapy for food allergy. Current Opinion in Otolaryngology & Head and Neck Surgery 25 (3):235–41. doi: 10.1097/MOO.0000000000000353.
  • Rindsjö, E., and A. Scheynius. 2010. Mechanisms of IgE-mediated allergy. Experimental Cell Research 316 (8):1384–9. doi: 10.1016/j.yexcr.2010.02.038.
  • Rivas, M. N., and T. A. Chatila. 2016. Regulatory T cells in allergic diseases. The Journal of Allergy and Clinical Immunology 138 (3):639–52. doi: 10.1016/j.jaci.2016.06.003.
  • Rodríguez, E., H. Kalay, V. Noya, N. Brossard, C. Giacomini, Y. Van Kooyk, J. J. García-Vallejo, and T. Freire. 2017. Fasciola hepatica glycoconjugates immuneregulate dendritic cells through the Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin inducing T cell anergy. Scientific Reports 7 (1):46748. doi: 10.1038/srep46748.
  • Round, J. L., and S. K. Mazmanian. 2010. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proceedings of the National Academy of Sciences of the United States of America 107 (27):12204–9. doi: 10.1073/pnas.0909122107.
  • Ruas-Madiedo, P., J. A. Moreno, N. Salazar, S. Delgado, B. Mayo, A. Margolles, and G. Clara. 2007. Screening of exopolysaccharide-producing Lactobacillus and Bifidobacterium strains isolated from the human intestinal microbiota. Applied and Environmental Microbiology 73 (13):4385–8. doi: 10.1128/AEM.02470-06.
  • Ryan, P., R. Ross, G. Fitzgerald, N. Caplice, and C. Stanton. 2015. Sugar-coated: Exopolysaccharide producing lactic acid bacteria for food and human health applications. Food & Function 6 (3):679–93. doi: 10.1039/c4fo00529e.
  • Schiavi, E., S. Plattner, N. Rodriguez-Perez, W. Barcik, R. Frei, R. Ferstl, M. Kurnik-Lucka, D. Groeger, R. Grant, J. Roper, et al. 2018. Exopolysaccharide from Bifidobacterium longum subsp. longum 35624™ modulates murine allergic airway responses. Beneficial Microbes 9 (5):761–73. doi: 10.3920/BM2017.0180.
  • Schmid, J., V. Sieber, and B. Rehm. 2015. Bacterial exopolysaccharides: Biosynthesis pathways and engineering strategies. Frontiers in Microbiology 6:496. doi: 10.3389/fmicb.2015.00496.
  • Schmiechen, Z. C., K. A. Weissler, and P. A. Frischmeyer-Guerrerio. 2019. Recent developments in understanding the mechanisms of food allergy. Current Opinion in Pediatrics 31 (6):807–14. doi: 10.1097/MOP.0000000000000806.
  • Schwarzer, M., D. Srutkova, I. Schabussova, T. Hudcovic, J. Akgün, U. Wiedermann, and H. Kozakova. 2013. Neonatal colonization of germ-free mice with Bifidobacterium longum prevents allergic sensitization to major birch pollen allergen Bet v 1. Vaccine 31 (46):5405–12. doi: 10.1016/j.vaccine.2013.09.014.
  • Shalaby, K. H., S. Al Heialy, K. Tsuchiya, S. Farahnak, T. K. Mcgovern, P. A. Risse, W. K. Suh, S. T. Qureshi, and J. G. Martin. 2017. The TLR4-TRIF pathway can protect against the development of experimental allergic asthma. Immunology 152 (1):138–49. doi: 10.1111/imm.12755.
  • Shin, H. S., H.-J. See, S. Y. Jung, D. W. Choi, D.-A. Kwon, M.-J. Bae, K.-S. Sung, and D.-H. Shon. 2015. Turmeric (Curcuma longa) attenuates food allergy symptoms by regulating type 1/type 2 helper T cells (Th1/Th2) balance in a mouse model of food allergy. Journal of Ethnopharmacology 175:21–9. doi: 10.1016/j.jep.2015.08.038.
  • Shu, S.-A., A. W. Yuen, E. Woo, K.-H. Chu, H.-S. Kwan, G.-X. Yang, Y. Yang, and P. S. Leung. 2019. Microbiota and food allergy. Clinical Reviews in Allergy & Immunology 57 (1):83–97. doi: 10.1007/s12016-018-8723-y.
  • Sicherer, S. H., and H. A. Sampson. 2018. Food allergy: A review and update on epidemiology, pathogenesis, diagnosis, prevention, and management. The Journal of Allergy and Clinical Immunology 141 (1):41–58. doi: 10.1016/j.jaci.2017.11.003.
  • Smit, J., M. Bol‐Schoenmakers, I. Hassing, D. Fiechter, L. Boon, R. Bleumink, and R. Pieters. 2011. The role of intestinal dendritic cells subsets in the establishment of food allergy. Clinical and Experimental Allergy: Journal of the British Society for Allergy and Clinical Immunology 41 (6):890–8. doi: 10.1111/j.1365-2222.2011.03738.x.
  • Smits, H. H., A. Engering, D. van der Kleij, E. C. de Jong, K. Schipper, T. M. M. van Capel, B. A. J. Zaat, M. Yazdanbakhsh, E. A. Wierenga, Y. van Kooyk, et al. 2005. Selective probiotic bacteria induce IL-10-producing regulatory T cells in vitro by modulating dendritic cell function through dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin. The Journal of Allergy and Clinical Immunology 115 (6):1260–7. doi: 10.1016/j.jaci.2005.03.036.
  • Speciale, I., R. Verma, F. D. Lorenzo, A. Molinaro, S.-H. Im, and C. D. Castro. 2019. Bifidobacterium bifidum presents on the cell surface a complex mixture of glucans and galactans with different immunological properties. Carbohydrate Polymers 218:269–78. doi: 10.1016/j.carbpol.2019.05.006.
  • Tang, Y., W. Dong, K. Wan, L. Zhang, C. Li, L. Zhang, and N. Liu. 2015. Exopolysaccharide produced by Lactobacillus plantarum induces maturation of dendritic cells in BALB/c mice. PloS One 10 (11):e0143743. doi: 10.1371/journal.pone.0143743.
  • Tan-Lim, C. S. C., and N. a R. Esteban-Ipac. 2018. Probiotics as treatment for food allergies among pediatric patients: A meta-analysis. World Allergy Organization Journal 11 (1):25. doi: 10.1186/s40413-018-0204-5.
  • Thakur, B. K., P. Saha, G. Banik, D. R. Saha, S. Grover, V. K. Batish, and S. Das. 2016. Live and heat-killed probiotic Lactobacillus casei Lbs2 protects from experimental colitis through Toll-like receptor 2-dependent induction of T-regulatory response. International Immunopharmacology 36:39–50. doi: 10.1016/j.intimp.2016.03.033.
  • Tiemessen, M. M., A. G. Van Ieperen-Van Dijk, C. A. Bruijnzeel-Koomen, J. Garssen, E. F. Knol, and E. Van Hoffen. 2004. Cow’s milk-specific T-cell reactivity of children with and without persistent cow’s milk allergy: key role for IL-10 . The Journal of Allergy and Clinical Immunology 113 (5):932–9. doi: 10.1016/j.jaci.2003.12.016.
  • Trebichavsky, I., V. Rada, A. Splichalova, and I. Splichal. 2009. Cross-talk of human gut with bifidobacteria. Nutrition Reviews 67 (2):77–82. doi: 10.1111/j.1753-4887.2008.00141.x.
  • Verma, R., C. Lee, E.-J. Jeun, J. Yi, K. S. Kim, A. Ghosh, S. Byun, C.-G. Lee, H.-J. Kang, G.-C. Kim, et al. 2018. Cell surface polysaccharides of Bifidobacterium bifidum induce the generation of Foxp3+ regulatory T cells. Science Immunology 3 (28):eaat6975. doi: 10.1126/sciimmunol.aat6975.
  • Vitlic, A., S. Sadiq, H. I. Ahmed, E. C. Ale, A. G. Binetti, A. Collett, P. N. Humpreys, and A. P. Laws. 2019. Isolation and characterization of a high molecular mass β-glucan from Lactobacillus fermentum Lf2 and evaluation of its immunomodulatory activity. Carbohydrate Research 476:44–52. doi: 10.1016/j.carres.2019.03.003.
  • Wachi, S., P. Kanmani, Y. Tomosada, H. Kobayashi, T. Yuri, S. Egusa, T. Shimazu, Y. Suda, H. Aso, M. Sugawara, et al. 2014. Lactobacillus delbrueckii TUA4408L and its extracellular polysaccharides attenuate enterotoxigenic Escherichia coli-induced inflammatory response in porcine intestinal epitheliocytes via Toll-like receptor-2 and 4 . Molecular Nutrition & Food Research 58 (10):2080–93. doi: 10.1002/mnfr.201400218.
  • Wang, Q., R. M. Mcloughlin, B. A. Cobb, M. Charrel-Dennis, K. J. Zaleski, D. Golenbock, A. O. Tzianabos, and D. L. Kasper. 2006. A bacterial carbohydrate links innate and adaptive responses through Toll-like receptor 2. The Journal of Experimental Medicine 203 (13):2853–63. doi: 10.1084/jem.20062008.
  • Whitfield, C., S. S. Wear, and C. Sande. 2020. Assembly of bacterial capsular polysaccharides and exopolysaccharides. Annual Review of Microbiology 74:521–43. doi: 10.1146/annurev-micro-011420-075607.
  • Willemsen, L. E. 2018. Novel immunotherapy approaches to food allergy. Immunomodulatory Effects of Non-Digestible Oligosaccharides in Peanut Allergy 14 (6):47.
  • Xiao, L., W. R. van De Worp, R. Stassen, C. van Maastrigt, N. Kettelarij, B. Stahl, B. Blijenberg, S. A. Overbeek, G. Folkerts, J. Garssen, et al. 2019. Human milk oligosaccharides promote immune tolerance via direct interactions with human dendritic cells. European Journal of Immunology 49 (7):1001–14. doi: 10.1002/eji.201847971.
  • Xie, F. T., J. S. Cao, J. Zhao, Y. Yu, F. Qi, and X. C. Dai. 2015. IDO expressing dendritic cells suppress allograft rejection of small bowel transplantation in mice by expansion of Foxp3+ regulatory T cells. Transplant Immunology 33 (2):69–77. doi: 10.1016/j.trim.2015.05.003.
  • Xiu, L., H. Zhang, Z. Hu, Y. Liang, S. Guo, M. Yang, R. Du, and X. Wang. 2018. Immunostimulatory activity of exopolysaccharides from probiotic Lactobacillus casei WXD030 strain as a novel adjuvant in vitro and in vivo. Food and Agricultural Immunology 29 (1):1086–105. doi: 10.1080/09540105.2018.1513994.
  • Yamashita, H., K. Takahashi, H. Tanaka, H. Nagai, and N. Inagaki. 2012. Overcoming food allergy through acquired tolerance conferred by transfer of Tregs in a murine model. Allergy 67 (2):201–9. doi: 10.1111/j.1398-9995.2011.02742.x.
  • Yang, B., L. Xiao, S. Liu, X. Liu, Y. Luo, Q. Ji, P. Yang, and Z. Liu. 2017. Exploration of the effect of probiotics supplementation on intestinal microbiota of food allergic mice. American Journal of Translational Research 9 (2):376–85.
  • Yang, J., F. Ren, H. Zhang, L. Jiang, Y. Hao, and X. Luo. 2015. Induction of regulatory dendritic cells by Lactobacillus paracasei L9 prevents allergic sensitization to bovine β-lactoglobulin in mice. Journal of Microbiology and Biotechnology 25 (10):1687–96. doi: 10.4014/jmb.1503.03022.
  • Yang, J., H. Zhang, L. Jiang, H. Guo, X. Luo, and F. Ren. 2015. Bifidobacterium longum BBMN68-specific modulated dendritic cells alleviate allergic responses to bovine β-lactoglobulin in mice. Journal of Applied Microbiology 119 (4):1127–37. doi: 10.1111/jam.12923.
  • Yang, T., S. Zang, Y. Wang, Y. Zhu, L. Jiang, X. Chen, X. Zhang, J. Cheng, R. Gao, H. Xiao, et al. 2020. Methamphetamine induced neuroinflammation in mouse brain and microglial cell line BV2: Roles of the TLR4/TRIF/Peli1 signaling axis. Toxicology Letters 333:150–8. doi: 10.1016/j.toxlet.2020.07.028.
  • Zannini, E., D. M. Waters, A. Coffey, and E. K. Arendt. 2016. Production, properties, and industrial food application of lactic acid bacteria-derived exopolysaccharides. Applied Microbiology and Biotechnology 100 (3):1121–35. doi: 10.1007/s00253-015-7172-2.
  • Zdorovenko, E. L., V. V. Kachala, A. V. Sidarenka, A. V. Izhik, E. P. Kisileva, A. S. Shashkov, G. I. Novik, and Y. A. Knirel. 2009. Structure of the cell wall polysaccharides of probiotic bifidobacteria Bifidobacteriumbifidum BIM B-465. Carbohydrate Research 344 (17):2417–20. doi: 10.1016/j.carres.2009.08.039.
  • Zeidan, A. A., V. K. Poulsen, T. Janzen, P. Buldo, P. M. Derkx, G. Øregaard, and A. R. Neves. 2017. Polysaccharide production by lactic acid bacteria: From genes to industrial applications. FEMS Microbiology Reviews 41 (Supp_1):S168–S200. doi: 10.1093/femsre/fux017.
  • Zeuthen, L. H., L. N. Fink, and H. Frøkiaer. 2008. Toll-like receptor 2 and nucleotide-binding oligomerization domain-2 play divergent roles in the recognition of gut-derived lactobacilli and bifidobacteria in dendritic cells. Immunology 124 (4):489–502. doi: 10.1111/j.1365-2567.2007.02800.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.