743
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

Advances on removal of organophosphorus pesticides with electrochemical technology

, , &

References

  • Abdel-Shafy, H. I., R. Morsy, M. Hewehy, T. Razek, and M. Hamid. 2022. Treatment of industrial electroplating wastewater for metals removal via electrocoagulation continous flow reactors. Water Practice and Technology 17 (2):555–66. doi: 10.2166/wpt.2022.001.
  • Abu Ghalwa, N. M., and N. B. Farhat. 2016. Adsorption of Fenamiphos pesticide from aqueous solutions by electrocoagulation using sacrificial anodes. Journal of Environmental and Analytical Toxicology 6 (2):1000357. doi: 10.4172/2161-0525.1000357.
  • Ahmad, F., S. Iqbal, S. Anwar, M. Afzal, E. Islam, T. Mustafa, and Q. M. Khan. 2012. Enhanced remediation of chlorpyrifos from soil using ryegrass (Lollium multiflorum) and chlorpyrifos-degrading bacterium Bacillus pumilus C2A1. Journal of Hazardous Materials 237-238:110–5. doi:10.1016/j.jhazmat.2012.08.006. 22959266
  • Ahmed Basha, C., R. Saravanathamizhan, V. Nandakumar, K. Chitra, and C. W. Lee. 2013. Copper recovery and simultaneous COD removal from copper phthalocyanine dye effluent using bipolar disc reactor. Chemical Engineering Research and Design 91 (3):552–9. doi: 10.1016/j.cherd.2012.11.003.
  • Aimer, Y., O. Benali, and K. Groenen Serrano. 2019. Study of the degradation of an organophosphorus pesticide using electrogenerated hydroxyl radicals or heat-activated persulfate. Separation and Purification Technology 208:27–33. doi: 10.1016/j.seppur.2018.05.066.
  • Alalm, M. G., and M. Nasr. 2020. Treatment of water contaminated with diazinon by Electro-Fenton process: Effect of operating parameters, and artificial neural network modeling. Desalination and Water Treatment 182:277–87. doi: 10.5004/dwt.2020.25191.
  • Alulema-Pullupaxi, P., L. Fernandez, A. Debut, C. P. Santacruz, W. Villacis, C. Fierro, and P. J. Espinoza-Montero. 2021. Photoelectrocatalytic degradation of glyphosate on titanium dioxide synthesized by sol-gel/spin-coating on boron doped diamond (TiO2/BDD) as a photoanode. Chemosphere 278:130488. doi: 10.1016/j.chemosphere.2021.130488.
  • Alves, S. A., T. Ferreira, F. L. Migliorini, M. R. Baldan, N. G. Ferreira, and M. Lanza. 2013. Electrochemical degradation of the insecticide methyl parathion using a boron-doped diamond film anode. Journal of Electroanalytical Chemistry 702:1–7. doi: 10.1016/j.jelechem.2013.05.001.
  • Amooey, A. A., S. Ghasemi, S. M. Mirsoleimani-azizi, Z. Gholaminezhad, and M. J. Chaichi. 2014. Removal of Diazinon from aqueous solution by electrocoagulation process using aluminum electrodes. Korean Journal of Chemical Engineering 31 (6):1016–20. doi: 10.1007/s11814-014-0032-4.
  • Aquino Neto, S., and A. R. de Andrade. 2009. Electrooxidation of glyphosate herbicide at different DSA® compositions: PH, concentration and supporting electrolyte effect. Electrochimica Acta 54 (7):2039–45. doi: 10.1016/j.electacta.2008.07.019.
  • Aquino, J. M., K. Irikura, R. C. Rocha-Filho, N. Bocchi, and S. R. Biaggio. 2009. A comparison of electrodeposited Ti/β-PbO2 and Ti-Pt/β-PbO2 anodes in the electrochemical degradation of the Direct Yellow 86 dye. Química Nova 33 (10):2124–9. doi: 10.1590/S0100-40422010001000023.
  • Arapoglou, D., A. Vlyssides, C. Israilides, A. Zorpas, and P. Karlis. 2003. Detoxification of methyl-parathion pesticide in aqueous solutions by electrochemical oxidation. Journal of Hazardous Materials 98 (1–3):191–9. doi: 10.1016/S0304-3894(02)00318-7.
  • Ayoubi-Feiz, B., M. H. Mashhadizadeh, and M. Sheydaei. 2018. Preparation of reusable nano N-TiO2/graphene/titanium grid sheet for electrosorption-assisted visible light photoelectrocatalytic degradation of a pesticide: Effect of parameters and neural network modeling. Journal of Electroanalytical Chemistry 823:713–22. doi: 10.1016/j.jelechem.2018.07.020.
  • Ayoubi-Feiz, B., M. H. Mashhadizadeh, and M. Sheydaei. 2019. Degradation of diazinon by new hybrid nanocomposites N-TiO2/Graphene/Au and N-TiO2/Graphene/Ag using visible light photo-electro catalysis and photo-electro catalytic ozonation: Optimization and comparative study by Taguchi method. Separation and Purification Technology 211:704–14. doi: 10.1016/j.seppur.2018.10.032.
  • Baddouh, A., E. Amaterz, B. E. Ibrahimi, M. M. Rguitti, M. Errami, V. Tkach, and L. Bazzi. 2019. Enhanced electrochemical degradation of a basic dye with Ti/Ru0.3Ti0.7O2 anode using flow-cell. Desalination and Water Treatment 139:352–69. doi: 10.5004/dwt.2019.23274.
  • Bajpai, M., S. S. Katoch, A. Kadier, and A. Singh. 2022. A review on electrocoagulation process for the removal of emerging contaminants: Theory, fundamentals, and applications. Environmental Science and Pollution Research International 29 (11):15252–81. doi: 10.1007/s11356-021-18348-8.
  • Balci, B., M. A. Oturan, N. Oturan, and I. Sires. 2009. Decontamination of aqueous glyphosate, (aminomethyl)phosphonic acid, and glufosinate solutions by Electro-fenton-like process with Mn2+ as the catalyst. Journal of Agricultural and Food Chemistry 57 (11):4888–94. doi: 10.1021/jf900876x.
  • Bandaru, S., A. Roy, A. J. Gadgil, and C. M. van Genuchten. 2020. Long-term electrode behavior during treatment of arsenic contaminated groundwater by a pilot-scale iron electrocoagulation system. Water Research 175:115668. doi: 10.1016/j.watres.2020.115668.
  • Bazrafshan, E., L. Mohammadi, D. Balarak, S. Keikhaei, and A. H. Mahvi. 2016. International journal of energy technology and policy. International Journal of Environmental Science and Technology 18 (10):3937–54. doi: 10.1007/s13762-020-03035-x.
  • Behloul, M., H. Grib, N. Drouiche, N. Abdi, H. Lounici, and N. Mameri. 2013. Removal of Malathion pesticide from polluted solutions by electrocoagulation: Modeling of experimental results using response surface methodology. Separation Science and Technology 48 (4):664–72. doi: 10.1080/01496395.2012.707734.
  • Bhagawati, P. B., and C. B. Shivayogimath. 2017. Separation of pollutants from pulp mill wastewater by electrocoagulation. International Journal of Energy Technology and Policy 13 (1/2):166–76. doi: 10.1504/IJETP.2017.080623.
  • Bodei, L., H. Aslanian, M. Roffinella, A. Lewczuk, A. Malczewska, K. Öberg, and P. L. Filosso. 2020. Molecular identification of bronchopulmonary neuroendocrine tumours and neuroendocrine genotype in lung neoplasia using the NETest liquid biopsy. European Journal of Cardio-Thoracic Surgery 57 (6):1195–202. doi: 10.1093/ejcts/ezaa018.
  • Brillas, E., and C. A. Martínez-Huitle. 2015. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Applied Catalysis B: Environmental. 166–167:603–43. doi: 10.1016/j.apcatb.2014.11.016.
  • Burrows, H. D., M. Canle L, J. A. Santaballa, and S. Steenken., 2002. Reaction pathways and mechanisms of photodegradation of pesticides. Journal of Photochemistry and Photobiology B: Biology 67 (2):71–108. doi: 10.1016/S1011-1344(02)00277-4.
  • Chaza, C., N. Sopheak, H. Mariam, D. David, O. Baghdad, and B. Moomen. 2018. Assessment of pesticide contamination in Akkar groundwater, northern Lebanon. Environmental Science and Pollution Research International 25 (15):14302–12. doi: 10.1007/s11356-017-8568-6.
  • Chen, Z., J. Wang, J. Huang, T. Fu, G. Sun, S. Lai, R. Zhou, K. Li, and J. Zhao. 2017. The high-temperature and high-humidity storage behaviors and electrochemical degradation mechanism of LiNi0.6Co0.2Mn0.2O2 cathode material for lithium ion batteries. Journal of Power Sources 363:168–76. doi: 10.1016/j.jpowsour.2017.07.087.
  • Cheng, Z., Z. Gu, J. Chen, J. Yu, and L. Zhou. 2016. Synthesis, characterization, and photocatalytic activity of porous La-N-co-doped TiO2 nanotubes for gaseous chlorobenzene oxidation. Journal of Environmental Sciences (China) 46:203–13. doi: 10.1016/j.jes.2015.09.026.
  • Chèze, B., M. David, and V. Martinet. 2020. Understanding farmers’ reluctance to reduce pesticide use: A choice experiment. Ecological Economics 167:106349. doi: 10.1016/j.ecolecon.2019.06.004.
  • Chhowalla, M., H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang. 2013. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chemistry 5 (4):263–75. doi: 10.1038/nchem.1589.
  • Chiron, S., A. Fernandez-Alba, A. Rodriguez, and E. Garcia-Calvo. 2000. Pesticide chemical oxidation: State-of-the-art. Water Research 34 (2):366–77. doi: 10.1016/S0043-1354(99)00173-6.
  • Cho, S.-H., J. Shim, S.-H. Yun, and S.-H. Moon. 2008. Enzyme-catalyzed conversion of phenol by using immobilized horseradish peroxidase (HRP) in a membraneless electrochemical reactor. Applied Catalysis A 337 (1):66–72. doi:10.1016/j.apcata.2007.11.038.
  • Chu, Y. Y., Y. Qian, W. J. Wang, and X. L. Deng. 2012. A dual-cathode Electro-Fenton oxidation coupled with anodic oxidation system used for 4-nitrophenol degradation. Journal of Hazardous Materials 199–200 (15):179–85. doi: 10.1016/j.jhazmat.2011.10.079.
  • Cuprys, A., P. Thomson, Y. Ouarda, G. Suresh, T. Rouissi, S. Kaur Brar, P. Drogui, and R. Y. Surampalli. 2020. Ciprofloxacin removal via sequential electro-oxidation and enzymatic oxidation. Journal of Hazardous Materials 389:121890. doi: 10.1016/j.jhazmat.2019.121890.
  • Danial, R., S. Sobri, L. C. Abdullah, and M. N. Mobarekeh. 2019. FTIR, CHNS and XRD analyses define mechanism of glyphosate herbicide removal by electrocoagulation. Chemosphere 233:559–69. doi: 10.1016/j.chemosphere.2019.06.010.
  • Dar, M. A., G. Kaushik, and J. F. Villarreal-Chiu. 2019. Pollution status and bioremediation of chlorpyrifos in environmental matrices by the application of bacterial communities: A review. Journal of Environmental Management 239:124–36. doi: 10.1016/j.jenvman.2019.03.048.
  • Dhaouadi, A., L. Monser, and N. Adhoum. 2009. Anodic oxidation and Electro-Fenton treatment of rotenone. Electrochimica Acta 54 (19):4473–80. doi: 10.1016/j.electacta.2009.03.023.
  • Djafarzadeh, N., M. Safarpour, and A. Khataee. 2014. Electrochemical degradation of three reactive dyes using carbon paper cathode modified with carbon nanotubes and their simultaneous determination by partial least square method. Korean Journal of Chemical Engineering 31 (5):785–93. doi: 10.1007/s11814-013-0267-5.
  • Dominguez, C. M., N. Oturan, A. Romero, A. Santos, and M. A. Oturan. 2018. Optimization of electro-Fenton process for effective degradation of organochlorine pesticide lindane. Catalysis Today 313:196–202. doi: 10.1016/j.cattod.2017.10.028.
  • Durán, N., and E. Esposito. 2000. Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: A review. Applied Catalysis B: Environmental 28 (2):83–99. doi: 10.1016/S0926-3373(00)00168-5.
  • Ek, M., J. Gierer, K. Jansbo, and T. R. Reitberger. 1989. Study on the selectivity of bleaching with oxygen-containing species. Holzforschung 43 (6):391–6. doi: 10.1515/hfsg.1989.43.6.391.
  • Erban, T., M. Stehlik, B. Sopko, M. Markovic, M. Seifrtova, T. Halesova, and P. Kovaricek. 2018. The different behaviors of glyphosate and AMPA in compost-amended soil. Chemosphere 207:78–83. doi: 10.1016/j.chemosphere.2018.05.004.
  • Essadki, A. H., B. Gourich, C. Vial, H. Delmas, and M. Bennajah. 2009. Defluoridation of drinking water by electrocoagulation/electroflotation in a stirred tank reactor with a comparative performance to an external-loop airlift reactor. Journal of Hazardous Materials 168 (2–3):1325–33. doi: 10.1016/j.jhazmat.2009.03.021.
  • FAOSTAT. 2022. https://www.fao.org/faostat/en/#data
  • Fonseca, J. M., M. Alves, L. S. Soares, R. Moreira, G. A. Valencia, and A. R. Monteiro. 2021. A review on TiO2-based photocatalytic systems applied in fruit postharvest: Set-ups and perspectives. Food Research International (Ottawa, Ont.) 144:110378. doi: 10.1016/j.foodres.2021.110378.
  • Fu, H., P. Tan, R. Wang, S. Li, H. Liu, Y. Yang, and Z. Wu. 2022. Advances in organophosphorus pesticides pollution: Current status and challenges in ecotoxicological, sustainable agriculture, and degradation strategies. Journal of Hazardous Materials 424 (Pt B):127494. doi: 10.1016/j.jhazmat.2021.127494.
  • Fujishima, A., and K. Honda. 1972. Electrochemical photocatalysis of water at semiconductor electrode. Nature 238 (5358):37–8. doi: 10.1038/238037a0.
  • Gabriel Rangel-Peraza, J. S. 2020. Malathion removal through peroxi-electrocoagulation and photocatalytic treatments. optimization by statistical analysis. International Journal of Electrochemical Science 15:8253–64. doi: 10.20964/2020.08.08.
  • Ghalwa, N. 2013. Electrochemical degradation of chlorpyrifos in aqueous solutions using g/Nb2O5 and Nb/NbO5 electrodes. International Journal of Pharma and Bio Sciences 4 (4):885–97.
  • Giardina, P., and G. Sannia. 2015. Laccases: Old enzymes with a promising future. Cellular and Molecular Life Sciences: CMLS 72 (5):855–6. doi: 10.1007/s00018-014-1821-y.
  • Gong, Y., H. Lan, J. Li, M. Zhang, and A. Wang. 2016. Mineralization of pesticide glyphosate wastewater by Photoelectro-Fenton process. Chinese Journal of Environmental Engineering 10 (8):3999–4003. doi: 10.12030/j.cjee.201503080.
  • Greaves, A. K., and R. J. Letcher. 2017. A review of organophosphate esters in the environment from biological effects to distribution and fate. Bulletin of Environmental Contamination and Toxicology 98 (1):2–6. doi: 10.1007/s00128-016-1898-0.
  • Grimm, J., D. Bessarabov, and R. Sanderson. 1998. Review of electro-assisted methods for water purification. Desalination 115 (3):285–94. doi: 10.1016/S0011-9164(98)00047-2.
  • Gu, Y., S. Wang, H. Shi, J. Yang, S. Li, H. Zheng, W. Jiang, J. Liu, X. Zhong, and J. Wang. 2021. Atomic Pt embedded in BNC nanotubes for enhanced electrochemical ozone production via an oxygen intermediate-rich local environment. ACS Catalysis 11 (9):5438–51. doi: 10.1021/acscatal.1c00413.
  • Guivarch, E., N. Oturan, and M. A. Oturan. 2003. Removal of organophosphorus pesticides from water by electrogenerated Fenton’s reagent. Environmental Chemistry Letters 1 (3):165–8. doi: 10.1007/s10311-003-0029-4.
  • Hakizimana, J. N., B. Gourich, M. Chafi, Y. Stiriba, C. Vial, P. Drogui, and J. Naja. 2017. Electrocoagulation process in water treatment: A review of electrocoagulation modeling approaches. Desalination 404:1–21. doi: 10.1016/j.desal.2016.10.011.
  • Hamza, M., R. Abdelhedi, E. Brillas, and I. Sirés. 2009. Comparative electrochemical degradation of the triphenylmethane dye methyl violet with boron-doped diamond and Pt anodes. Journal of Electroanalytical Chemistry 627 (1–2):41–50. doi: 10.1016/j.jelechem.2008.12.017.
  • Han, W., C. Zhong, L. Liang, Y. Sun, Y. Guan, L. Wang, X. Sun, and J. Li. 2014. Electrochemical degradation of triazole fungicides in aqueous solution using TiO2-NTs/SnO2-Sb/PbO2 anode: Experimental and DFT studies. Electrochimica Acta 130:179–86. doi: 10.1016/j.electacta.2014.02.119.
  • Heena Khan, S., S. R, B. Pathak, and M. H. Fulekar. 2015. Photocatalytic degradation of organophosphate pesticides (Chlorpyrifos) using synthesized zinc oxide nanoparticle by membrane filtration reactor under UV irradiation. Frontiers in Nanoscience and Nanotechnology 1 (1):23–7. doi: 10.15761/FNN.1000105.
  • Hossaini, H., G. Moussavi, and M. Farrokhi. 2014. The investigation of the LED-activated FeFNS-TiO2 nanocatalyst for photocatalytic degradation and mineralization of organophosphate pesticides in water. Water Research 59:130–44. doi: 10.1016/j.watres.2014.04.009.
  • Hosseini, G., A. Maleki, H. Daraei, E. Faez, and Y. D. Shahamat. 2015. Electrochemical process for Diazinon removal from aqueous media: Design of experiments, optimization, and DLLME-GC-FID method for Diazinon determination. Arabian Journal for Science and Engineering 40 (11):3041–6. doi: 10.1007/s13369-015-1798-3.
  • Hung, W. C., S. H. Fu, J. J. Tseng, H. Chu, and T. H. Ko. 2007. Study on photocatalytic degradation of gaseous dichloromethane using pure and iron ion-doped TiO2 prepared by the sol-gel method. Chemosphere 66 (11):2142–51. doi: 10.1016/j.chemosphere.2006.09.037.
  • Iglesias, O., M. Dios, T. Tavares, M. A. Sanromán, and M. Pazos. 2015. Heterogeneous electro-Fenton treatment: Preparation, characterization and performance in groundwater pesticide removal. Journal of Industrial and Engineering Chemistry 27:276–82. doi: 10.1016/j.jiec.2014.12.044.
  • Islam, S. M., R. K. Math, K. M. Cho, W. J. Lim, S. Y. Hong, J. M. Kim, M. G. Yun, J. J. Cho, and H. D. Yun. 2010. Organophosphorus hydrolase (OpdB) of Lactobacillus brevis WCP902 from kimchi is able to degrade organophosphorus pesticides. Journal of Agricultural and Food Chemistry 58 (9):5380–6. doi: 10.1021/jf903878e.
  • Jiang, J.-Q. 2015. The role of coagulation in water treatment. Current Opinion in Chemical Engineering 8:36–44. doi: 10.1016/j.coche.2015.01.008.
  • Katsikantami, I., C. Colosio, A. Alegakis, M. N. Tzatzarakis, E. Vakonaki, A. K. Rizos, D. A. Sarigiannis, and A. M. Tsatsakis. 2019. Estimation of daily intake and risk assessment of organophosphorus pesticides based on biomonitoring data – The internal exposure approach. Food and Chemical Toxicology 123:57–71. doi: 10.1016/j.fct.2018.10.047.
  • Khaghani, R., N. Yousefi, A. R. Asgari, R. Kholdi Haghighi, K. Ghadiri, J. Arabloo, F. Ali, A. Bagheri, M. Khazaei, S. S. Talebi, et al. 2020. Malathion removal by electrocoagulation process: Iron and stainless-steel electrodes, direct and alternating current and determining energy and electrode consumption and kinetic study. Desalination and Water Treatment 201:110–20. doi: 10.5004/dwt.2020.25769.
  • Khan, G. M., G.-Y. Kim, T. S. Akinrelere, and S.-H. Moon. 2007. Electroenzymatic mineralization of 2-chlorobiphenyl in synthetic wastewater. Desalination 211 (1–3):212–21. doi: 10.1016/j.desal.2006.03.595.
  • Kim, G. Y., K. B. Lee, S. H. Cho, J. Shim, and S. H. Moon. 2005. Electroenzymatic degradation of azo dye using an immobilized peroxidase enzyme. Journal of Hazardous Materials 126 (1–3):183–8. doi: 10.1016/j.jhazmat.2005.06.023.
  • Kirby, A. J., B. S. Souza, and F. Nome. 2015. Structure and reactivity of phosphate diesters. Dependence on the nonleaving group. Canadian Journal of Chemistry 93 (4):422–7. doi: 10.1139/cjc-2014-0358.
  • Kobya, M., U. Gebologlu, F. Ulu, S. Oncel, and E. Demirbas. 2011. Removal of arsenic from drinking water by the electrocoagulation using Fe and Al electrodes. Electrochimica Acta 56 (14):5060–70. doi: 10.1016/j.electacta.2011.03.086.
  • Konstas, P. S., D. Hela, A. Giannakas, A. Triantafyllos, and I. Konstantinou. 2019. Photocatalytic degradation of organophosphate flame retardant TBEP: Kinetics and identification of transformation products by orbitrap mass spectrometry. International Journal of Environmental and Analytical Chemistry 99 (4):297–309. doi: 10.1080/03067319.2019.1593399.
  • Kryczyk-Poprawa, A., J. Piotrowska, P. Żmudzki, W. Opoka, and B. Muszyńska., 2020. Feasibility of the use of Lentinula edodes mycelium in terbinafine remediation. 3 Biotech 10 (4):184. doi: 10.1007/s13205-020-02177-6.
  • Kukurina, O., Z. Elemesova, and A. Syskina. 2014. Mineralization of organophosphorous pesticides by electro-generated oxidants. Procedia Chemistry 10:209–16. doi: 10.1016/j.proche.2014.10.036.
  • Kumar, A., S. Shrivastava, N. Verma, C.-C. Hsueh, C.-T. Chang, and B.-Y. Chen. 2020. Electrolyte-free electro-oxidation of aqueous glyphosate: CuPc-ACF electrode and optimization of operating parameters. Process Safety and Environment Protection. 142:260–71. doi: 10.1016/j.psep.2020.06.022.
  • Labiadh, L., M. A. Oturan, M. Panizza, N. B. Hamadi, and S. Ammar. 2015. Complete removal of AHPS synthetic dye from water using new Electro-fenton oxidation catalyzed by natural pyrite as heterogeneous catalyst. Journal of Hazardous Materials 297:34–41. doi: 10.1016/j.jhazmat.2015.04.062.
  • Lan, H., W. He, A. Wang, R. Liu, H. Liu, J. Qu, and C. P. Huang. 2016. An activated carbon fiber cathode for the degradation of glyphosate in aqueous solutions by the Electro-Fenton mode: Optimal operational conditions and the deposition of iron on cathode on electrode reusability. Water Research 105:575–82. doi: 10.1016/j.watres.2016.09.036.
  • Lan, H., Z. Jiao, X. Zhao, W. He, A. Wang, H. Liu, R. Liu, and J. Qu. 2013. Removal of glyphosate from water by electrochemically assisted MnO2 oxidation process. Separation and Purification Technology 117:30–4. doi: 10.1016/j.seppur.2013.04.012.
  • Lebik-Elhadi, H., Z. Frontistis, H. Ait-Amar, S. Amrani, and D. Mantzavinos. 2018. Electrochemical oxidation of pesticide thiamethoxam on boron doped diamond anode: Role of operating parameters and matrix effect. Process Safety and Environment Protection 116:535–41. doi: 10.1016/j.psep.2018.03.021.
  • Lima, N. S., É. M. Souza, N. H. Torres, R. Bergamasco, M. N. Marques, S. Garcia-Segura, O. L. Sanchez de Alsina, and E. B. Cavalcanti. 2019. Relevance of adjuvants and additives of pesticide commercial formulation on the removal performance of glyphosate by electrochemically driven processes. Journal of Cleaner Production 212:837–46. doi: 10.1016/j.jclepro.2018.12.007.
  • Li, Z., Y. Qu, K. Hu, M. Humayun, S. Chen, and L. Jing. 2017. Improved photoelectrocatalytic activities of BiOCl with high stability for water oxidation and MO degradation by coupling RGO and modifying phosphate groups to prolong carrier lifetime. Applied Catalysis B: Environmental 203:355–62. doi: 10.1016/j.apcatb.2016.10.045.
  • Li, Q., Q. Zhang, H. Cui, L. Ding, Z. Wei, and J. Zhai. 2013. Fabrication of cerium-doped lead dioxide anode with improved electrocatalytic activity and its application for removal of Rhodamine B. Chemical Engineering Journal and the Biochemical Engineering Journal 228:806–14. doi: 10.1016/j.cej.2013.05.064.
  • Li, W., Y. Zhao, X. Yan, J. Duan, C. P. Saint, and S. Beecham. 2019. Transformation pathway and toxicity assessment of malathion in aqueous solution during UV photolysis and photocatalysis. Chemosphere 234:204–14. doi: 10.1016/j.chemosphere.2019.06.058.
  • Loganathan, P., S. Vigneswaran, J. Kandasamy, and R. Naidu., 2013. Defluoridation of drinking water using adsorption processes. Journal of Hazardous Materials 248–249 (15):1–19. doi: 10.1016/j.jhazmat.2012.12.043.
  • Mahdavi, M., M. M. Amin, Y. Hajizadeh, H. Farrokhzadeh, and A. Ebrahimi. 2017. Removal of different NOM fractions from spent filter backwash water by polyaluminum ferric chloride and ferric chloride. Arabian Journal for Science and Engineering 42 (4):1497–504. doi: 10.1007/s13369-016-2364-3.
  • Mahmoudpoor Moteshaker, P., S. Saadi, and S. E. Rokni. 2020. Electrochemical removal of diazinon insecticide in aqueous solution by Pb/β-PbO2 anode. Effect of parameters and optimization using response surface methodology. Water Environment Research 92 (7):975–86. doi: 10.1002/wer.1292.
  • Malakootian, M., A. Shahesmaeili, M. Faraji, H. Amiri, and S. Silva Martinez. 2020. Advanced oxidation processes for the removal of organophosphorus pesticides in aqueous matrices: A systematic review and meta-analysis. Process Safety and Environment Protection 134:292–307. doi: 10.1016/j.psep.2019.12.004.
  • Mamián, M., W. Torres, and F. E. Larmat. 2009. Electrochemical degradation of atrazine in aqueous solution at a platinum electrode. Portugaliae Electrochimica Acta 27 (3):371–9. doi: 10.4152/pea.200903371.
  • Martinez-Huitle, C. A., A. D. Battisti, S. Ferro, S. Reyna, M. Cerro-Lopez, and M. A. Quiro. 2008. Removal of the pesticide Methamidophos from aqueous solutions by electrooxidation using Pb/PbO2, Ti/SnO2, and Si/BDD electrodes. Environmental Science & Technology 42 (18):6929–35. doi: 10.1021/es8008419.
  • Martinez-Huitle, C. A., and S. Ferro. 2006. Electrochemical oxidation of organic pollutants for the wastewater treatment: Direct and indirect processes. Chemical Society Reviews 35 (12):1324–40. doi: 10.1039/b517632h.
  • Martins, A. S., L. Nuñez, and M. Lanza. 2017. Enhanced photoelectrocatalytic performance of TiO2 nanotube array modified with WO3 applied to the degradation of the endocrine disruptor propyl paraben. Journal of Electroanalytical Chemistry 802:33–9. doi: 10.1016/j.jelechem.2017.08.040.
  • Medithi, S., Y. D. Kasa, B. Jee, V. Kodali, and P. R. Jonnalagadda. 2022. Organophosphate pesticide exposure among farm women and children: Status of micronutrients, acetylcholinesterase activity, and oxidative stress. Archives of Environmental & Occupational Health 77 (2):109–24. doi: 10.1080/19338244.2020.1854646.
  • Meshalkin, V. P., V. A. Kolesnikov, A. V. Desyatov, A. D. Milyutina, and A. V. Kolesnikov. 2017. Physicochemical efficiency of electroflotation of finely divided carbon nanomaterial from aqueous solutions containing surfactants. Doklady Chemistry 476 (1):219–22. doi: 10.1134/S001250081709004X.
  • Migliorini, F. L., N. A. Braga, S. A. Alves, M. R. Lanza, M. R. Baldan, and N. G. Ferreira. 2011. Anodic oxidation of wastewater containing the Reactive Orange 16 Dye using heavily boron-doped diamond electrodes. Journal of Hazardous Materials 192 (3):1683–9. doi: 10.1016/j.jhazmat.2011.07.007.
  • Motoc, S., F. Manea, A. Pop, R. Pode, and C. Teodosiu. 2012. Electrochemical degradation of pharmaceutical effluents on carbon-based electrodes. Environmental Engineering and Management Journal 11 (3):627–34. doi: 10.30638/eemj.2012.079.
  • Mousset, E., L. Frunzo, G. Esposito, E. Hullebusch, N. Oturan, and M. A. Oturan. 2016. A complete phenol oxidation pathway obtained during electro-Fenton treatment and validated by a kinetic model study. Applied Catalysis B: Environmental 180:189–98. doi: 10.1016/j.apcatb.2015.06.014.
  • Mousset, E., Y. Pechaud, N. Oturan, and M. A. Oturan. 2019. Charge transfer/mass transport competition in advanced hybrid electrocatalytic wastewater treatment: Development of a new current efficiency relation. Applied Catalysis B: Environmental 240:102–11. doi: 10.1016/j.apcatb.2018.08.055.
  • Muff, J., L. MacKinnon, N. D. Durant, L. F. Bennedsen, K. Rügge, M. Bondgaard, and K. D. Pennell. 2020. Solubility and reactivity of surfactant-enhanced alkaline hydrolysis of organophosphorus pesticide DNAPL. Environmental Science and Pollution Research International 27 (3):3428–39. doi: 10.1007/s11356-019-07152-0.
  • Naje, A. S., S. Chelliapan, Z. Zakaria, M. A. Ajeel, and P. A. Alaba. 2017. A review of electrocoagulation technology for the treatment of textile wastewater. Reviews in Chemical Engineering 33 (3):263–92. doi: 10.1515/revce-2016-0019.
  • Ning, Y., K. Li, Z. Zhao, D. Chen, Y. Li, Y. Liu, Q. Yang, and B. Jiang. 2021. Simultaneous electrochemical degradation of organophosphorus pesticides and recovery of phosphorus: Synergistic effect of anodic oxidation and cathodic precipitation. Journal of the Taiwan Institute of Chemical Engineers 125:267–75. doi: 10.1016/j.jtice.2021.06.039.
  • Niu, J., D. Maharana, J. Xu, Z. Chai, and Y. Bao. 2013. A high activity of Ti/SnO2-Sb electrode in the electrochemical degradation of 2,4-dichlorophenol in aqueous solution. Journal of Environmental Sciences 25 (7):1424–30. doi: 10.1016/S1001-0742(12)60103-X.
  • Ozcan, A., Y. Sahin, and M. A. Oturan. 2013. Complete removal of the insecticide azinphos-methyl from water by the Electro-Fenton method-a kinetic and mechanistic study. Water Research 47 (3):1470–9. doi: 10.1016/j.watres.2012.12.016.
  • Pathiraja, G. C., M. S. Wijesingha, and N. Nanayakkara. 2017. Ti/IrO2/SnO2 anode for electrochemical degradation of chlorpyrifos in water: Optimization and degradation performances. IOP Conference Series: Materials Science and Engineering 201 (1):012040–7. pp). doi: 10.1088/1757-899X/201/1/012040.
  • Pedrosa, V. A., D. Miwa, S. Machado, and L. A. Avaca. 2006. On the utilization of boron doped diamond electrode as a sensor for Parathion and as an anode for electrochemical combustion of Parathion. Electroanalysis 18 (16):1590–7. doi: 10.1002/elan.200603561.
  • Pesci, F. M., M. S. Sokolikova, C. Grotta, P. C. Sherrell, F. Reale, K. Sharda, N. Ni, P. Palczynski, and C. Mattevi., 2017. MoS2/WS2 Heterojunction for photoelectrochemical water oxidation. ACS Catalysis 7 (8):4990–8. doi: 10.1021/acscatal.7b01517.
  • Pollok, D., and S. R. Waldvogel. 2020. Electro-organic synthesis – a 21st century technique. Chemical Science 11 (46):12386–400. doi: 10.1039/D0SC01848A.
  • Qin, S-l., and X-y. Lü. 2020. Do large-scale farmers use more pesticides? Empirical evidence from rice farmers in five Chinese provinces. Journal of Integrative Agriculture 19 (2):590–9. doi: 10.1016/S2095-3119(19)62864-9.
  • Rajkumar, D., and J. G. Kim. 2006. Oxidation of various reactive dyes with in situ electro-generated active chlorine for textile dyeing industry wastewater treatment. Journal of Hazardous Materials 136 (2):203–12. doi: 10.1016/j.jhazmat.2005.11.096.
  • Rajkumar, D., B. J. Song, and J. G. Kim. 2007. Electrochemical degradation of Reactive Blue 19 in chloride medium for the treatment of textile dyeing wastewater with identification of intermediate compounds. Dyes and Pigments 72 (1):1–7. doi: 10.1016/j.dyepig.2005.07.015.
  • Ren, Q., C. Yin, Z. Chen, M. Cheng, Y. Ren, X. Xie, Y. Li, X. Zhao, L. Xu, H. Yang, et al. 2019. Efficient sonoelectrochemical decomposition of chlorpyrifos in aqueous solution. Microchemical Journal 145:146–53. doi: 10.1016/j.microc.2018.10.032.
  • Ribeiro, F. W. P., S. d N. Oliveira, P. d. Lima-Neto, A. N. Correia, L. H. Mascaro, R. d. Matos, E. C. P. d. Souza, and M. R. d V. Lanza., 2013. Eletrodegradao de Ponceau 2R utilizando nodos dimensionalmente estáveis e Ti/Pt. Química Nova 36 (1):85–90. doi: 10.1590/S0100-40422013000100016.
  • Riva, S. 2006. Laccases: Blue enzymes for green chemistry. Trends in Biotechnology 24 (5):219–26. doi: 10.1016/j.tibtech.2006.03.006.
  • Rocha, R. S., F. L. Silva, R. B. Valim, W. Barros, J. R. Steter, R. Bertazzoli, and M. Lanza. 2016. Effect of Fe2+ on the degradation of the pesticide profenofos by electrogenerated H2O2. Journal of Electroanalytical Chemistry 783:100–5. doi: 10.1016/j.jelechem.2016.11.038.
  • Rosa Barbosa, M. P., N. S. Lima, D. B. de Matos, R. J. Alves Felisardo, G. N. Santos, G. R. Salazar-Banda, and E. B. Cavalcanti. 2018. Degradation of pesticide mixture by Electro-Fenton in filter-press reactor. Journal of Water Process Engineering 25:222–35. doi: 10.1016/j.jwpe.2018.08.008.
  • Roselló-Márquez, G., R. M. Fernández-Domene, and J. García-Antón. 2021. Organophosphorus pesticides (chlorfenvinphos, phosmet and fenamiphos) photoelectrodegradation by using WO3 nanostructures as photoanode. Journal of Electroanalytical Chemistry 894 (5):115366. doi: 10.1016/j.jelechem.2021.115366.
  • Roselló-Márquez, G., R. Fernández-Domene, R. Sánchez-Tovar, M. Cifre H Errando, and J. García-Antón. 2021. Degradation of Diazinon based on photoelectrocatalytic technique using enhanced WO3 nanostructures: Mechanism and pathway. Journal of Environmental Chemical Engineering. 9 (4):105371. doi: 10.1016/j.jece.2021.105371.
  • Rosello-Marquez, G., R. M. Fernandez-Domene, R. Sanchez-Tovar, and J. Garcia-Anton. 2020. Photoelectrocatalyzed degradation of organophosphorus pesticide fenamiphos using WO3 nanorods as photoanode. Chemosphere 246:125677. doi: 10.1016/j.chemosphere.2019.125677.
  • Rosenheim, J. A., B. N. Cass, H. Kahl, and K. P. Steinmann. 2020. Variation in pesticide use across crops in California agriculture: Economic and ecological drivers. The Science of the Total Environment 733:138683. doi: 10.1016/j.scitotenv.2020.138683.
  • Rubí-Juárez, H., S. Cotillas, C. Sáez, P. Cañizares, C. Barrera-Díaz, and M. A. Rodrigo. 2016. Removal of herbicide glyphosate by conductive-diamond electrochemical oxidation. Applied Catalysis B: Environmental 188:305–12. doi: 10.1016/j.apcatb.2016.02.006.
  • Sakalis, A., K. Fytianos, U. Nickel, and A. Voulgaropoulos. 2006. A comparative study of platinised titanium and niobe/synthetic diamond as anodes in the electrochemical treatment of textile wastewater. Chemical Engineering Journal and the Biochemical Engineering Journal 119 (2–3):127–33. doi: 10.1016/j.cej.2006.02.009.
  • Sala, M., and M. C. Gutiérrez-Bouzán. 2012. Electrochemical Techniques in Textile Processes and Wastewater Treatment. International Journal of Photoenergy. 2012:1–12. doi: 10.1155/2012/629103.
  • Salem, I. B., M. Errami, M. Mezni, R. Salghi, and F. Raboudi. 2014. Biological, ionizing and ultraviolet radiation and electrochemical degradation of chlorpyrifos pesticide in aqueous solutions. International Journal of Electrochemical Science 9 (1):342–51. doi: 10.1007/978-3-642-15217-7-10.
  • Sales Solano, A. M., C. K. Costa de Araújo, J. Vieira de Melo, J. M. Peralta-Hernandez, D. Ribeiro da Silva, and C. A. Martínez-Huitle. 2013. Decontamination of real textile industrial effluent by strong oxidant species electrogenerated on diamond electrode: Viability and disadvantages of this electrochemical technology. Applied Catalysis B: Environmental. 130-131:112–20. doi: 10.1016/j.apcatb.2012.10.023.
  • Samet, Y., L. Agengui, and R. Abdelhédi. 2010. Anodic oxidation of chlorpyrifos in aqueous solution at lead dioxide electrodes. Journal of Electroanalytical Chemistry 650 (1):152–8. doi: 10.1016/j.jelechem.2010.08.008.
  • Samet, Y., L. Agengui, and R. Abdelhédi. 2010. Electrochemical degradation of chlorpyrifos pesticide in aqueous solutions by anodic oxidation at boron-doped diamond electrodes. Chemical Engineering Journal and the Biochemical Engineering Journal 161 (1–2):167–72. doi: 10.1016/j.cej.2010.04.060.
  • Sanchez-Montes, I., J. F. Perez, C. Saez, M. A. Rodrigo, P. Canizares, and J. M. Aquino. 2020. Assessing the performance of electrochemical oxidation using DSA® and BDD anodes in the presence of UVC light. Chemosphere 238:124575. doi: 10.1016/j.chemosphere.2019.124575.
  • Shahedi, A., A. K. Darban, F. Taghipour, and A. Jamshidi-Zanjani. 2020. A review on industrial wastewater treatment via electrocoagulation processes. Current Opinion in Electrochemistry 22:154–69. doi: 10.1016/j.coelec.2020.05.009.
  • Sheikhi, S., R. Dehghanzadeh, and H. Aslani. 2021. Advanced oxidation processes for chlorpyrifos removal from aqueous solution: A systematic review. Journal of Environmental Health Science & Engineering 19 (1):1249–62. doi: 10.1007/s40201-021-00674-1.
  • Sheydaei, M., M. Karimi, and V. Vatanpour. 2019. Continuous flow photoelectrocatalysis/reverse osmosis hybrid reactor for degradation of a pesticide using nano N-TiO2/Ag/Ti electrode under visible light. Journal of Photochemistry and Photobiology A: Chemistry 384 (1):112068. doi: 10.1016/j.jphotochem.2019.112068.
  • Singla, J., V. K. Sangal, and A. Verma. 2019. Evaluation and optimization of the process parameters for the photo-electrochemical treatment of urea using mixed metal oxide anodes. Process Safety and Environment Protection 130:197–208. doi: 10.1016/j.psep.2019.08.017.
  • Sivakumar, S., P. Anitha, B. Ramesh, and G. Suresh. 2017. Analysis of EAWAG-BBD pathway prediction system for the identification of malathion degrading microbes. Bioinformation 13 (3):73–7. doi: 10.6026/97320630013073.
  • Song, S., J. Fan, Z. He, L. Zhan, Z. Liu, J. Chen, and X. Xu. 2010. Electrochemical degradation of azo dye C.I. Reactive Red 195 by anodic oxidation on Ti/SnO2-Sb/PbO2 electrodes. Electrochimica Acta 55 (11):3606–13. doi: 10.1016/j.electacta.2010.01.101.
  • Soni, B. D., and J. P. Ruparelia. 2013. Decolourization and mineralization of Reactive Black-5 with transition metal oxide coated Eeectrodes by electrochemical oxidation. Procedia Engineering 51:335–41. doi: 10.1016/j.proeng.2013.01.046.
  • Sun, J., Y. Guo, Y. Wang, D. Cao, S. Tian, K. Xiao, R. Mao, and X. Zhao. 2018. H2O2 assisted photoelectrocatalytic degradation of diclofenac sodium at g-C3N4/BiVO4 photoanode under visible light irradiation. Chemical Engineering Journal and the Biochemical Engineering Journal 332:312–20. doi: 10.1016/j.cej.2017.09.041.
  • Sun, T., J. Wang, Y. Liu, J. Wang, L. Wang, and B. Jiang. 2019. pA comprehensive study on nano-diamond doped β-PbO2 electrode: Preparation, properties and electrocatalytic performance. Journal of the Electrochemical Society 166 (14):E473–E480. doi: 10.1149/2.0591914jes.
  • Syafrudin, M., R. A. Kristanti, A. Yuniarto, T. Hadibarata, J. Rhee, W. A. Al-onazi, T. S. Algarni, A. H. Almarri, and A. M. Al-Mohaimeed. 2021. Pesticides in drinking water-A review. International Journal of Environmental Research and Public Health 18 (2):468. doi: 10.3390/ijerph18020468.
  • Syam Babu, D., T. S. Anantha Singh, P. V. Nidheesh, and M. Suresh Kumar. 2020. Industrial wastewater treatment by electrocoagulation process. Separation Science and Technology 55 (17):3195–227. doi: 10.1080/01496395.2019.1671866.
  • Tan, N., Z. Yang, X. B. Gong, Z. R. Wang, T. Fu, and Y. Liu. 2019. In situ generation of H2O2 using MWCNT-Al/O2 system and possible application for glyphosate degradation. The Science of the Total Environment 650 (Pt 2):2567–76. doi: 10.1016/j.scitotenv.2018.09.353.
  • Tang, T., J. Dong, S. Ai, Y. Qiu, and R. Han. 2011. Electro-enzymatic degradation of chlorpyrifos by immobilized hemoglobin. Journal of Hazardous Materials 188 (1–3):92–7. doi: 10.1016/j.jhazmat.2011.01.080.
  • Tang, W., H. Ji, and X. Hou. 2019. Research progress of microbial degradation of organophosphorus pesticides. Environmental Science and Pollution Research International 26 (21):21668–81. doi: 10.1007/s11356-019-05135-9.
  • Tao, F., X. Wu, W. Dan, Z. He, X. Ren, and L. Liao. 2012. Photoelectrocatalytic degradation of Dipterex in wastewater using TiO2-loaded foamed nickel electrode. Journal of Environmental Sciences 24 (6):1149–56. doi: 10.1016/S1001-0742(11)60882-6.
  • Tasca, A. L., D. Clematis, M. Panizza, S. Vitolo, and M. Puccini. 2020. Chlorpyrifos removal: Nb/boron-doped diamond anode coupled with solid polymer electrolyte and ultrasound irradiation. Journal of Environmental Health Science & Engineering 18 (2):1391–9. doi: 10.1007/s40201-020-00555-z.
  • Tran, M. H., H. C. Nguyen, T. S. Le, V. Dang, T. H. Cao, C. K. Le, and T. D. Dang. 2021. Degradation of glyphosate herbicide by an Electro-Fenton process using carbon felt cathode. Environmental Technology 42 (8):1155–64. doi: 10.1080/09593330.2019.1660411.
  • Tsai, M. L., S. H. Su, J. K. Chang, D. S. Tsai, C. H. Chen, C. I. Wu, L. J. Li, L. J. Chen, and J. H. He. 2014. Monolayer MoS2 heterojunction solar cells. ACS Nano 8 (8):8317–22. doi: 10.1021/nn502776h.
  • Unuofin, J. O., A. I. Okoh, and U. U. Nwodo. 2019. Aptitude of oxidative enzymes for treatment of wastewater pollutants: A Laccase perspective. Molecules 24 (11):2064. doi: 10.3390/molecules24112064.
  • Uranga-Flores, A., C. de la Rosa-Júarez, S. Gutierrez-Granados, D. C. de Moura, C. A. Martínez-Huitle, and J. M. Peralta Hernández. 2015. Electrochemical promotion of strong oxidants to degrade Acid Red 211: Effect of supporting electrolytes. Journal of Electroanalytical Chemistry 738:84–91. doi: 10.1016/j.jelechem.2014.11.030.
  • Vargas, R., S. Díaz, L. Viele, O. Núñez, C. Borrás, J. Mostany, and B. R. Scharifker. 2014. Electrochemical oxidation of dichlorvos on SnO2-Sb2O5 electrodes. Applied Catalysis B: Environmental 144:107–11. doi: 10.1016/j.apcatb.2013.06.016.
  • Vasudevan, S., J. Lakshmi, and G. Sozhan. 2012. Simultaneous removal of Co, Cu, and Cr from water by electrocoagulation. Toxicological and Environmental Chemistry 94 (10):1930–40. doi: 10.1080/02772248.2012.742898.
  • Veitch, N. C. 2004. Horseradish peroxidase: A modern view of a classic enzyme. Phytochemistry 65 (3):249–59. doi: 10.1016/j.phytochem.2003.10.022.
  • Vijayaraghavan, J., S. Ba Sha, and J. Jegan. 2013. A Rreview on efficacious methods to decolorize reactive azo dye. Journal of Urban and Environmental Engineering 7 (1):30–47. doi: 10.4090/juee.2013.v7n1.030047.
  • Vinotha Alex, A., and A. Mukherjee. 2021. Review of recent developments (2018-2020) on acetylcholinesterase inhibition based biosensors for organophosphorus pesticides detection. Microchemical Journal 161:105779. doi: 10.1016/j.microc.2020.105779.
  • Vlyssides, A., E. M. Barampouti, S. Mai, D. Arapoglou, and A. Kotronarou. 2004. Degradation of Methylparathion in aqueous solution by electrochemical oxidation. Environmental Science & Technology 38 (22):6125–31. doi: 10.1021/es049726b.
  • Wang, Z., and B. Mi. 2017. Environmental applications of 2D molybdenum disulfide (MoS2) nanosheets. Environmental Science & Technology 51 (15):8229–44. doi: 10.1021/acs.est.7b01466.
  • Wang, J., T. Zheng, H. Liu, G. Wang, Y. Zhang, and C. Cai. 2020. Direct and indirect electrochemical oxidation of ethanethiol on grey cast iron anode in alkaline solution. Electrochimica Acta 356 (1):136706. doi: 10.1016/j.electacta.2020.136706.
  • Wu, M., Y. Hu, R. Liu, S. Lin, W. Sun, and H. Lu. 2019. Electrocoagulation method for treatment and reuse of sulphide mineral processing wastewater: Characterization and kinetics. Science of the Total Environment 696:134063. doi: 10.1016/j.scitotenv.2019.134063.
  • Xia, Y., and Q. Dai. 2017. Electrochemical degradation of Methyldopa on a Fe doped PbO2 electrode: Electrode characterization, reaction kinetics and energy demands. Journal of the Electrochemical Society 164 (13):H877–H884. doi: 10.1149/2.0861713jes.
  • Xiao, K., D. Huang, C. Kang, and S. Sun. 2020. Removal of tetracyclines from aqueous solutions by electrocoagulation/pecan nutshell coupling processes: Synergistic effect and mechanism. Water Science and Technology 82 (4):683–94. doi: 10.2166/wst.2020.367.
  • Xu, J., T. Tang, K. Zhang, S. Ai, and H. Du. 2011. Electroenzymatic catalyzed oxidation of bisphenol-A using HRP immobilized on magnetic silk fibroin nanoparticles. Process Biochemistry 46 (5):1160–5. doi: 10.1016/j.procbio.2011.02.004.
  • Yatmaz, H. C., and Y. Uzman. 2009. Degradation of pesticide monochrotophos from aqueous solutions by electrochemical methods. International Journal of Electrochemical Science 4 (5):614–26.
  • Yeganeh, M., E. Charkhloo, H. R. Sobhi, A. Esrafili, and M. Gholami. 2022. Photocatalytic processes associated with degradation of pesticides in aqueous solutions: Systematic review and meta-analysis. Chemical Engineering Journal and the Biochemical Engineering Journal 428 (2):130081. doi: 10.1016/j.cej.2021.130081.
  • Zalat, O. A., and M. A. Elsayed. 2013. A study on microwave removal of pyridine from wastewater. Journal of Environmental Chemical Engineering 1 (3):137–43. doi: 10.1016/j.jece.2013.04.010.
  • Zekkaoui, C., T. Berrama, D. Dumoulin, G. Billon, and Y. Kadmi. 2021. Optimal degradation of organophosphorus pesticide at low levels in water using fenton and Photo-Fenton processes and identification of by-products by GC-MS/MS. Chemosphere 279:130544. doi: 10.1016/j.chemosphere.2021.130544.
  • Zhao, S., W. Xu, W. Zhang, H. Wu, C. Guang, and W. Mu. 2021. Overview of a bioremediation tool: Organophosphorus hydrolase and its significant application in the food, environmental, and therapy fields. Applied Microbiology and Biotechnology 105 (21-22):8241–53. doi: 10.1007/s00253-021-11633-z.
  • Zhou, Y., X. Fan, G. Zhang, and W. Dong. 2019. Fabricating MoS2 nanoflakes photoanode with unprecedented high photoelectrochemical performance and multi-pollutants degradation test for water treatment. Chemical Engineering Journal and the Biochemical Engineering Journal 356 (15):1003–13. doi: 10.1016/j.cej.2018.09.097.
  • Zhu, W., and R. Wang. 2021. Impact of farm size on intensity of pesticide use: Evidence from China. The Science of the Total Environment 753:141696. doi: 10.1016/j.scitotenv.2020.141696.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.