996
Views
5
CrossRef citations to date
0
Altmetric
Review Articles

An updated review of functional properties, debittering methods, and applications of soybean functional peptides

, , , , ORCID Icon &

References

  • Abdollahi, M. R., F. Zaefarian, Y. Gu, W. Xiao, J. Jia, and V. Ravindran. 2018. Influence of soybean functional peptides on performance, foot pad lesions and carcass characteristics in broilers. Journal of Applied Animal Nutrition 6:E3. doi:10.1017/JAN.2018.1.
  • Aiello, G., S. Ferruzza, G. Ranaldi, Y. Sambuy, A. Arnoldi, G. Vistoli, and C. Lammi. 2018. Behavior of three hypocholesterolemic peptides from soy protein in an intestinal model based on differentiated Caco-2 cell. Journal of Functional Foods 45:363–70. doi: 10.1016/j.jff.2018.04.023.
  • Alves de Souza, S. M., T. V. A. Fernandes, D. E. Kalume, L. M. T R Lima, P. G. Pascutti, and T. L. F. de Souza. 2020. Physicochemical and structural properties of Lunasin revealed by spectroscopic, chromatographic and molecular dynamics approaches. Biochimica et Biophysica Acta. Proteins and Proteomics 1868 (8):140440. doi:10.141016/j.bbapap.142020.140440.
  • Amakye, W. K., C. L. Hou, L. P. Xie, X. L. Lin, N. Gou, E. D. Yuan, and J. Y. Ren. 2021. Bioactive anti-aging agents and the identification of new anti-oxidant soybean peptides. Food Bioscience 42:101194. doi: 10.1016/j.fbio.2021.101194.
  • Antony, P., and R. Vijayan. 2021. Bioactive peptides as potential nutraceuticals for diabetes therapy: A comprehensive review. International Journal of Molecular Sciences 22 (16):9059. doi: 10.3390/ijms22169059.
  • Ashaolu, T. J. 2020. Health applications of soy protein hydrolysates. International Journal of Peptide Research and Therapeutics 26 (4):2333–43. doi: 10.1007/s10989-020-10018-6.
  • Ashaolu, T. J., and C. T. Yupanqui. 2017. Suppressive activity of enzymatically-educed soy protein hydrolysates on degranulation in IgE-antigen complex-stimulated RBL-2H3 cells. Functional Foods in Health and Disease 7 (7):545–61. doi: 10.31989/ffhd.v7i7.356.
  • Astawan, M., Y. S. Mardhiyyah, and C. H. Wijaya. 2018. Potential of bioactive components in tempe for the treatment of obesity. Jurnal Gizi Dan Pangan 13 (2):79–86. doi: 10.25182/jgp.2018.13.2.79-86.
  • Augusto-Jimenez, Y. E., M. Gonzalez-Montoya, D. Naranjo-Feliciano, D. Uribe-Ramirez, E. Cristiani-Urbina, C. Diaz-Aguila, H. Yee-Madeira, and R. Mora-Escobedo. 2021. Antioxidant activity of bioactive peptide fractions from germinated soybeans conjugated to Fe3O4 nanoparticles by the ugi multicomponent reaction. Molecules 26 (19):5726. doi: 10.3390/molecules26195726.
  • Bhandari, D., S. Rafiq, Y. Gat, P. Gat, R. Waghmare, and V. Kumar. 2020. A review on bioactive peptides: Physiological functions, bioavailability and safety. International Journal of Peptide Research and Therapeutics 26 (1):139–50. doi: 10.1007/s10989-019-09823-5.
  • Cabanos, C., Y. Matsuoka, and N. Maruyama. 2021. Soybean proteins/peptides: A review on their importance, biosynthesis, vacuolar sorting, and accumulation in seeds. Peptides 143:170598. doi: 10.1016/j.peptides.2021.170598.
  • Candreva, A. M., P. L. Smaldini, A. Cauerhff, S. Petruccelli, and G. H. Docena. 2021. A novel approach to ameliorate experimental milk allergy based on the oral administration of a short soy cross-reactive peptide. Food Chemistry 346:128926. doi: 10.1016/j.foodchem.2020.128926.
  • Chakrabarti, S., S. Guha, and K. Majumder. 2018. Food-derived bioactive peptides in human health: Challenges and opportunities. Nutrients 10 (11):1738. doi: 10.3390/nu10111738.
  • Chatterjee, C., S. Gleddie, and C.-W. Xiao. 2018. Soybean functional peptides and their functional properties. Nutrients 10 (9):1211. doi: 10.3390/nu10091211.
  • Chawda, P. J., J. Shi, S. Xue, and S. Y. Quek. 2017. Co-encapsulation of bioactives for food applications. Food Quality and Safety 1 (4):302–9. doi: 10.1093/fqsafe/fyx028.
  • Chelliah, R., S. Wei, E. B. M. Daliri, F. Elahi, S. J. Yeon, A. Tyagi, S. C. Liu, I. H. Madar, G. Sultan, and D. H. Oh. 2021. The role of bioactive peptides in diabetes and obesity. Foods 10 (9):2220. doi: 10.3390/foods10092220.
  • Chourasia, R., S. Padhi, L. Chiring Phukon, M. M. Abedin, S. P. Singh, and A. K. Rai. 2020. A potential peptide from soy cheese produced using Lactobacillus delbrueckii WS4 for effective inhibition of SARS-CoV-2 main protease and S1 glycoprotein. Frontiers in Molecular Biosciences 7:601753. doi:10.3389/fmolb.2020.601753.
  • Chowdhury, S. M., S. A. Talukder, A. M. Khan, N. Afrin, M. A. Ali, R. Islam, R. Parves, A. Al Mamun, M. A. Sufian, M. N. Hossain, et al. 2020. Antiviral peptides as promising therapeutics against SARS-CoV-2. The Journal of Physical Chemistry. B 124 (44):9785–92. doi:10.1021/acs.jpcb.0c0562.
  • Daliri, E. B., F. K. Ofosu, R. Chelliah, M. H. Park, J. H. Kim, and D. H. Oh. 2019. Development of a soy protein hydrolysate with an antihypertensive effect. International Journal of Molecular Sciences 20 (6):1496. doi: 10.3390/ijms20061496.
  • Daliri, E. B. M., F. K. Ofosu, R. Chelliah, B. H. Lee, H. An, F. Elahi, K. Barathikannan, J. H. Kim, and D. H. Oh. 2020. Influence of fermented soy protein consumption on hypertension and gut microbial modulation in spontaneous hypertensive rats. Bioscience of Microbiota, Food and Health 39 (4):199–208. doi:10.12938/bmfh.2020-001.
  • de Mejia, E. G., E. D. Castaneda-Reyes, L. Mojica, V. Dia, H. Wang, T. Wang, and L. A. Johnson. 2021. Potential health benefits associated with Lunasin concentration in dietary supplements and Lunasin-enriched soy extract. Nutrients 13 (5):1618. doi: 10.3390/nu13051618.
  • Degering, C., T. Eggert, M. Puls, J. Bongaerts, S. Evers, K. H. Maurer, and K. E. Jaeger. 2010. Optimization of protease secretion in Bacillus subtilis and Bacillus licheniformis by screening of homologous and heterologous signal peptides. Applied and Environmental Microbiology 76 (19):6370–6. doi: 10.1128/AEM.01146-10.
  • Dong, Q., Y. Wang, J. Wen, M. Huang, E. Yuan, and J. Zheng. 2017. Inclusion complex of neohesperidin dihydrochalcone and glucosyl- β -cyclodextrin: Synthesis, characterization, and bitter masking properties in aqueous solutions. Journal of Molecular Liquids 241:926–33. doi: 10.1016/j.molliq.2017.05.090.
  • Durand, E., S. Beaubier, I. Ilic, F. fine, R. Kapel, and P. Villeneuve. 2021. Production and antioxidant capacity of bioactive peptides from plant biomass to counteract lipid oxidation. Current Research in Food Science 4:365–97. doi: 10.1016/j.crfs.2021.05.006.
  • Fang, L., R.-X. Zhang, Y. Wei, K. Ling, L. Lu, J. Wang, X.-C. Pan, and M.-Y. Cai. 2022. Anti-fatigue effects of fermented soybean protein peptides in mice. Journal of the Science of Food and Agriculture 102 (7):2693–703. doi:10.1002/jsfa.11609. PMID: 34694006
  • Freitas, C. S., M. A. Vericimo, M. L. da Silva, G. C. V. da Costa, P. R. Pereira, V. M. F. Paschoalin, and E. M. Del Aguila. 2019. Encrypted antimicrobial and antitumoral peptides recovered from a protein-rich soybean (Glycine max) by-product. Journal of Functional Foods 54:187–98. doi: 10.1016/j.jff.2019.01.024.
  • Galvez, A., and B. de Lumen. 1999. A soybean cDNA encoding a chromatin-binding peptide inhibits mitosis of mammalian cells. Nature Biotechnology 17 (5):495–500. doi: 10.1038/8676.
  • Galvez, A. F. N. Chen, J. Macasieb, and B. O. de Lumen. 2001. Chemopreventive property of a soybean peptide (Lunasin) that binds to deacetylated histones and inhibit acetylation. Cancer Research. 61:7473–8. http://cancerres.aacrjournals.org/cgi/pmidlookup?view=long&pmid=11606382.
  • González-Montoya, M., B. Hernández-Ledesma, J. M. Silván, R. Mora-Escobedo, and C. Martínez-Villaluenga. 2018. Peptides derived from in vitro gastrointestinal digestion of germinated soybean proteins inhibit human colon cancer cells proliferation and inflammation. Food Chemistry 242:75–82. doi: 10.1016/j.foodchem.2017.1009.1035.
  • Gopikrishna, T., H. K. Suresh Kumar, K. Perumal, and E. Elangovan. 2021. Impact of Bacillus in fermented soybean foods on human health. Annals of Microbiology 71 (1):30. 10.1186/s13213-13021-01641-13219.
  • Hernández-Ledesma, B., and B. O. de Lumen. 2008. Lunasin: A novel cancer preventive seed Peptide. Perspectives in Medicinal Chemistry 2:75–80. doi: 10.4137/pmc.s372.
  • He, L., L. Ying, J. T. Xu, C. Chen, and S. T. Guo. 2021. Changes in the secondary structures and zeta potential of soybean peptide and its calcium complexes in different solution environments. Food & Function 12 (13):5967–74. doi: 10.1039/d0fo03478a.
  • Hu, Y., Y. Li, and X. Q. Liu. 2020. Soybean peptides promote yoghurt fermentation and quality. Biotechnology Letters 42 (10):1927–37. doi: 10.1007/s10529-020-02912-2.
  • Jadhav, H. B., U. S. Annapure, and R. R. Deshmukh. 2021. Non-thermal technologies for food processing. Frontiers in Nutrition 8:657090. doi: 10.3389/fnut.2021.657090.
  • Jahandideh, F., S. L. Bourque, and J. Wu. 2022. A comprehensive review on the glucoregulatory properties of food-derived bioactive peptides. Food Chemistry: X 13:100222. doi: 10.1016/j.fochx.2022.100222.
  • Jiang, H., J. Feng, Z. Du, H. Zhen, M. Lin, S. Jia, T. Li, X. Huang, C. G. Ostenson, and Z. Chen. 2014. Oral administration of soybean peptide Vglycin normalizes fasting glucose and restores impaired pancreatic function in Type 2 diabetic Wistar rats. The Journal of Nutritional Biochemistry 25 (9):954–63. doi: 10.1016/j.jnutbio.2014.04.010.
  • Khan, I. T., M. Bule, R. Ullah, M. Nadeem, S. Asif, and K. Niaz. 2019. The antioxidant components of milk and their role in processing, ripening, and storage: Functional food. Veterinary World 12 (1):12–33. doi: 10.14202/vetworld.2019.12-33.
  • Kim, I. S., C. H. Kim, and W. S. Yang. 2021. Physiologically active molecules and functional properties of soybeans in human health: A current perspective. International Journal of Molecular Sciences 22 (8):4054. doi: 10.3390/ijms22084054.
  • Kim, I. S., W. S. Yang, and C. H. Kim. 2021. Beneficial effects of soybean-derived bioactive peptides. International Journal of Molecular Sciences 22 (16):8570. doi: 10.3390/ijms22168570.
  • Ko, G. J., Y. Obi, A. R. Tortorici, and K. Kalantar-Zadeh. 2017. Dietary protein intake and chronic kidney disease. Current Opinion in Clinical Nutrition & Metabolic Care 20 (1):77–85. https://journals.lww.com/co-clinicalnutrition/Fulltext/2017/01000/Dietary_protein_intake_and_chronic_kidney_disease.12.aspx. doi: 10.1097/MCO.0000000000000342.
  • Kumari, R., S. Sanjukta, D. Sahoo, and A. K. Rai. 2022. Functional peptides in Asian protein rich fermented foods: Production and health benefits. Systems Microbiology and Biomanufacturing 2 (1):1–13. doi: 10.1007/s43393-021-00040-0.
  • Lammi, C., G. Aiello, G. Boschin, and A. Arnoldi. 2019. Multifunctional peptides for the prevention of cardiovascular disease: A new concept in the area of bioactive food-derived peptides. Journal of Functional Foods 55:135–45. doi: 10.1016/j.jff.2019.02.016.
  • Lammi, C., C. Zanoni, and A. Arnoldi. 2015. Three peptides from soy glycinin modulate glucose metabolism in human hepatic HepG2 cells. International Journal of Molecular Sciences 16 (11):27362–70. doi: 10.3390/ijms161126029.
  • Lammi, C., C. Zanoni, A. Arnoldi, and G. Vistoli. 2016. Peptides derived from soy and lupin protein as dipeptidyl-peptidase iv inhibitors: In vitro biochemical screening and in silico molecular modeling study. Journal of Agricultural and Food Chemistry 64 (51):9601–6. doi: 10.1021/acs.jafc.6b04041.
  • Lewiecki, E. M. 2018. New and emerging concepts in the use of denosumab for the treatment of osteoporosis. Therapeutic Advances in Musculoskeletal Disease 10 (11):209–23. doi: 10.1177/1759720X18805759.
  • Li, M., S. Xia, Y. Zhang, and X. Li. 2018. Optimization of ACE inhibitory peptides from black soybean by microwave-assisted enzymatic method and study on its stability. Lwt 98:358–65. doi: 10.1016/j.lwt.2018.08.045.
  • Li, W. H., H. Li, Y. X. Zhang, L. J. He, C. Zhang, and X. Q. Liu. 2021. Different effects of soybean protein and its derived peptides on the growth and metabolism of Bifidobacterium Animalis subsp. Animalis JCM 1190. Food & Function 12 (13):5731–44. doi: 10.1039/d1fo00480h.
  • Lin, X., L. Dong, D. Yu, B. Wang, and L. Pan. 2020. High-level expression and characterization of the thermostable leucine aminopeptidase Thelap from the thermophilic fungus Thermomyces lanuginosus in Aspergillus niger and its application in soy protein hydrolysis. Protein Expression and Purification 167:105544. doi: 10.1016/j.pep.2019.105544.
  • Li, T., X. Zhang, Y. Ren, Y. Zeng, Q. Huang, and C. Wang. 2022. Antihypertensive effect of Soybean bioactive peptides: A review. Current Opinion in Pharmacology 62:74–81. doi: 10.1016/j.coph.2021.11.005.
  • Liu, B. Y., K. X. Zhu, X. N. Guo, W. Peng, and H. M. Zhou. 2016. Changes in the enzyme-induced release of bitter peptides from wheat gluten hydrolysates. RSC Advances 6 (104):102249–57. doi: 10.1039/C6RA22155F.
  • Liu, B. Y., K. X. Zhu, W. Peng, X. N. Guo, and H. M. Zhou. 2016. Effect of sequential hydrolysis with endo- and exo-peptidase on bitterness properties of wheat gluten hydrolysates. RSC Advances 6 (33):27659–68. doi: 10.1039/C5RA28171G.
  • Liu, M., X. Liu, and Y. Li. 2020. Soybean peptides’ cryoprotective effects on Saccharomyces cerevisiae fermenting power in frozen dough and maintenance of the Chinese steamed bread qualities. Journal of Food Processing and Preservation 44 (8):14572. doi: 10.1111/jfpp.14572.
  • Liu, X., T. Li, B. Y. Liu, H. F. Zhao, F. Zhou, and B. L. Zhang. 2016. An external addition of soy protein isolate hydrolysate to sourdough as a new strategy to improve the quality of Chinese steamed bread. Journal of Food Quality 39 (1):3–12. doi: 10.1111/jfq.12172.
  • Lu, Y., J. Wang, O. P. Soladoye, R. E. Aluko, Y. Fu, and Y. Zhang. 2021. Preparation, receptors, bioactivity and bioavailability of γ-glutamyl peptides: A comprehensive review. Trends in Food Science & Technology 113:301–14. doi: 10.1016/j.tifs.2021.04.051.
  • Ma, Y., S. Ding, G. Liu, J. Fang, W. Yan, V. Duraipandiyan, N. A. Al-Dhabi, G. A. Esmail, and H. Jiang. 2019. Egg protein transferrin-derived peptides IRW and IQW regulate citrobacter rodentium-induced, inflammation-related microbial and metabolomic profiles. Frontiers in Microbiology 10 (643):643. doi: 10.3389/fmicb.2019.00643.
  • Marcoa, C., and C. M. Rosell. 2008. Effect of different protein isolates and transglutaminase on rice flour properties. Journal of Food Engineering 84 (1):132–9. doi: 10.1016/j.jfoodeng.2007.05.003.
  • Memon, A. H., R. Ding, Q. Yuan, Y. Wei, and H. Liang. 2019. Facile synthesis of alcalase-inorganic hybrid nanoflowers used for soy protein isolate hydrolysis to improve its functional properties. Food Chemistry 289:568–74. doi: 10.1016/j.foodchem.2019.03.096.
  • Mizushige, T. 2021. Neuromodulatory peptides: Orally active anxiolytic-like and antidepressant-like peptides derived from dietary plant proteins. Peptides 142:170569. doi: 10.1016/j.peptides.2021.170569.
  • Nagaoka, S., A. Takeuchi, and A. Banno. 2021. Plant-derived peptides improving lipid and glucose metabolism. Peptides 142:170577. doi: 10.1016/j.peptides.2021.170577.
  • Nasri, R., O. Abdelhedi, M. Nasri, and M. Jridi. 2021. Fermented protein hydrolysates: Biological activities and applications. Current Opinion in Food Science 43:120–123. doi: 10.1016/j.cofs.2021.1011.1006.
  • Nath, A., G. G. Kailo, Z. Mednyánszky, G. Kiskó, B. Csehi, K. Pásztorné-Huszár, R. Gerencsér-Berta, I. Galambos, E. Pozsgai, S. Bánvölgyi, et al. 2019. Antioxidant and antibacterial peptides from soybean milk through enzymatic- and membrane-based technologies. Bioengineering 7 (1):5. doi: 10.3390/bioengineering7010005.
  • Nieto-Veloza, A., Q. X. Zhong, W. S. Kim, D. D’Souza, H. B. Krishnan, and V. P. Dia. 2021. Utilization of tofu processing wastewater as a source of the bioactive peptide Lunasin. Food Chemistry 362:130220. doi: 10.1016/j.foodchem.2021.130220.
  • Oba, M., W. Rongduo, A. Saito, T. Okabayashi, T. Yokota, J. Yasuoka, Y. Sato, K. Nishifuji, H. Wake, Y. Nibu, et al. 2021. Natto extract, a Japanese fermented soybean food, directly inhibits viral infections including SARS-CoV-2 in vitro. Biochemical and Biophysical Research Communications 570:21–5. doi: 10.1016/j.bbrc.2021.07.034.
  • Ohinata, K., S. Agui, and M. Yoshikawa. 2007. Soymorphins, novel mu opioid peptides derived from soy beta-conglycinin beta-subunit, have anxiolytic activities. Bioscience, Biotechnology, and Biochemistry 71 (10):2618–21. doi: 10.1271/bbb.70516.
  • Padhi, S., S. Sanjukta, R. Chourasia, R. K. Labala, S. P. Singh, and A. K. Rai. 2021. A Multifunctional peptide from Bacillus fermented soybean for effective inhibition of SARS-CoV-2 S1 receptor binding domain and modulation of toll like receptor 4: A molecular docking study. Frontiers in Molecular Biosciences 8:636647. doi: 10.3389/fmolb.2021.636647.
  • Pan, F., L. Wang, Z. Cai, Y. Wang, Y. Wang, J. Guo, X. Xu, and X. Zhang. 2019. Soybean peptide QRPR activates autophagy and attenuates the inflammatory response in the RAW264.7 cell model. Protein and Peptide Letters 26 (4):301–12. doi: 10.2174/0929866526666190124150555.
  • Pan, F. G., Z. A. Z. Cai, H. F. Ge, S. T. Ma, Y. D. Yu, J. B. Liu, and T. Zhang. 2021. Transcriptome analysis reveals the hepatoprotective mechanism of soybean meal peptides against alcohol-induced acute liver injury mice. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 154:112353. doi: 10.1016/j.fct.2021.112353.
  • Pan, F. G., L. Wang, N. Guo, M. D. Zhang, and H. Q. Xing. 2018. QRPR and HCQRPQ, two peptides from soybean, have an inhibitory effect on the proliferation of HepG2 cells. Protein and Peptide Letters 25 (10):953–63. doi: 10.2174/0929866525666181004095501.
  • Qin, Y., Y. Chen, and B. Zhang. 2021. Soybean functional peptides improves the energy metabolism of muscle in mice. Medicine & Science in Sports & Exercise 53 (8S):281– https://www.webofscience.com/wos/alldb/full record/WOS:000693955700092. doi: 10.1249/01.mss.0000762360.93943.4f.
  • Rayaprolu, S. J., N. S. Hettiarachchy, P. Y. Chen, A. Kannan, and A. Mauromostakos. 2013. Peptides derived from high oleic acid soybean meals inhibit colon, liver and lung cancer cell growth. Food Research International 50 (1):282–8. doi: 10.1016/j.foodres.2012.10.021.
  • Renukuntla, J., A. D. Vadlapudi, A. Patel, S. H. S. Boddu, and A. K. Mitra. 2013. Approaches for enhancing oral bioavailability of peptides and proteins. International Journal of Pharmaceutics 447 (1–2):75–93. doi: 10.1016/j.ijpharm.2013.02.030.
  • Retno Indrati. 2021. Bioactive peptides from legumes and their bioavailability. (Eds.), Legumes. New York: IntechOpen. doi: 10.5772/intechopen.99979.
  • Rives, C., A. Fougerat, S. Ellero-Simatos, N. Loiseau, H. Guillou, L. Gamet-Payrastre, and W. Wahli. 2020. Oxidative stress in NAFLD: Role of nutrients and food contaminants. Biomolecules 10 (12):1702. doi: 10.3390/biom10121702.
  • Roblet, C., A. Doyen, J. Amiot, G. Pilon, A. Marette, and L. Bazinet. 2014. Enhancement of glucose uptake in muscular cell by soybean charged peptides isolated by electrodialysis with ultrafiltration membranes (EDUF): Activation of the AMPK pathway. Food Chemistry 147:124–30. doi: 10.1016/j.foodchem.2013.09.108.
  • Sánchez, A., and A. Vázquez. 2017. Bioactive peptides: A review. Food Quality and Safety 1 (1):29–46. doi: 10.1093/fqs/fyx006.
  • Sanders, M. E., D. Merenstein, C. A. Merrifield, and R. Hutkins. 2018. Probiotics for human use. Nutrition Bulletin 43 (3):212–25. doi: 10.1111/nbu.12334.
  • Sattar, H., Z. Bibi, A. Kamran, A. Aman, and S. A. Ul Qader. 2019. Degradation of complex casein polymer: Production and optimization of a novel serine metalloprotease from Aspergillus niger KIBGE-IB36. Biocatalysis and Agricultural Biotechnology 21:101256. doi: 10.1016/j.bcab.2019.101256.
  • Savas, E., M. Y. Kaya, O. Karaagac, S. Onat, H. Kockar, H. Yavas, and F. Kockar. 2018. Novel debittering process of green table olives: Application of -glucosidase bound onto superparamagnetic nanoparticles. CyTA – Journal of Food 16 (1):840–7. doi: 10.1080/19476337.2018.1469545.
  • Schlegel, K., K. Sontheimer, P. Eisner, and U. Schweiggert-Weisz. 2020. Effect of enzyme-assisted hydrolysis on protein pattern, technofunctional, and sensory properties of lupin protein isolates using enzyme combinations. Food Science & Nutrition 8 (7):3041–51. doi: 10.1002/fsn3.1286.
  • Sengupta, S., D. K. Bhattacharyya, R. Goswami, and J. Bhowal. 2019. Emulsions stabilized by soy protein nanoparticles as potential functional non-dairy yogurts. Journal of the Science of Food and Agriculture 99 (13):5808–18. doi: 10.1002/jsfa.9851.
  • Shibata, M., M. Hirotsuka, Y. Mizutani, H. Takahashi, T. Kawada, K. Matsumiya, Y. Hayashi, and Y. Matsumura. 2017. Isolation and characterization of key contributors to the “kokumi” taste in soybean seeds. Bioscience, Biotechnology, and Biochemistry 81 (11):2168–77. doi: 10.1080/09168451.2017.1372179.
  • Shobako, N. 2021. Hypotensive peptides derived from plant proteins. Peptides 142:170573. doi: 10.1016/j.peptides.2021.170573.
  • Sim, S. Y. J., A. SRV, J. H. Chiang, and C. J. Henry. 2021. Plant proteins for future foods: A roadmap. Foods 10 (8):1967. doi: 10.3390/foods10081967.
  • Singh, A., A. T. Idowu, S. Benjakul, H. Kishimura, R. E. Aluko, and Y. Kumagai. 2020. Debittering of salmon (Salmo salar) frame protein hydrolysate using 2-butanol in combination with β-cyclodextrin: Impact on some physicochemical characteristics and antioxidant activities. Food Chemistry 321:126686. doi: 10.1016/j.foodchem.2020.126686.
  • Singh, B. P., D. Yadav, and S. Vij. 2017. Soybean bioactive molecules: Current trend and future prospective. Bioactive Molecules in Food. Cham. Switzerland: Springer. doi: 10.1007/978-3-319-54528-8_4-1.
  • Sitanggang, A. B., J. E. Putri, N. S. Palupi, E. Hatzakis, E. Syamsir, and S. Budijanto. 2021. Enzymatic preparation of bioactive peptides exhibiting ACE inhibitory activity from soybean and velvet bean: A systematic review. Molecules 26 (13):3822. doi: 10.3390/molecules26133822.
  • Song, P., L. Cheng, K. Tian, M. Zhang, S. Singh, D. Niu, B. Prior, N. P. McHunu, and Z. X. Wang. 2020. A novel aminopeptidase with potential debittering properties in casein and soybean protein hydrolysates. Food Science and Biotechnology 29 (11):1491–9. doi: 10.1007/s10068-020-00813-8.
  • Song, P., W. Xu, Y. Zhang, F. Wang, X. Zhou, H. Shi, and W. Feng. 2021. A new carboxypeptidase from Aspergillus niger with good thermostability, pH stability and broad substrate specificity. Scientific Reports 11 (1):18745. doi: 10.1038/s41598-021-98003-x.
  • Song, T. Y., M. Lv, M. Z. Zhou, M. T. Huang, L. Zheng, and M. M. Zhao. 2021. Soybean-derived antihypertensive peptide LSW (Leu-Ser-Trp) antagonizes the damage of angiotensin II to vascular endothelial cells through the trans-vesicular pathway. Journal of Agricultural and Food Chemistry 69 (36):10536–49. doi: 10.1021/acs.jafc.1c02733.
  • Song, W., R. Yang, X. Yang, S. Sun, S. R. Mentreddy, B. Jiang, T. Wu, S. Tian, E. Sapey, C. Wu, et al. 2018. Spatial differences in soybean bioactive components across China and their influence by weather factors. The Crop Journal 6 (6):659–68. doi: 10.1016/j.cj.2018.05.001.
  • Sun, A., W. Wu, O. P. Soladoye, R. E. Aluko, K. H. Bak, Y. Fu, and Y. Zhang. 2022. Maillard reaction of food-derived peptides as a potential route to generate meat flavor compounds: A review. Food Research International (Ottawa, Ont.) 151:110823. doi: 10.1016/j.foodres.2021.110823.
  • Sun, Z. H., M. J. Yao, X. Bian, Q. Q. Guo, H. N. Guan, Y. Yang, B. Wang, Y. G. Shi, W. Piekoszewski, X. W. Yang, et al. 2021. The influence of soy protein hydrolysate (SPH) addition to infant formula powder on Streptococcus thermophilus proliferation and metabolism. Food Research International (Ottawa, Ont.) 141:110103. doi: 10.1016/j.foodres.2020.110103.
  • Tang, C.-H., and X.-R. Li. 2013. Microencapsulation properties of soy protein isolate and storage stability of the correspondingly spray-dried emulsions. Food Research International 52 (1):419–28. doi: 10.1016/j.foodres.2012.09.010.
  • Tang, T. T., H. Y. Du, S. S. Tang, Y. Jiang, Y. G. Tu, M. W. Hu, and M. S. Xu. 2021. Effects of incorporating different kinds of peptides on the foaming properties of egg white powder. Innovative Food Science & Emerging Technologies 72:102742. doi: 10.1016/j.ifset.2021.102742.
  • Tietz, O., F. Cortezon-Tamarit, R. Chalk, S. Able, and K. A. Vallis. 2022. Tricyclic cell-penetrating peptides for efficient delivery of functional antibodies into cancer cells. Nature Chemistry 14 (3):284–93. doi: 10.1038/s41557-021-00866-0.
  • Tong, X., Z. Lian, L. Miao, B. Qi, S. Zhang, Y. Li, H. Wang, and L. Jiang. 2020. An innovative two-step enzyme-assisted aqueous extraction for the production of reduced bitterness soybean protein hydrolysates with high nutritional value. LWT 134:110151. doi: 10.1016/j.lwt.2020.110151.
  • Tong, X. H., J. Cao, M. Y. Sun, P. L. Liao, S. C. Dai, W. Y. Cui, X. Y. Cheng, Y. Li, L. Z. Jiang, and H. Wang. 2021. Physical and oxidative stability of oil-in-water (O/W) emulsions in the presence of protein (peptide): Characteristics analysis and bioinformatics prediction. Lwt 149:111782. doi: 10.1016/j.lwt.2021.111782.
  • Tonk, M., D. Růžek, and A. Vilcinskas. 2021. Compelling evidence for the activity of antiviral peptides against SARS-CoV-2. Viruses 13 (5):912. https://www.mdpi.com/1999-4915/13/5/912. doi: 10.3390/v13050912.
  • Tsai, B. C. K., W. W. Kuo, C. H. Day, D. J. Y. Hsieh, C. H. Kuo, J. Daddam, R. J. Chen, V. V. Padma, G. Wang, and C. Y. Huang. 2020. The Soybean functional peptide VHVV alleviates hypertension-induced renal damage in hypertensive rats via the SIRT1-PGC1α/Nrf2 pathway. Journal of Functional Foods 75:104255. doi: 10.1016/j.jff.2020.104255.
  • Wang, L., A. Clardy, D. Hui, and Y. Wu. 2021. Physiochemical properties of encapsulated bitter melon juice using spray drying. Bioactive Carbohydrates and Dietary Fibre 26:100278. doi: 10.1016/j.bcdf.2021.100278.
  • Wang, F., Z. B. Weng, H. Z. Song, Y. F. Bao, H. L. Sui, Y. Fang, X. Z. Tang, and X. C. Shen. 2021. Ferric ammonium citrate (FAC)-induced inhibition of osteoblast proliferation/differentiation and its reversal by soybean-derived peptides (SDP). Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 156:112527. doi: 10.1016/j.fct.2021.112527.
  • Wang, G., H. Zhang, F. Lai, and H. Wu. 2016. Germinating peanut (Arachis hypogaea L.) seedlings attenuated selenite-induced toxicity by activating the antioxidant enzymes and mediating the ascorbate-glutathione cycle. Journal of Agricultural and Food Chemistry 64 (6):1298–308. doi: 10.1021/acs.jafc.5b05945.
  • Wang, S. N., C. R. Zhang, B. K. Qi, X. N. Sui, L. Z. Jiang, Y. Li, Z. J. Wang, H. X. Feng, R. Wang, and Q. Z. Zhang. 2014. Immobilized alcalase alkaline protease on the magnetic chitosan nanoparticles used for soy protein isolate hydrolysis. European Food Research and Technology 239 (6):1051–9. doi: 10.1007/s00217-014-2301-1.
  • Wen, L., Y. Jiang, X. Zhou, H. Bi, and B. Yang. 2021. Structure identification of soybean peptides and their immunomodulatory activity. Food Chemistry 359:129970. doi: 10.1016/j.foodchem.2021.129970.
  • Wu, W., J. Zhou, H. Zong, X. Lu, and B. Zhuge. 2020. Functional properties of low-bitter soybean oligopeptides prepared by a novel tripeptidase. Food and Fermentation Industries 46 (13):55–61. https://www.cabdirect.org/cabdirect/abstract/20203450923.
  • Wu, Y., Y. Li, R. Wang, Y. Zhao, H. Liu, and J. J. Wang. 2021. Characterization of a novel food grade emulsion stabilized by the By- Product Proteins Extracted From the Head of Giant Freshwater Prawn (Macrobrachium rosenbergii) ). Frontiers in Nutrition 8 (359):676500. doi: 10.3389/fnut.2021.676500.
  • Xiang, H., D. Sun-Waterhouse, G. I. N. Waterhouse, C. Cui, and Z. Ruan. 2019. Fermentation-enabled wellness foods: A fresh perspective. Food Science and Human Wellness 8 (3):203–43. doi: 10.1016/j.fshw.2019.08.003.
  • Xiao, W., W. Jiang, L. Feng, Y. Liu, P. Wu, J. Jiang, Y. Zhang, and X. Zhou. 2019. Effect of dietary enzyme-treated soy protein on the immunity and antioxidant status in the intestine of juvenile Jian carp (Cyprinus carpio var. Jian). Aquaculture Research 50 (5):1411–21. doi: 10.1111/are.14016.
  • Xia, T., C. Xue, and Z. Wei. 2021. Physicochemical characteristics, applications and research trends of edible Pickering emulsions. Trends in Food Science & Technology 107:1–15. doi: 10.1016/j.tifs.2020.11.019.
  • Xu, Z. Q., C. P. Wu, D. X. Sun-Waterhouse, T. T. Zhao, G. I. N. Waterhouse, M. M. Zhao, and G. W. Su. 2021. Identification of post-digestion angiotensin-I converting enzyme (ACE) inhibitory peptides from soybean protein isolate: Their production conditions and in silico molecular docking with ACE. Food Chemistry 345:128855. doi: 10.1016/j.foodchem.2020.128855.
  • Xue, L., R. Yin, K. Howell, and P. Zhang. 2021. Activity and bioavailability of food protein-derived angiotensin-I-converting enzyme-inhibitory peptides. Comprehensive Reviews in Food Science and Food Safety 20 (2):1150–87. doi: 10.1111/1541-4337.12711.
  • Yamada, Y., A. Muraki, M. Oie, N. Kanegawa, A. Oda, Y. Sawashi, K. Kaneko, M. Yoshikawa, T. Goto, N. Takahashi, et al. 2012. Soymorphin-5, a soy-derived mu-opioid peptide, decreases glucose and triglyceride levels through activating adiponectin and PPAR alpha systems in diabetic KKA(y) mice. American Journal of Physiology-Endocrinology and Metabolism 302 (4):E433–E440. doi: 10.1152/ajpendo.00161.2011.
  • Yin, H., F. Jia, and J. Huang. 2019. The variation of two extracellular enzymes and soybean meal bitterness during solid-state fermentation of Bacillus subtilis. Grain & Oil Science and Technology 2 (2):39–43. doi: 10.1016/j.gaost.2019.05.001.
  • Yin, H., X. Zhang, and J. Huang. 2021. Study on enzymatic hydrolysis of soybean β-conglycinin using alkaline protease from Bacillus subtilis ACCC 01746 and antigenicity of its hydrolysates. Grain & Oil Science and Technology 4 (1):18–25. doi: 10.1016/j.gaost.2020.1012.1001.
  • Ying, X., D. Agyei, C. Udenigwe, B. Adhikari, and B. Wang. 2021. Manufacturing of plant-based bioactive peptides using enzymatic methods to meet health and sustainability targets of the sustainable development goals. Frontiers in Sustainable Food Systems 5 (449):769028. doi: 10.3389/fsufs.2021.769028.
  • Yu, B., Z. X. Lu, X. M. Bie, F. X. Lu, and X. Q. Huang. 2008. Scavenging and anti-fatigue activity of fermented defatted soybean peptides. European Food Research and Technology 226 (3):415–21. doi: 10.1007/s00217-006-0552-1.
  • Zhang, C., S. Q. Xia, Y. X. Zhang, S. Y. Zhu, H. Li, and X. Q. Liu. 2022. Identification of soybean peptides and their effect on the growth and metabolism of Limosilactobacillus reuteri LR08. Food Chemistry 369:130923. doi: 10.1016/j.foodchem.2021.130923.
  • Zhang, C., Y. Zhang, G. Liu, W. Li, S. Xia, H. Li, and X. Liu. 2021. Effects of soybean protein isolates and peptides on the growth and metabolism of Lactobacillus rhamnosus. Journal of Functional Foods 77:104335. doi: 10.1016/j.jff.2020.104335.
  • Zhang, C., Y. X. Zhang, S. Q. Xia, S. Y. Zhu, W. H. Li, S. M. Aboelenin, M. M. Soliman, H. Li, and X. Q. Liu. 2021. iTRAQ-based proteomic analysis of the differential effects of digested soy peptides and digested soy protein isolates on Lacticaseibacillus rhamnosus. Food Bioscience 43:101296. doi: 10.1016/j.fbio.2021.101296.
  • Zhang, X., H. He, J. Xiang, B. Li, M. Zhao, and T. Hou. 2021. Selenium-containing soybean antioxidant peptides: Preparation and comprehensive comparison of different selenium supplements. Food Chemistry 358:129888. doi: 10.1016/j.foodchem.2021.129888.
  • Zhao, G. P., Y. Q. Li, G. J. Sun, and H. Z. Mo. 2017. Antibacterial actions of glycinin basic peptide against Escherichia coli. Journal of Agricultural and Food Chemistry 65:5173–80. doi:10.1021/acs.jafc.7b02295.
  • Zhang, J., S. W. Gao, H. Li, M. D. Cao, W. H. Li, and X. Q. Liu. 2021. Immunomodulatory effects of selenium-enriched peptides from soybean in cyclophosphamide-induced immunosuppressed mice. Food Science & Nutrition 9 (11):6322–34. doi: 10.1002/fsn3.2594.
  • Zhang, J., W. Li, Z. Ying, D. Zhao, G. Yi, H. Li, and X. Liu. 2020. Soybean protein-derived peptide nutriment increases negative nitrogen balance in burn injury-induced inflammatory stress response in aged rats through the modulation of white blood cells and immune factors. Food & Nutrition Research 64:1–13. doi: 10.29219/fnr.v64.3677.
  • Zhang, M. M., X. Xin, H. Wu, and H. Zhang. 2021. Debittering effect of partially purified proteases from soybean seedlings on soybean protein isolate hydrolysate produced by alcalase. Food Chemistry 362:130190. doi: 10.1016/j.foodchem.2021.130190.
  • Zhang, Q. W., L. G. Lin, and W. C. Ye. 2018. Techniques for extraction and isolation of natural products: A comprehensive review. Chinese Medicine 13 (1):20. doi: 10.1186/s13020-13018-10177-x.
  • Zhang, Q., X. Tong, Y. Li, H. Wang, Z. Wang, B. Qi, X. Sui, and L. Jiang. 2019. Purification and characterization of antioxidant peptides from alcalase-hydrolyzed soybean (Glycine max L.) hydrolysate and their cytoprotective effects in human intestinal Caco-2 cells. Journal of Agricultural and Food Chemistry 67 (20):5772–81. doi: 10.1021/acs.jafc.9b01235.
  • Zhang, Q. Z., Z. Z. Cheng, Y. Wang, S. Y. Zheng, Y. B. Wang, and L. L. Fu. 2021. Combining alcalase hydrolysis and transglutaminase-cross-linking improved bitterness and techno-functional properties of hypoallergenic soybean protein hydrolysates through structural modifications. Lwt 151:112096. doi: 10.1016/j.lwt.2021.112096.
  • Zhang, Y. H., D. Yuan, P. H. Shen, F. B. Zhou, Q. Z. Zhao, and M. M. Zhao. 2021. pH-driven formation of soy peptide nanoparticles from insoluble peptide aggregates and their application for hydrophobic active cargo delivery. Food Chemistry 355:129509. doi: 10.1016/j.foodchem.2021.129509.
  • Zhao, W., S. Xue, Z. Yu, L. Ding, J. Li, and J. Liu. 2019. Novel ACE inhibitors derived from soybean proteins using in silico and in vitro studies. Journal of Food Biochemistry 43 (9):12975. doi: 10.1111/jfbc.12975.
  • Zheng, X., F. Wu, Y. Hong, L. Shen, X. Lin, and Y. Feng. 2018. Developments in Taste-Masking Techniques for Traditional Chinese Medicines. Pharmaceutics 10 (3):157. doi: 10.3390/pharmaceutics10030157.
  • Zhong, L. S., W. X. Zhi, P. L. Hua, Z. Zhi, and Z. Min. 2021. Pectin-peptide complexes ameliorated physicochemical stabilities and in vitro digestion abilities of β-carotene loaded emulsions. Food Chemistry 340:128209. doi: 10.1016/j.foodchem.2020.128209.
  • Zhou, C., H. Zhou, D. Li, H. Zhang, H. Wang, and F. Lu. 2020. Optimized expression and enhanced production of alkaline protease by genetically modified Bacillus licheniformis 2709. Microbial Cell Factories 19 (1):45. doi: 10.1186/s12934-020-01307-2.
  • Zhu, Q., Z. Chen, P. K. Paul, Y. Lu, W. Wu, and J. Qi. 2021. Oral delivery of proteins and peptides: Challenges, status quo and future perspectives. Acta Pharmaceutica Sinica. B 11 (8):2416–48. doi: 10.1016/j.apsb.2021.04.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.