4,291
Views
8
CrossRef citations to date
0
Altmetric
Review Articles

Review of technology and materials for the development of cultured meat

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • D natives. 2021. First ever 3D Printed Ribeye steak with real cow cells. Accessed August 15, 2021. https://www.3dnatives.com/en/3d-printed-steak-aleph-farms-technion-130220214/#!
  • Aaslyng, M. D., and L. Meinert. 2017. Meat flavour in pork and beef - From animal to meal. Meat Science 132:112–7. doi: 10.1016/j.meatsci.2017.04.012.
  • Acevedo, C. A., N. Orellana, K. Avarias, R. Ortiz, D. Benavente, and P. Prieto. 2018. Micropatterning technology to design an edible film for in vitro meat production. Food and Bioprocess Technology 11 (7):1267–73. doi: 10.1007/s11947-018-2095-4.
  • Acosta, F. M., U.-T A. Jia, K. Stojkova, S. Pacelli, E. M. Brey, and C. Rathbone. 2020. Divergent effects of myogenic differentiation and diabetes on the capacity for muscle precursor cell adipogenic differentiation in a fibrin matrix. Biochemical and Biophysical Research Communications 526 (1):21–8. doi: 10.1016/j.bbrc.2020.03.025.
  • Ahmed, A. K., T. J. Isaksen, and T. Yamashita. 2021. Protocol for mouse adult neural stem cell isolation and culture. STAR Protocols 2 (2):100522. doi: 10.1016/j.xpro.2021.100522.
  • Allan, S. J., M. J. Ellis, and P. A. De Bank. 2021. Decellularized grass as a sustainable scaffold for skeletal muscle tissue engineering. Journal of Biomedical Materials Research Part A 109 (12):2471–2482.‌
  • Altomare, L., N. Gadegaard, L. Visai, M. C. Tanzi, and S. Fare. 2010. Biodegradable microgrooved polymeric surfaces obtained by photolithography for skeletal muscle cell orientation and myotube development. Acta Biomaterialia 6 (6):1948–57. doi: 10.1016/j.actbio.2009.12.040.
  • Andreassen, R. C., M. E. Pedersen, K. A. Kristoffersen, and S. B. Rønning. 2020. Screening of by-products from the food industry as growth promoting agents in serum-free media for skeletal muscle cell culture. Food & Function 11 (3):2477–88. doi: 10.1039/c9fo02690h.
  • Anjum, F. R., S. U. Rahman, M. A. Aslam, and A. S. Qureshi. 2021. Antiviral potential and stability analysis of chicken interferon-α produced by Newcastle disease virus in chicken embryo fibroblast cells. Veterinární Medicína 66 (5):197–207. doi: 10.1039/c9fo02690h.
  • Aswad, H., A. Jalabert, and S. Rome. 2016. Depleting extracellular vesicles from fetal bovine serum alters proliferation and differentiation of skeletal muscle cells in vitro. BMC Biotechnology 16 (1):1–12. doi: 10.1186/s12896-016-0262-0.
  • Ayyildiz-Tamis, D., K. Avcı, and S. I. Deliloglu-Gurhan. 2014. Comparative investigation of the use of various commercial microcarriers as a substrate for culturing mammalian cells. In Vitro Cellular & Developmental Biology. Animal 50 (3):221–31. doi: 10.1007/s11626-013-9717-y.
  • Baksh, D., G. M. Boland, and R. S. Tuan. 2007. Cross-talk between WNT signaling pathways in human mesenchymal stem cells leads to functional antagonism during osteogenic differentiation. Journal of Cellular Biochemistry 101 (5):1109–24. doi: 10.1002/jcb.21097.
  • BBC. 2020. Singapore approves lab-grown ‘chicken’ meat. Accessed August 15, 2021. https://www.bbc.com/news/business-55155741.
  • Belal, S. A., A. S. Sivakumar, D. R. Kang, S. Cho, H. S. Choe, and K. S. Shim. 2018. Modulatory effect of linoleic and oleic acid on cell proliferation and lipid metabolism gene expressions in primary bovine satellite cells. Animal Cells and Systems 22 (5):324–33. doi: 10.1080/19768354.2018.1517824.
  • Ben-Arye, T., Y. Shandalov, S. Ben-Shaul, S. Landau, Y. Zagury, I. Ianovici, N. Lavon, and S. Levenberg. 2020. Textured soy protein scaffolds enable the generation of three-dimensional bovine skeletal muscle tissue for cell-based meat. Nature Food 1 (4):210–20. doi: 10.1038/s43016-020-0046-5.
  • Benavente-Diaz, M., G. Comai, D. Di Girolamo, F. Langa, and S. Tajbakhsh. 2021. Dynamics of myogenic differentiation using a novel Myogenin knock-in reporter mouse. Skeletal Muscle 11 (1):1–13. doi: 10.1186/s13395-021-00260-x.
  • Bhat, Z. F., and H. F. Bhat. 2011. Animal-free meat biofabrication. American Journal of Food Technology 6 (6):441–59. doi: 10.3923/ajft.2011.441.459.
  • Bhat, Z. F., S. Kumar, and H. F. Bhat. 2017. In vitro meat: A future animal-free harvest. Critical Reviews in Food Science and Nutrition 57 (4):782–9. doi: 10.1080/10408398.2014.924899.
  • Bhat, Z. F., J. D. Morton, S. L. Mason, A. E. D. A. Bekhit, and H. F. Bhat. 2019. Technological, regulatory, and ethical aspects of in vitro meat: A future Slaughter-Free Harvest. Comprehensive Reviews in Food Science and Food Safety 18 (4):1192–208. doi: 10.1111/1541-4337.12473.
  • Bloomberg. 2019. $50 chicken nuggets were grown in a lab. Accessed August 9, 2021. https://www.bloomberg.com/news/articles/2019-10-22/clean-meat-just-chicken-nuggets-grown-in-a-lab-coming-soon.
  • Bodnar, R. J. 2013. Epidermal growth factor and epidermal growth factor receptor: The yin and yang in the treatment of cutaneous wounds and cancer. Advances in Wound Care 2 (1):24–9. doi: 10.1089/wound.2011.0326.
  • Boler, D. D., and D. R. Woerner. 2017. What is meat? A perspective from the American Meat Science Association. Animal Frontiers 7 (4):8–11. doi: 10.2527/af.2017.0436.
  • Bordt, E. A., C. L. Block, T. Petrozziello, G. Sadri-Vakili, C. J. Smith, A. G. Edlow, and S. D. Bilbo. 2020. Isolation of microglia from mouse or human tissue. STAR Protocols 1 (1):100035. doi: 10.1016/j.xpro.2020.100035.
  • Chakravarthy, M. V., B. S. Davis, and F. W. Booth. 2000. IGF-I restores satellite cell proliferative potential in immobilized old skeletal muscle. Journal of Applied Physiology (Bethesda, MD: 1985) 89 (4):1365–79. doi: 10.1152/jappl.2000.89.4.1365.
  • Charest, J. L., A. J. García, and W. P. King. 2007. Myoblast alignment and differentiation on cell culture substrates with microscale topography and model chemistries. Biomaterials 28 (13):2202–10. doi: 10.1016/j.biomaterials.2007.01.020.
  • Chase, L. G., U. Lakshmipathy, L. A. Solchaga, M. S. Rao, and M. C. Vemuri. 2010. A novel serum-free medium for the expansion of human mesenchymal stem cells. Stem Cell Research & Therapy 1 (1):1–11. doi: 10.1186/scrt8.
  • Chauhan, A., and A. Ogram. 2005. Evaluation of support matrices for immobilization of anaerobic consortia for efficient carbon cycling in waste regeneration. Biochemical and Biophysical Research Communications 327 (3):884–93. doi: 10.1016/j.bbrc.2004.12.083.
  • Chen, A. K. L., X. Chen, A. B. H. Choo, S. Reuveny, and S. K. W. Oh. 2011. Critical microcarrier properties affecting the expansion of undifferentiated human embryonic stem cells. Stem Cell Research 7 (2):97–111. doi: 10.1016/j.scr.2011.04.007.
  • Chen, A. K. L., S. Reuveny, and S. K. W. Oh. 2013. Application of human mesenchymal and pluripotent stem cell microcarrier cultures in cellular therapy: Achievements and future direction. Biotechnology Advances 31 (7):1032–46. doi: 10.1016/j.biotechadv.2013.03.006.
  • Choi, K. H., M. Kim, J. W. Yoon, J. Jeong, M. Ryu, C. Jo, and C. K. Lee. 2020a. Purification of pig muscle stem cells using Magnetic-Activated Cell Sorting (MACS) based on the expression of cluster of differentiation 29 (CD29). Food Science of Animal Resources 40 (5):852–9. doi: 10.5851/kosfa.2020.e51.
  • Choi, K.-H., J. W. Yoon, M. Kim, J. Jeong, M. Ryu, S. Park, C. Jo, and C.-K. Lee. 2020b. Optimization of culture conditions for maintaining pig muscle stem cells in vitro. Food Science of Animal Resources 40 (4):659–67. doi: 10.5851/kosfa.2020.e39.
  • Chriki, S., and J. F. Hocquette. 2020. The myth of cultured meat: A review. Frontiers in Nutrition 7:7. doi: 10.3389/fnut.2020.00007.
  • Cornelius, M. 2021. Factors influencing the expansion of Meatless Meat. farmdocDAILY, August 5. Accessed March 29, 2022. https://farmdocdaily.illinois.edu/2021/08/factors-influencing-the-expansion-of-meatless-meat.html.
  • Costa, M. L., A. D. Jurberg, and C. Mermelstein. 2021. The role of embryonic chick muscle cell culture in the study of skeletal myogenesis. Frontiers in Physiology 12. doi: 10.3389/fphys.2021.668600.
  • Costantini, M., S. Testa, P. Mozetic, A. Barbetta, C. Fuoco, E. Fornetti, F. Tamiro, S. Bernardini, J. Jaroszewicz, W. Święszkowski, et al. 2017. Microfluidic-enhanced 3D bioprinting of aligned myoblast-laden hydrogels leads to functionally organized myofibers in vitro and in vivo. Biomaterials 131:98–110. doi: 10.1016/j.biomaterials.2017.03.026.
  • CTech. 2020. As meat shortages spread globally. These 6 startups offer alternative cuts. Accessed August 9, 2021. https://www.calcalistech.com/ctech/articles/0,7340,L-3820232,00.html.
  • Cultivate. 2019. Alternative meats could be 60% of the market by 2040. Accessed September 5, 2021. https://cultivateinsights.com/2019/07/22/alternative-meats-could-be-60-of-the-market-by-2040/.
  • Dai, J. M., M. X. Yu, Z. Y. Shen, C. Y. Guo, S. Q. Zhuang, and X. S. Qiu. 2015. Leucine promotes proliferation and differentiation of primary preterm rat satellite cells in part through mTORC1 signaling pathway. Nutrients 7 (5):3387–400. doi: 10.3390/nu7053387.
  • D’Andrea, P., M. Sciancalepore, K. Veltruska, P. Lorenzon, and A. Bandiera. 2019. Epidermal growth Factor - based adhesion substrates elicit myoblast scattering, proliferation, differentiation and promote satellite cell myogenic activation. Biochimica et Biophysica Acta. Molecular Cell Research 1866 (3):504–17. doi: 10.1016/j.bbamcr.2018.10.012.
  • de Souza, R. W. A., D. Gallo, G. R. Lee, E. Katsuyama, A. Schaufler, J. Weber, E. Csizmadia, G. C. Tsokos, L. G. Koch, S. L. Britton, et al. 2021. Skeletal muscle heme oxygenase-1 activity regulates aerobic capacity. Cell Reports 35 (3):109018. doi: 10.1016/j.celrep.2021.109018.
  • Ding, S., G. N. M. Swennen, T. Messmer, M. Gagliardi, D. G. M. Molin, C. Li, G. Zhou, and M. J. Post. 2018. Maintaining bovine satellite cells stemness through p38 pathway. Scientific Reports 8 (1):1–12. doi: 10.1038/s41598-018-28746-7.
  • Ding, S., F. Wang, Y. Liu, S. Li, G. Zhou, and P. Hu. 2017. Characterization and isolation of highly purified porcine satellite cells. Cell Death Discovery 3 (1):1–11. doi: 10.1038/cddiscovery.2017.3.
  • Dogan, S., S. Demirer, I. Kepenekci, B. Erkek, A. Kiziltay, N. Hasirci, S. Müftüoglu, A. Nazikoglu, N. Renda, U. D. Dincer, et al. 2009. Epidermal growth factor-containing wound closure enhances wound healing in non-diabetic and diabetic rats. International Wound Journal 6 (2):107–15. doi: 10.1111/j.1742-481X.2009.00584.x.
  • Doley, M., S. K. Das, N. N. Barman, and G. Rajbongshi. 2013. Adaptation of vaccine strain of duck plague virus in chicken embryo fibroblast cell culture. Indian Journal of Animal Science 83:880–2.
  • EFIB. 2020. Higher Steak presents cultured bacon and pork belly. Accessed April 21, 2021. https://european-biotechnology.com/up-to-date/latest-news/news/higher-steak-presents-cultured-bacon-and-pork-belly.html.
  • Enrione, J., J. Blaker, D. Brown, C. Weinstein-Oppenheimer, M. Pepczynska, Y. Olguín, E. Sánchez, and C. Acevedo. 2017. Edible scaffolds based on non-mammalian biopolymers for myoblast growth. Materials 10 (12):1404. doi: 10.3390/ma10121404.
  • Fan, V. H., K. Tamama, A. Au, R. Littrell, L. B. Richardson, J. W. Wright, A. Wells, and L. G. Griffith. 2007. Tethered epidermal growth factor provides a survival advantage to mesenchymal stem cells. Stem Cells (Dayton, OH) 25 (5):1241–51. doi: 10.1634/stemcells.2006-0320.
  • Fan, Z., and Q. Xiao. 2020. Impaired autophagic flux contributes to muscle atrophy in obesity by affecting muscle degradation and regeneration. Biochemical and Biophysical Research Communications 525 (2):462–8. doi: 10.1016/j.bbrc.2020.02.110.
  • Farré, J., S. Roura, C. Prat-Vidal, C. Soler-Botija, A. Llach, C. E. Molina, L. Hove-Madsen, J. J. Cairó, F. Gòdia, R. Bragós, et al. 2007. FGF-4 increases in vitro expansion rate of human adult bone marrow-derived mesenchymal stem cells. Growth Factors (Chur, Switzerland) 25 (2):71–6. doi: 10.1080/08977190701345200.
  • Fast Company. 2020. At the first lab-grown meat restaurant, you can eat a ‘cultured chicken’ sandwich. Accessed August 15, 2021. https://www.fastcompany.com/90572093/at-the-first-lab-grown-meat-restaurant-you-can-eat-a-cultured-chicken-sandwich.
  • Federal Meat Inspection Act. 2014. Federal Meat Inspection Act 2014 Edition. 21 U.S.C. (USA). Accessed September 5, 2021. https://www.govinfo.gov/content/pkg/USCODE-2014-title21/html/USCODE-2014-title21-chap12-subchapI-sec601.htm.
  • Feige, P., and M. A. Rudnicki. 2020. Isolation of satellite cells and transplantation into mice for lineage tracing in muscle. Nature Protocols 15 (3):1082–97. doi: 10.1038/s41596-019-0278-8.
  • Fontana, G., J. Gershlak, M. Adamski, J. Lee, S. Matsumoto, H. D. Le, B. Binder, J. Wirth, G. Gaudette, and W. L. Murphy. 2017. Biofunctionalized plants as diverse biomaterials for human cell culture. Advanced Healthcare Materials 6 (8):1601225. doi: 10.1002/adhm.201601225.
  • Food & Drink Business. 2021. Cultured meat company Vow wows venture capitalists. Accessed April 21, 2021. https://www.foodanddrinkbusiness.com.au/news/cultured-meat-company-vow-wows-venture-capitalists.
  • Food Navigator. 2021a. Shiok Meats unveils world’s first cell-based lobster, outlines manufacturing and collaboration plans. Accessed August 9, 2021. https://www.foodnavigator-asia.com/Article/2020/11/23/Shiok-Meats-unveils-world-s-first-cell-based-lobster-outlines-manufacturing-and-collaboration-plans.
  • Food Navigator. 2021b. ‘World’s biggest’ piece of cell-based whole cut analogue developed: ‘Meatballs, burgers and nuggets have already been done’. Accessed August 15, 2021. https://www.foodnavigator.com/Article/2021/01/25/Novameat-develops-world-s-biggest-piece-of-cell-based-whole-cut-meat-analogue.
  • Food Standards Code. 2016. Food standards Australia New Zealand. Accessed September 5, 2021. https://www.foodstandards.gov.au/code/Pages/default.aspx.
  • Forte, G., M. Minieri, P. Cossa, D. Antenucci, M. Sala, V. Gnocchi, R. Fiaccavento, F. Carotenuto, P. De Vito, P. M. Baldini, et al. 2006. Hepatocyte growth factor effects on mesenchymal stem cells: Proliferation, migration, and differentiation. Stem Cells (Dayton, Ohio) 24 (1):23–33. doi: 10.1634/stemcells.2004-0176.
  • Fraeye, I., M. Kratka, H. Vandenburgh, and L. Thorrez. 2020. Sensorial and nutritional aspects of cultured meat in comparison to traditional meat: Much to be inferred. Frontiers in Nutrition 7:35. doi: 10.3389/fnut.2020.00035.
  • Fu, X., J. Xiao, Y. Wei, S. Li, Y. Liu, J. Yin, K. Sun, H. Sun, H. Wang, Z. Zhang, et al. 2015. Combination of inflammation-related cytokines promotes long-term muscle stem cell expansion. Cell Research 25 (6):655–73. doi: 10.1038/cr.2015.58.
  • Fukada, S.-i., A. Uezumi, M. Ikemoto, S. Masuda, M. Segawa, N. Tanimura, H. Yamamoto, Y. Miyagoe-Suzuki, and S. Takeda. 2007. Molecular signature of quiescent satellite cells in adult skeletal muscle. Stem Cells (Dayton, Ohio) 25 (10):2448–59. doi: 10.1634/stemcells.2007-0019.
  • Furuhashi, M., Y. Morimoto, A. Shima, F. Nakamura, H. Ishikawa, and S. Takeuchi. 2021. Formation of contractile 3D bovine muscle tissue for construction of millimetre-thick cultured steak. NPJ Science of Food 5 (1):1–8. doi: 10.1038/s41538-021-00090-7.
  • Furuichi, Y., Y. Kawabata, M. Aoki, Y. Mita, N. L. Fujii, and Y. Manabe. 2021. Excess glucose impedes the proliferation of skeletal muscle satellite cells under adherent culture conditions. Frontiers in Cell and Developmental Biology 9:341. doi: 10.3389/fcell.2021.640399.
  • Futuretimeline. 2018. Tyson Foods invests in lab-grown meat. Accessed August 15, 2021. https://www.futuretimeline.net/blog/2018/02/1.htm.
  • Gheller, B. J., J. E. Blum, E. H. H. Fong, O. V. Malysheva, B. D. Cosgrove, and A. E. Thalacker-Mercer. 2020. A defined N6-methyladenosine (m 6 A) profile conferred by METTL3 regulates muscle stem cell/myoblast state transitions. Cell Death Discovery 6 (1):1–14. doi: 10.1038/s41420-020-00328-5.
  • Ghorbani, F., L. Moradi, M. B. Shadmehr, S. Bonakdar, A. Droodinia, and F. Safshekan. 2017. In-vivo characterization of a 3D hybrid scaffold based on PCL/decellularized aorta for tracheal tissue engineering. Materials Science and Engineering: C 81:74–83. doi: 10.1016/j.msec.2017.04.150.
  • Good Food Institute APAC. 2020. Japan’s IntegriCulture: The meat of the matter is infrastructure. Accessed August 15, 2021. https://www.gfi-apac.org/blog/japans-integriculture-the-meat-of-the-matter-is-infrastructure/.
  • GOOD. 2020. The product: Finless foods. Accessed April 21, 2021. https://www.good.is/good10-the-oceans-issue-the-company-finless-foods.
  • Grazul-Bilska, A. T., M. L. Johnson, J. J. Bilski, D. A. Redmer, L. P. Reynolds, A. Abdullah, and K. M. Abdullah. 2003. Wound healing: The role of growth factors. Drugs of Today (Barcelona, Spain: 1998), 39 (10):787–800. doi: 10.1358/dot.2003.39.10.799472.
  • Greenqueen. 2020. Cultivated food tech startups unite to create industry alliance & lobby for new regulatory framework. Accessed August 15, 2021. https://www.greenqueen.com.hk/cultivated-food-tech-startups-unite-to-form-industry-alliance-for-meat-poultry-seafood-innovation/.
  • Greenqueen. 2021a. Asian food giants back Singapore cell-based seafood leader shiok meats in bridge round. Accessed August 9, 2021. https://www.greenqueen.com.hk/shiok-meats-funding-seafood/.
  • Greenqueen. 2021b. SeaWith Wants To Bring Cell-Based Meat To South Korean Restaurants By 2022. Accessed August 9, 2021. https://www.greenqueen.com.hk/seawith-wants-to-bring-cell-based-meat-to-south-korean-restaurants-2022/.
  • Greenqueen. 2021c. Spanish food tech novameat 3D prints the ‘World’s Biggest Cell-Based Meat Prototype’. Accessed August 15, 2021. https://www.greenqueen.com.hk/spanish-food-tech-novameat-3d-prints-the-world-biggest-cell-based-meat-prototype/.
  • Guan, X., Q. Lei, Q. Yan, X. Li, J. Zhou, G. Du, and J. Chen. 2021. Trends and ideas in technology, regulation and public acceptance of cultured meat. Future Foods 3:100032. doi: 10.1016/j.fufo.2021.100032.
  • Han, S., C. Cui, H. He, X. Shen, Y. Chen, Y. Wang, D. Li, Q. Zhu, and H. Yin. 2020. FHL1 regulates myoblast differentiation and autophagy through its interaction with LC3. Journal of Cellular Physiology 235 (5):4667–78. doi: 10.1002/jcp.29345.
  • Han, Y., W. Guo, R. Su, Y. Zhang, L. Yang, G. Borjigin, and Y. Duan. 2022. Effects of sheep slaughter age on myogenic characteristics in skeletal muscle satellite cells. Animal Bioscience 35 (4):614–23. doi: 10.5713/ab.21.0193.
  • He, H., H. Yin, X. Yu, Y. Zhang, M. Ma, D. Li, and Q. Zhu. 2021. PDLIM5 affects chicken skeletal muscle satellite cell proliferation and differentiation via the p38-MAPK Pathway. Animals 11 (4):1016. doi: 10.3390/ani11041016.
  • Hilderbrand, A. M., E. M. Ford, C. Guo, J. D. Sloppy, and A. M. Kloxin. 2020. Hierarchically structured hydrogels utilizing multifunctional assembling peptides for 3D cell culture. Biomaterials Science 8 (5):1256–69. doi: 10.1039/c9bm01894h.
  • Hillege, M. M., R. A. Galli Caro, C. Offringa, G. M. de Wit, R. T. Jaspers, and W. M. Hoogaars. 2020. TGF-β regulates collagen type I expression in myoblasts and myotubes via transient Ctgf and Fgf-2 expression. Cells 9 (2):375. doi: 10.3390/cells9020375.
  • Hong, T. K., D. M. Shin, J. Choi, J. T. Do, and S. G. Han. 2021. Current issues and technical advances in cultured meat production: A review. Food Science of Animal Resources 41 (3):355–72. doi: 10.5851/kosfa.2021.e14.
  • Horbelt, D., J. H. Boergermann, A. Chaikuad, I. Alfano, E. Williams, I. Lukonin, T. Timmel, A. N. Bullock, and P. Knaus. 2015. Small molecules dorsomorphin and LDN-193189 inhibit myostatin/GDF8 signaling and promote functional myoblast differentiation. The Journal of Biological Chemistry 290 (6):3390–404. doi: 10.1074/jbc.M114.604397.
  • Huang, Y., Q. Xia, Y. Cui, Q. Qu, Y. Wei, and Q. Jiang. 2020. Resveratrol increase the proportion of oxidative muscle fiber through the AdipoR1-AMPK-PGC-1α pathway in pigs. Journal of Functional Foods 73:104090. doi: 10.1016/j.jff.2020.104090.
  • Insider. 2018. The startup behind the first lab-grown pork links let us see how their sausage gets made — and said it slashed the cost from $2,500 to $216 in a month. https://www.businessinsider.com/taste-test-lab-grown-meat-sausage-cost-2018-11.
  • Jang, M., J. Scheffold, L. M. Røst, H. Cheon, and P. Bruheim. 2022. Serum-free cultures of C2C12 cells show different muscle phenotypes which can be estimated by metabolic profiling. Scientific Reports 12 (1):1–15. doi: 10.1038/s41598-022-04804-z.
  • Jaques, A., E. Sánchez, N. Orellana, J. Enrione, and C. A. Acevedo. 2021. Modelling the growth of in-vitro meat on microstructured edible films. Journal of Food Engineering 307:110662. doi: 10.1016/j.jfoodeng.2021.110662.
  • Jeong, J. Y., J. M. Kim, R. V. Rajesh, S. Suresh, G. W. Jang, K.-T. Lee, T. H. Kim, M. Park, H. J. Jeong, K. W. Kim, et al. 2013. Comparison of gene expression levels of porcine satellite cells from postnatal muscle tissue during differentiation. Reproductive & Developmental Biology 37 (4):219–24. doi: 10.12749/RDB.2013.37.4.219.
  • Jones, J. D., A. S. Rebello, and G. R. Gaudette. 2021. Decellularized spinach: An edible scaffold for laboratory-grown meat. Food Bioscience 41:100986. doi: 10.1016/j.fbio.2021.100986.
  • Kadim, I. T., O. Mahgoub, S. Baqir, B. Faye, and R. Purchas. 2015. Cultured meat from muscle stem cells: A review of challenges and prospects. Journal of Integrative Agriculture 14 (2):222–33. doi: 10.1016/S2095-3119(14)60881-9.
  • Kafi, M. A., M. K. Aktar, Y. Phanny, and M. Todo. 2019. Adhesion, proliferation and differentiation of human mesenchymal stem cell on chitosan/collagen composite scaffold. Journal of Materials Science: Materials in Medicine 30 (12):1–12.
  • Katayama, M., M. Onuma, and T. Fukuda. 2021. KAv-1 is better suited to chick fibroblast culture than DMEM or 199 Media. The Journal of Poultry Science 58 (4):270–9. doi: 10.2141/jpsa.0200085.
  • Kelland, K. 2012. Petri dish to dinner plate, in vitro meat coming soon. 11Nov-2011.[Online]. Accessed April 1, 2012. http://www.reuters.com/article/2011/11/11/us-science-meat-fidUSTRE7AA30020111111.
  • Kim, J., K. Chung, L. K. Fuerniss, and B. J. Johnson. 2020a. Oleic acid stimulates the formation of adipocyte-like cells from bovine satellite cells via G-protein coupled receptor 43 and CCAAT/enhancer-binding protein beta. Open Journal of Animal Sciences 10 (4):649–64. doi: 10.4236/ojas.2020.104042.
  • Kim, H. S., L. Luo, S. C. Pflugfelder, and D. Q. Li. 2005. Doxycycline inhibits TGF-beta1-induced MMP-9 via Smad and MAPK pathways in human corneal epithelial cells. Investigative Ophthalmology & Visual Science 46 (3):840–8. doi: 10.1167/iovs.04-0929.
  • Kim, K. H., J. Qiu, and S. Kuang. 2020b. Isolation, culture, and differentiation of primary myoblasts derived from muscle satellite cells. Bio-protocol 10 (14):e3686. doi: 10.21769/BioProtoc.3686.
  • Kolkmann, A. M., M. J. Post, M. A. M. Rutjens, A. L. M. Van Essen, and P. Moutsatsou. 2020. Serum-free media for the growth of primary bovine myoblasts. Cytotechnology 72 (1):111–20. doi: 10.1007/s10616-019-00361-y.
  • Krampera, M., A. Pasini, A. Rigo, M. T. Scupoli, C. Tecchio, G. Malpeli, A. Scarpa, F. Dazzi, G. Pizzolo, and F. Vinante. 2005. HB-EGF/HER-1 signaling in bone marrow mesenchymal stem cells: Inducing cell expansion and reversibly preventing multilineage differentiation. Blood 106 (1):59–66. doi: 10.1182/blood-2004-09-3645.
  • Krausgrill, B., M. Vantler, V. Burst, M. Raths, M. Halbach, K. Frank, S. Schynkowski, K. Schenk, J. Hescheler, S. Rosenkranz, et al. 2009. Influence of cell treatment with PDGF-BB and reperfusion on cardiac persistence of mononuclear and mesenchymal bone marrow cells after transplantation into acute myocardial infarction in rats. Cell Transplantation 18 (8):847–53. doi: 10.3727/096368909X471134.
  • Lee, S. Y., H. J. Kang, J. H. K. Da Young Lee, S. Ramani, S. Park, and S. J. Hur. 2021. Principal protocols for the processing of cultured meat. Journal of Animal Science and Technology 63 (4):673–3.
  • Liang, Q. L., J. Luo, K. Zhou, J. X. Dong, and H. X. He. 2011. Immune-related gene expression in response to H5N1 avian influenza virus infection in chicken and duck embryonic fibroblasts. Molecular Immunology 48 (6–7):924–30. doi: 10.1016/j.molimm.2010.12.011.
  • Li, C., X. An, G. Wang, M. Jin, X. Zhou, J. Chen, and Y. Xue. 2021. Novel cell culture paradigm prolongs mouse corneal epithelial cell proliferative activity in vitro and in vivo. Frontiers in Cell and Developmental Biology 9:1707.
  • Li, Z., S. Chen, K. Ma, R. He, L. Xiong, Y. Hu, X. Deng, A. Yang, X. Ma, and Z. Shao. 2020b. Comparison of different methods for the isolation and purification of rat nucleus pulposus-derived mesenchymal stem cells. Connective Tissue Research 61 (5):426–34. doi: 10.1080/03008207.2019.1611793.
  • Lin, C. Y., A. Niwa, C. Y. Hou, C. M. Tsai, and H. Chang. 2020. Bidirectional myofiber transition through altering the photobiomodulation condition. Journal of Photochemistry and Photobiology B: Biology 212:112041. doi: 10.1016/j.jphotobiol.2020.112041.
  • Liu, L., T. H. Cheung, G. W. Charville, and T. A. Rando. 2015. Isolation of skeletal muscle stem cells by fluorescence-activated cell sorting. Nature Protocols 10 (10):1612–24. doi: 10.1038/nprot.2015.110.
  • Liu, L., R. Hu, H. You, J. Li, Y. Liu, Q. Li, X. Wu, J. Huang, X. Cai, M. Wang, et al. 2021. Formononetin ameliorates muscle atrophy by regulating myostatin-mediated PI3K/Akt/FoxO3a pathway and satellite cell function in chronic kidney disease. Journal of Cellular and Molecular Medicine 25 (3):1493–506. doi: 10.1111/jcmm.16238.
  • Liu, M., T. Liu, X. Chen, J. Yang, J. Deng, W. He, X. Zhang, Q. Lei, X. Hu, G. Luo, et al. 2018. Nano-silver-incorporated biomimetic polydopamine coating on a thermoplastic polyurethane porous nanocomposite as an efficient antibacterial wound dressing. Journal of Nanobiotechnology 16 (1):1–19. doi: 10.1186/s12951-018-0416-4.
  • Liu, W., Y. Wen, P. Bi, X. Lai, X. S. Liu, X. Liu, and S. Kuang. 2012. Hypoxia promotes satellite cell self-renewal and enhances the efficiency of myoblast transplantation. Development (Cambridge, England) 139 (16):2857–65. doi: 10.1242/dev.079665.
  • Li, J., Y. Zhang, T. Zhang, M. Tian, J. Hou, D. Huang, Y. Cheng, Z. Man, X. Su, Z. Li, et al. 2020a. Analysis of isolation of cerebral cortical neurons in rats by different methods. BIOCELL 44 (2):209–15. doi: 10.32604/biocell.2020.08941.
  • Luo, B., L. Tian, N. Chen, S. Ramakrishna, N. Thakor, and I. H. Yang. 2018. Electrospun nanofibers facilitate better alignment, differentiation, and long-term culture in an in vitro model of the neuromuscular junction (NMJ). Biomaterials Science 6 (12):3262–72. doi: 10.1039/c8bm00720a.
  • Lynch, J., and R. Pierrehumbert. 2019. Climate impacts of cultured meat and beef cattle. Frontiers in Sustainable Food Systems 5. doi: 10.3389/fsufs.2019.00005.
  • Machida, S., E. E. Spangenburg, and F. W. Booth. 2004. Primary rat muscle progenitor cells have decreased proliferation and myotube formation during passages. Cell Proliferation 37 (4):267–77. doi: 10.1111/j.1365-2184.2004.00311.x.
  • MacQueen, L. A., C. G. Alver, C. O. Chantre, S. Ahn, L. Cera, G. M. Gonzalez, B. B. O’Connor, D. J. Drennan, M. M. Peters, S. E. Motta, et al. 2019. Muscle tissue engineering in fibrous gelatin: Implications for meat analogs. NPJ Science of Food 3 (1):20–12. doi: 10.1038/s41538-019-0054-8.
  • Maeil News. 2021. "Korean beef made in the laboratory"…’Seewith’, a challenge to make artificial meat food 2021. Accessed August 9, 2021. https://news.imaeil.com/Economy/2021071815564028406.
  • Market Research. 2021. Cultured meat market to reach $94.54 Billion by 2030. Accessed September 5, 2021. https://blog.marketresearch.com/cultured-meat-market-to-reach-94.54-billion-by-2030.
  • Marmolejo-Martínez-Artesero, S., D. Romeo-Guitart, V. Venegas, M. Marotta, and C. Casas. 2021. NeuroHeal improves muscle regeneration after injury. Cells 10 (1):22.
  • Martin, N. R. W., S. L. Passey, D. J. Player, A. Khodabukus, R. A. Ferguson, A. P. Sharples, V. Mudera, K. Baar, and M. P. Lewis. 2013. Factors affecting the structure and maturation of human tissue engineered skeletal muscle. Biomaterials 34 (23):5759–65. doi: 10.1016/j.biomaterials.2013.04.002.
  • Marushima, A., M. Nieminen, I. Kremenetskaia, R. Gianni-Barrera, J. Woitzik, G. von Degenfeld, A. Banfi, P. Vajkoczy, and N. Hecht. 2020. Balanced single-vector co-delivery of VEGF/PDGF-BB improves functional collateralization in chronic cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism 40 (2):404–19. doi: 10.1177/0271678X18818298.
  • Masschelein, E., G. D’Hulst, J. Zvick, L. Hinte, I. Soro-Arnaiz, T. Gorski, F. von Meyenn, O. Bar-Nur, and K. DeBock. 2020. Exercise promotes satellite cell contribution to myofibers in a load-dependent manner. Skeletal muscle 10 (1):1–15.
  • Mattick, C. S., A. E. Landis, B. R. Allenby, and N. J. Genovese. 2015. Anticipatory life cycle analysis of in vitro biomass cultivation for cultured meat production in the United States. Environmental Science & Technology 49 (19):11941–9. doi: 10.1021/acs.est.5b01614.
  • Mau, M., N. Oksbjerg, and C. Rehfeldt. 2008. Establishment and conditions for growth and differentiation of a myoblast cell line derived from the semimembranosus muscle of newborn piglets. In Vitro Cellular & Developmental Biology. Animal 44 (1–2):1–5. doi: 10.1007/s11626-007-9069-6.
  • Miersch, C., K. Stange, and M. Röntgen. 2018. Separation of functionally divergent muscle precursor cell populations from porcine juvenile muscles by discontinuous Percoll density gradient centrifugation. BMC Cell Biology 19 (1):1–12. doi: 10.1186/s12860-018-0156-1.
  • Mierzejewski, B., I. Grabowska, D. Jackowski, A. Irhashava, Z. Michalska, W. Stremińska, K. Jańczyk-Ilach, M. A. Ciemerych, and E. Brzoska. 2020. Mouse CD146+ muscle interstitial progenitor cells differ from satellite cells and present myogenic potential. Stem Cell Research & Therapy 11 (1):1–14. doi: 10.1186/s13287-020-01827-z.
  • Missouri Department of Agriculture (MDA). 2018. Missouri Meat Advertising Law. Accessed March 21, 2022. https://agriculture.mo.gov/animals/meat.php.
  • Mohorčich, J., and J. Reese. 2019. Cell-cultured meat: Lessons from GMO adoption and resistance. Appetite 143:104408. doi: 10.1016/j.appet.2019.104408.
  • Motohashi, N., Y. Asakura, and A. Asakura. 2014. Isolation, culture, and transplantation of muscle satellite cells. Journal of Visualized Experiments (86):e50846. doi: 10.3791/50846.
  • Narayanan, N., C. Jiang, C. Wang, G. Uzunalli, N. Whittern, D. Chen, O. G. Jones, S. Kuang, and M. Deng. 2020. Harnessing fiber diameter-dependent effects of myoblasts toward biomimetic scaffold-based skeletal muscle regeneration. Frontiers in Bioengineering and Biotechnology 8:203. doi: 10.3389/fbioe.2020.00203.
  • Ng, F., S. Boucher, S. Koh, K. S. Sastry, L. Chase, U. Lakshmipathy, and V. Tanavde. 2008. PDGF, TGF-β, and FGF signaling is important for differentiation and growth of mesenchymal stem cells (MSCs): transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages. Blood. The Journal of the American Society of Hematology 112 (2):295–307.
  • Nihashi, Y., K. Umezawa, S. Shinji, Y. Hamaguchi, H. Kobayashi, T. Kono, T. Ono, H. Kagami, and T. Takaya. 2019. Distinct cell proliferation, myogenic differentiation, and gene expression in skeletal muscle myoblasts of layer and broiler chickens. Scientific Reports 9 (1):1–15. doi: 10.1038/s41598-019-52946-4.
  • Novel Food Regulation. 2015. Novel Food Regulation. 2015 Edition. (EC) No. 2015/2283 (EU). Accessed September 5, 2021. https://eur-lex.europa.eu/eli/reg/2015/2283/oj/eng.
  • Nowak, D. 2011. Enzymes in tenderization of meat-the system of calpains and other systems-a review. Polish Journal of Food and Nutrition Sciences 61 (4):231–7. doi: 10.2478/v10222-011-0025-5.
  • Orellana, N., E. Sánchez, D. Benavente, P. Prieto, J. Enrione, and C. A. Acevedo. 2020. A new edible film to produce in vitro meat. Foods 9 (2):185. doi: 10.3390/foods9020185.
  • Pannérec, A., L. Formicola, V. Besson, G. Marazzi, and D. A. Sassoon. 2013. Defining skeletal muscle resident progenitors and their cell fate potentials. Development (Cambridge, England) 140 (14):2879–91. doi: 10.1242/dev.089326.
  • Park, J., J. Lee, K.-D. Song, S.-J. Kim, D. C. Kim, S. C. Lee, Y. J. Son, H. W. Choi, and K. Shim. 2021. Growth factors improve the proliferation of Jeju black pig muscle cells by regulating myogenic differentiation 1 and growth-related genes. Animal Bioscience 34 (8):1392–402. doi: 10.5713/ab.20.0585.
  • Perishable News. 2021. Future Meat Technologies. Future meat technologies reduces cost of cultured chicken breast below $10. Accessed April 21, 2021. https://www.perishablenews.com/meatpoultry/future-meat-technologies-reduces-cost-of-cultured-chicken-breast-below-10/.
  • Perruchot, M. H., P. Ecolan, I. L. Sorensen, N. Oksbjerg, and L. Lefaucheur. 2012. In vitro characterization of proliferation and differentiation of pig satellite cells. Differentiation; Research in Biological Diversity 84 (4):322–9. doi: 10.1016/j.diff.2012.08.001.
  • Pigpeople. 2021. Korea’s first prototype of ‘Culture Meat Using Pig Stem Cells’. Accessed August 15, 2021. https://www.pigpeople.net/mobile/article.html?no=9478.
  • Pons, J., Y. Huang, J. Arakawa-Hoyt, D. Washko, J. Takagawa, J. Ye, W. Grossman, and H. Su. 2008. VEGF improves survival of mesenchymal stem cells in infarcted hearts. Biochemical and Biophysical Research Communications 376 (2):419–22. doi: 10.1016/j.bbrc.2008.09.003.
  • Post, M. J. 2012. Cultured meat from stem cells: Challenges and prospects. Meat Science 92 (3):297–301. doi: 10.1016/j.meatsci.2012.04.008.
  • Post, M. J., S. Levenberg, D. L. Kaplan, N. Genovese, J. Fu, C. J. Bryant, N. Negowetti, K. Verzijden, and P. Moutsatsou. 2020. Scientific, sustainability and regulatory challenges of cultured meat. Nature Food 1 (7):403–15. doi: 10.1038/s43016-020-0112-z.
  • Quartz. 2017. The future of meat lies in a $325,000 lab-grown burger. Accessed August 15, 2021. https://qz.com/682369/the-future-of-meat-lies-in-a-325000-lab-grown-burger/.
  • Qutachi, O., J. R. Vetsch, D. Gill, H. Cox, D. J. Scurr, S. Hofmann, R. Müller, R. A. Quirk, K. M. Shakesheff, and C. V. Rahman. 2014. Injectable and porous PLGA microspheres that form highly porous scaffolds at body temperature. Acta Biomaterialia 10 (12):5090–8. doi: 10.1016/j.actbio.2014.08.015.
  • Ramalingam, V., Z. Song, and I. Hwang. 2019. The potential role of secondary metabolites in modulating the flavor and taste of the meat. Food Research International (Ottawa, ON) 122:174–82. doi: 10.1016/j.foodres.2019.04.007.
  • Ran, J., J. Li, L. Yin, D. Zhang, C. Yu, H. Du, X. Jiang, C. Yang, and Y. Liu. 2021. Comparative analysis of skeletal muscle DNA methylation and transcriptome of the chicken embryo at different developmental stages. Frontiers in Physiology 12:935.
  • Redshaw, Z., and P. T. Loughna. 2012. Oxygen concentration modulates the differentiation of muscle stem cells toward myogenic and adipogenic fates. Differentiation; Research in Biological Diversity 84 (2):193–202. doi: 10.1016/j.diff.2012.06.001.
  • Reichhardt, C. C., A. Ahmadpour, R. G. Christensen, N. E. Ineck, G. K. Murdoch, and K. J. Thornton. 2021a. Understanding the influence of trenbolone acetate and polyamines on proliferation of bovine satellite cells. Domestic Animal Endocrinology 74:106479. doi: 10.1016/j.domaniend.2020.106479.
  • Reichhardt, C. C., L. L. Okamoto, L. A. Motsinger, B. P. Griffin, G. K. Murdoch, and K. J. Thornton. 2021b. The impact of polyamine precursors, polyamines, and steroid hormones on temporal messenger RNA abundance in bovine satellite cells induced to differentiate. Animals 11 (3):764. doi: 10.3390/ani11030764.
  • Robbreport. 2021. A new lab-grown foie gras could make the delicacy cruelty-free as soon as next year. Accessed August 5, 2021. https://robbreport.com/food-drink/dining/gourmey-releases-lab-grown-foie-gras-1234625037/.
  • Roehm, K. D., J. Hornberger, and S. V. Madihally. 2016. In vitro characterization of acelluar porcine adipose tissue matrix for use as a tissue regenerative scaffold. Journal of Biomedical Materials Research. Part A 104 (12):3127–36. doi: 10.1002/jbm.a.35844.
  • Safarzad, M., A. Marjani, M. S. Jazi, D. Qujeq, S. M. Mir, M. Marjani, and A. N. Kaldehi. 2020. Effect of Rubus anatolicus leaf extract on glucose metabolism in HepG2, CRI-D2 and C2C12 Cell lines. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 13:1109–16. doi: 10.2147/DMSO.S244850.
  • San Francisco Chronicle. 2020. A San Francisco company is set to be the first in the world to sell meat grown in a lab. Accessed August 15, 2021. https://www.sfchronicle.com/food/article/A-San-Francisco-company-is-set-to-be-the-first-in-15767451.php.
  • Sanchez-Sabate, R., and J. Sabaté. 2019. Consumer attitudes towards environmental concerns of meat consumption: A systematic review. International Journal of Environmental Research and Public Health 16 (7):1220. doi: 10.3390/ijerph16071220.
  • Sart, S., S. N. Agathos, and Y. Li. 2013. Engineering stem cell fate with biochemical and biomechanical properties of microcarriers. Biotechnology Progress 29 (6):1354–66. doi: 10.1002/btpr.1825.
  • Sassoli, C., A. Frati, A. Tani, G. Anderloni, F. Pierucci, F. Matteini, F. Chellini, S. Zecchi Orlandini, L. Formigli, and E. Meacci. 2014. Mesenchymal stromal cell secreted sphingosine 1-phosphate (S1P) exerts a stimulatory effect on skeletal myoblast proliferation. PloS One 9 (9):e108662. doi: 10.1371/journal.pone.0108662.
  • Sawano, S., K. Baba, Y. Sonoda, J.-I. Wakamatsu, S. Tomonaga, M. Furuse, Y. Sato, R. Tatsumi, Y. Ikeuchi, and W. Mizunoya. 2020. Beef extract supplementation promotes myoblast proliferation and myotube growth in C2C12 cells. European Journal of Nutrition 59 (8):3735–43. doi: 10.1007/s00394-020-02205-4.
  • Sesillo, F. B., M. Wong, A. Cortez, and M. Alperin. 2020. Isolation of muscle stem cells from rat skeletal muscles. Stem Cell Research 43:101684. doi: 10.1016/j.scr.2019.101684.
  • Seyed, M. A., and K. Vijayaraghavan. 2018. Physicochemical characterization and bioactivity of an improved chitosan scaffold cross-linked with polyvinyl alcohol for corneal tissue engineering applications. Annual Research & Review in Biology 24 (6):1–16.
  • Shahini, A., K. Vydiam, D. Choudhury, N. Rajabian, T. Nguyen, P. Lei, and S. T. Andreadis. 2018. Efficient and high yield isolation of myoblasts from skeletal muscle. Stem Cell Research 30:122–9. doi: 10.1016/j.scr.2018.05.017.
  • Shin, Y. C., J. H. Lee, L. Jin, M. J. Kim, Y.-J. Kim, J. K. Hyun, T.-G. Jung, S. W. Hong, and D.-W. Han. 2015. Stimulated myoblast differentiation on graphene oxide-impregnated PLGA-collagen hybrid fibre matrices. Journal of Nanobiotechnology 13 (1):1–11. doi: 10.1186/s12951-015-0081-9.
  • Simsa, R., J. Yuen, A. Stout, N. Rubio, P. Fogelstrand, and D. L. Kaplan. 2019. Extracellular heme proteins influence bovine myosatellite cell proliferation and the color of cell-based meat. Foods 8 (10):521. doi: 10.3390/foods8100521.
  • Sincennes, M. C. Y. X. Wang, and M. A. Rudnicki. 2017. Primary mouse myoblast purification using magnetic cell separation. In Muscle stem cells, 41–50. New York, NY: Humana.
  • Singapore Food Agency. 2019. Requirements for the safety assessment of novel foods. Accessed September 5, 2021. https://www.sfa.gov.sg/legislation.
  • Soice, E., and J. Johnston. 2021. Immortalizing Cells for Human Consumption. International Journal of Molecular Sciences 22 (21):11660. doi: 10.3390/ijms222111660.
  • Stephens, N., L. Di Silvio, I. Dunsford, M. Ellis, A. Glencross, and A. Sexton. 2018. Bringing cultured meat to market: Technical, socio-political, and regulatory challenges in cellular agriculture. Trends in Food Science & Technology 78:155–66. doi: 10.1016/j.tifs.2018.04.010.
  • Su, R., B. Wang, M. Zhang, Y. Luo, D. Wang, L. Zhao, L. Su, Y. Duan, L. Faucitano, and Y. Jin. 2021. Effects of energy supplements on the differentiation of skeletal muscle satellite cells. Food Science & Nutrition 9 (1):357–66. doi: 10.1002/fsn3.2001.
  • Suzuki, A., R. C. Pelikan, and J. Iwata. 2015. WNT/β-catenin signaling regulates multiple steps of myogenesis by regulating step-specific targets. Molecular and Cellular Biology 35 (10):1763–76. doi: 10.1128/MCB.01180-14.
  • Synbiobeta. 2020. New Age Meats Raises $2M seed extension to continue developing cultivated pork. Accessed April 21, 2021. https://synbiobeta.com/new-age-meats-raises-2m-seed-extension-to-continue-developing-cultivated-pork/.
  • Syverud, B. C., K. W. VanDusen, and L. M. Larkin. 2016. Effects of dexamethasone on satellite cells and tissue engineered skeletal muscle units. Tissue Engineering. Part A 22 (5–6):480–9. doi: 10.1089/ten.TEA.2015.0545.
  • Szmolka, A., Z. Wiener, M. E. Matulova, K. Varmuzova, and I. Rychlik. 2015. Gene expression profiles of chicken embryo fibroblasts in response to Salmonella Enteritidis infection. PloS One 10 (6):e0127708. doi: 10.1371/journal.pone.0127708.
  • Tabata, Y., I. Horiguchi, M. P. Lutolf, and Y. Sakai. 2014. Development of bioactive hydrogel capsules for the 3D expansion of pluripotent stem cells in bioreactors. Biomaterials Science 2 (2):176–83. doi: 10.1039/c3bm60183h.
  • Takahashi, I., K. Sato, H. Mera, S. Wakitani, and M. Takagi. 2017. Effects of agitation rate on aggregation during beads-to-beads subcultivation of microcarrier culture of human mesenchymal stem cells. Cytotechnology 69 (3):503–9. doi: 10.1007/s10616-016-9999-5.
  • Takaya, T., Y. Nihashi, S. Kojima, T. Ono, and H. Kagami. 2017. Autonomous xenogenic cell fusion of murine and chick skeletal muscle myoblasts. Animal Science Journal = Nihon Chikusan Gakkaiho 88 (11):1880–5. doi: 10.1111/asj.12884.
  • Tan, J., L. Liu, B. Li, Q. Xie, J. Sun, H. Pu, and L. Zhang. 2019. Pancreatic stem cells differentiate into insulin-secreting cells on fibroblast-modified PLGA membranes. Materials Science and Engineering: C 97:593–601. doi: 10.1016/j.msec.2018.12.062.
  • Tang, J., J. Wang, F. Zheng, X. Kong, L. Guo, J. Yang, L. Zhang, and Y. Huang. 2010. Combination of chemokine and angiogenic factor genes and mesenchymal stem cells could enhance angiogenesis and improve cardiac function after acute myocardial infarction in rats. Molecular and Cellular Biochemistry 339 (1–2):107–18. doi: 10.1007/s11010-009-0374-0.
  • Techcrunch. 2021. Lab-grown meat could be on store shelves by 2022, thanks to Future Meat Technologies. Accessed August 15, 2021. https://techcrunch.com/2019/10/10/lab-grown-meat-could-be-on-store-shelves-by-2022-thanks-to-future-meat-technologies/.
  • Texas Meat and Imitation Food Act. 2020. Texas meat and imitation food Act 2020 Edition. Sec. 433.003 § 8 (USA). Accessed September 5, 2021. https://capitol.texas.gov/tlodocs/86R/billtext/html/HB03799I.htm.
  • The Chicken. 2020. Accessed August 15, 2021. https://thechicken.kitchen/.
  • The Fish Site. 2019. Cell-based seafood and the future of food: part I. Accessed August 9, 2021. https://thefishsite.com/articles/cell-based-seafood-and-the-future-of-food-part-i.
  • The Spoon. 2019. Japanese startup integriculture tests foie gras grown in a lab. Accessed August 9, 2021. https://thespoon.tech/japanese-startup-integriculture-tests-foie-gras-grown-in-a-lab/.
  • Tiburcy, M., A. Markov, L. K. Kraemer, P. Christalla, M. Rave-Fraenk, H. J. Fischer, H. M. Reichardt, and W.-H. Zimmermann. 2019. Regeneration competent satellite cell niches in rat engineered skeletal muscle. FASEB bioAdvances 1 (12):731–46. doi: 10.1096/fba.2019-00013.
  • Tompkins, Y. H., S. Su, S. G. Velleman, and W. K. Kim. 2021. Effects of 20(S)-hydroxycholesterol on satellite cell proliferation and differentiation of broilers . Poultry Science 100 (2):474–81. doi: 10.1016/j.psj.2020.10.032.
  • Tsuchiya, Y., Y. Kitajima, H. Masumoto, and Y. Ono. 2020. Damaged myofiber-derived metabolic enzymes act as activators of muscle satellite cells. Stem Cell Reports 15 (4):926–40. doi: 10.1016/j.stemcr.2020.08.002.
  • Tsutsumi, S., A. Shimazu, K. Miyazaki, H. Pan, C. Koike, E. Yoshida, K. Takagishi, and Y. Kato. 2001. Retention of multilineage differentiation potential of mesenchymal cells during proliferation in response to FGF. Biochemical and Biophysical Research Communications 288 (2):413–9. doi: 10.1006/bbrc.2001.5777.
  • Tuomisto, H. L., and M. J. Teixeira de Mattos. 2011. Environmental impacts of cultured meat production. Environmental Science & Technology 45 (14):6117–23. doi: 10.1021/es200130u.
  • Ugwu, C. C., M. Hair-Bejo, M. I. Nurulfiza, A. R. Omar, and A. Ideris. 2020. Propagation and molecular characterization of fowl adenovirus serotype 8b isolates in chicken embryo liver cells adapted on cytodex™ 1 microcarrier using stirred tank bioreactor. Processes 8 (9):1065. doi: 10.3390/pr8091065.
  • Urbani, L., M. Piccoli, C. Franzin, M. Pozzobon, and P. De Coppi. 2012. Hypoxia increases mouse satellite cell clone proliferation maintaining both in vitro and in vivo heterogeneity and myogenic potential. PloS One 7 (11):e49860. doi: 10.1371/journal.pone.0049860.
  • USDA & FDA. 2019. Formal agreement to jointly oversee the production of human food products derived from the cells of livestock and poultry. Accessed August 21, 2021. https://www.fda.gov/food/domestic-interagency-agreements-food/formal-agreement-between-fda-and-usda-regarding-oversight-human-food-produced-using-animal-cell.
  • Vegnews. 2019. A California company just made the world’s first yellowtail tuna without killing a fish. Accessed August 9, 2021. https://vegnews.com/2019/12/a-california-company-just-made-the-world-s-first-yellowtail-tuna-without-killing-a-fish.
  • Verbruggen, S., D. Luining, A. van Essen, and M. J. Post. 2018. Bovine myoblast cell production in a microcarriers-based system. Cytotechnology 70 (2):503–12. doi: 10.1007/s10616-017-0101-8.
  • Wang, X., M. S. Ali, and C. M. Lacerda. 2018. A three-dimensional collagen-elastin scaffold for heart valve tissue engineering. Bioengineering 5 (3):69. doi: 10.3390/bioengineering5030069.
  • Wang, Z., D. Cheung, Y. Zhou, C. Han, C. Fennelly, T. Criswell, and S. Soker. 2014. An in vitro culture system that supports robust expansion and maintenance of in vivo engraftment capabilities for myogenic progenitor cells from adult mice. BioResearch Open Access 3 (3):79–87. doi: 10.1089/biores.2014.0007.
  • Wang, X., Q. Hu, A. Mansoor, J. Lee, Z. Wang, T. Lee, A. H. L. From, and J. Zhang. 2006. Bioenergetic and functional consequences of stem cell-based VEGF delivery in pressure-overloaded swine hearts. American Journal of Physiology-Heart and Circulatory Physiology 290 (4):H1393–H1405. doi: 10.1152/ajpheart.00871.2005.
  • Warner, R. D. 2019. Review: Analysis of the process and drivers for cellular meat production. Animal: An International Journal of Animal Bioscience 13 (12):3041–58. doi: 10.1017/S1751731119001897.
  • Weiss, S., T. Hennig, R. Bock, E. Steck, and W. Richter. 2010. Impact of growth factors and PTHrP on early and late chondrogenic differentiation of human mesenchymal stem cells. Journal of Cellular Physiology 223 (1):84–93. doi: 10.1002/jcp.22013.
  • Wetenschap, E. 2019. Wanneer ligt kweekvlees op ons bord? Accessed August 15, 2021. https://www.eoswetenschap.eu/voeding/wanneer-ligt-kweekvlees-op-ons-bord.
  • Wierzchowski, K., A. Kuźmińska, and M. Pilarek. 2021. Intensification of chondrocytes proliferation by microcarriers and wave-induced mixing: Reynolds number influence on CP5 cells growth. Chemical Engineering and Processing-Process Intensification 108472.
  • Woll, S., and I. Böhm. 2018. In-vitro-meat: A solution for problems of meat production and con-sumption. Ernahrungs Umschau 65 (1):12–21.
  • Wood, R., P. Durali, and I. Wall. 2020. Impact of dual cell co-culture and cell-conditioned media on yield and function of a human olfactory cell line for regenerative medicine. Bioengineering 7 (2):37. doi: 10.3390/bioengineering7020037.
  • Wu, M. H., C. Y. Lin, C. Y. Hou, M. T. Sheu, and H. Chang. 2020. Micronized sacchachitin promotes satellite cell proliferation through TAK1-JNK-AP-1 signaling pathway predominantly by TLR2 activation. Chinese Medicine 15 (1):1–12. doi: 10.1186/s13020-020-00381-3.
  • Yahoo Finance. 2017. Why Richard Branson, Bill Gates and Jack Welch all invested in this start-up that grows meat in a lab. Accessed August 15, 2021. https://finance.yahoo.com/news/why-richard-branson-bill-gates-170655027.html?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=AQAAAG0XhZsU7lz2jPKXzUQJkOY_xwkod_39C7 NsbMsa9hlpiUozqc7UQMgj36qm1Rw3csBWLcVqWftbrznGO aWvMLLTDlT1JtZefJiN77aU3Yf-Lo_uOZ7Vq9pbYYN34S8D sbYbYol-esxcn5QiXoxJayPv2wUAiuWap6yTrYmwe0Yd.
  • Yamanouchi, K., K. Nakamura, S. Takeuchi, T. Hosoyama, T. Matsuwaki, and M. Nishihara. 2021. Suppression of MyoD induces spontaneous adipogenesis in skeletal muscle progenitor cell culture. Animal Science Journal = Nihon Chikusan Gakkaiho 92 (1):e13573. doi: 10.1111/asj.13573.
  • Yin, H., H. He, X. Shen, S. Tang, J. Zhao, X. Cao, S. Han, C. Cui, Y. Chen, Y. Wei, et al. 2020. MicroRNA profiling reveals an abundant miR-200a-3p promotes skeletal muscle satellite cell development by targeting TGF-β2 and regulating the TGF-β2/SMAD signaling pathway. International Journal of Molecular Sciences 21 (9):3274. doi: 10.3390/ijms21093274.
  • Youtube. 2018. Cultured meat: A vision of the future. Accessed August 15, 2021. https://www.youtube.com/watch?v=f8Ii3DB6ejE.
  • Yu, M., H. Wang, Y. Xu, D. Yu, D. Li, X. Liu, and W. Du. 2015. Insulin-like growth factor-1 (IGF-1) promotes myoblast proliferation and skeletal muscle growth of embryonic chickens via the PI3K/Akt signalling pathway. Cell Biology International 39 (8):910–22. doi: 10.1002/cbin.10466.
  • Zhang, X., M. Chen, X. Liu, L. Zhang, X. Ding, Y. Guo, X. Li, and H. Guo. 2020b. A novel lncRNA, lnc403, involved in bovine skeletal muscle myogenesis by mediating KRAS/Myf6. Gene 751:144706. doi: 10.1016/j.gene.2020.144706.
  • Zhang, G., F. Chen, P. Wu, T. Li, M. He, X. Yin, and G. Dai. 2020a. Microrna-7 targets the klf4 gene to regulate the proliferation and differentiation of chicken primary myoblasts. Frontiers in Genetics 842. doi: 10.3389/fgene.2020.00842.
  • Zhang, Y., A. L. Erhard, T. Plagemann, N. Eter, and P. Heiduschka. 2021. A modified protocol for isolation of retinal microglia from the pig. Experimental Eye Research 207:108584. doi: 10.1016/j.exer.2021.108584.
  • Zhang, G., X. Zhao, X. Li, G. Du, J. Zhou, and J. Chen. 2020. Challenges and possibilities for bio-manufacturing cultured meat. Trends in Food Science & Technology 97:443–50. doi: 10.1016/j.tifs.2020.01.026.
  • Zhao, Y., E. Albrecht, K. Stange, Z. Li, J. Schregel, Q. L. Sciascia, and S. Maak. 2021. Glutamine supplementation stimulates cell proliferation in skeletal muscle and cultivated myogenic cells of low birth weight piglets. Scientific Reports 11 (1):1–15.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.