1,786
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

Updated insights into anthocyanin stability behavior from bases to cases: Why and why not anthocyanins lose during food processing

, ORCID Icon, , , , , ORCID Icon & show all

References

  • Adaku, C., I. Skaar, H. Berland, R. Byamukama, M. Jordheim, and Ø. M. Andersen. 2019. Anthocyanins from mauve flowers of Erlangea tomentosa (Bothriocline longipes) based on erlangidin – The first reported natural anthocyanidin with c-ring methoxylation. Phytochemistry Letters 29:225–30. doi: 10.1016/j.phytol.2018.12.016.
  • Akbarbaglu, Z., S. H. Peighambardoust, K. Sarabandi, and S. M. Jafari. 2021. Spray drying encapsulation of bioactive compounds within protein-based carriers; different options and applications. Food Chemistry 359:129965. doi: 10.1016/j.foodchem.2021.129965.
  • Al Bittar, S., N. Mora, M. Loonis, and O. Dangles. 2014. Chemically synthesized glycosides of hydroxylated flavylium ions as suitable models of anthocyanins: Binding to iron ions and human serum albumin, antioxidant activity in model gastric conditions. Molecules (Basel, Switzerland) 19 (12):20709–30. doi: 10.3390/molecules191220709.
  • Albuquerque, G. A., A. V. Carvalho, L. J. Guerreiro de Faria, R. C. Chiste, L. H. da Silva Martins, and A. S. Lopes. 2019. Effects of thermal pasteurization on jambolan tropical juice bioactive compounds. British Food Journal 121 (11):2821–34. doi: 10.1108/BFJ-03-2019-0191.
  • Ali, N., V. Popović, T. Koutchma, K. Warriner, and Y. Zhu. 2020. Effect of thermal, high hydrostatic pressure, and ultraviolet-c processing on the microbial inactivation, vitamins, chlorophyll, antioxidants, enzyme activity, and color of wheatgrass juice. Journal of Food Process Engineering 43 (1):e13036. doi: 10.1111/jfpe.13036.
  • Asokapandian, S., G. J. Swamy, and H. Hajjul. 2020. Deep fat frying of foods: A critical review on process and product parameters. Critical Reviews in Food Science and Nutrition 60 (20):3400–13. doi: 10.1080/10408398.2019.1688761.
  • Barani, Y. H., M. Zhang, B. Wang, and S. Devahastin. 2020. Influences of four pretreatments on anthocyanins content, color and flavor characteristics of hot-air dried rose flower. Drying Technology 38 (15):1988–95. doi: 10.1080/07373937.2019.1647437.
  • Barbosa, M. P., T. Rigolon, L. Borges, V. Queiroz, P. C. Stringheta, and F. de Barros. 2021. Effect of light, food additives and heat on the stability of sorghum 3-deoxyanthocyanins in model beverages. International Journal of Food Science & Technology 56 (9):4746–55. doi: 10.1111/ijfs.15123.
  • Bellumori, M., M. Innocenti, M. Michelozzi, L. Cerretani, and N. Mulinacci. 2017. Coloured-fleshed potatoes after boiling: Promising sources of known antioxidant compounds. Journal of Food Composition and Analysis 59:1–7. doi: 10.1016/j.jfca.2017.02.004.
  • Bernstein, A., and C. Noreña. 2017. Kinetics of enzymatic inactivation and loss of anthocyanins and antioxidant activity in red cabbage blanched under different conditions. Journal of Food Biochemistry 41 (3):e12340. doi: 10.1111/jfbc.12340.
  • Buchweitz, M., M. Speth, D. R. Kammerer, and d R. Carle. 2013. Stabilisation of strawberry (fragaria x ananassa duch.) anthocyanins by different pectins. Food Chemistry 141 (3):2998–3006. doi: 10.1016/j.foodchem.2013.04.117.
  • Carbonell-Capella, J. M., M. Buniowska, C. Cortes, A. Zulueta, A. Frigola, and M. J. Esteve. 2017. Influence of pulsed electric field processing on the quality of fruit juice beverages sweetened with stevia rebaudiana. Food and Bioproducts Processing 101:214–22. doi: 10.1016/j.fbp.2016.11.012.
  • Carocho, M., M. F. Barreiro, P. Morales, and I. Ferreira. 2014. Adding molecules to food, pros and cons: A review on synthetic and natural food additives. Comprehensive Reviews in Food Science and Food Safety 13 (4):377–99. doi: 10.1111/1541-4337.12065.
  • Cavalcanti, R. N., D. T. Santos, and M. Meireles. 2011. Non-thermal stabilization mechanisms of anthocyanins in model and food systems – An overview. Food Research International 44 (2):499–509. doi: 10.1016/j.foodres.2010.12.007.
  • Cevallos-Casals, B. A., and L. Cisneros-Zevallos. 2004. Stability of anthocyanin-based aqueous extracts of andean purple corn and red-fleshed sweet potato compared to synthetic and natural colorants. Food Chemistry 86 (1):69–77. doi: 10.1016/j.foodchem.2003.08.011.
  • Chatham, L. A., J. E. Howard, and J. A. Juvik. 2020. A natural colorant system from corn: Flavone-anthocyanin copigmentation for altered hues and improved shelf life. Food Chemistry 310:125734. doi: 10.1016/j.foodchem.2019.125734.
  • Chen, J., J. Du, M. Li, and C. Li. 2020. Degradation kinetics and pathways of red raspberry anthocyanins in model and juice systems and their correlation with color and antioxidant changes during storage. Lwt 128:109448. doi: 10.1016/j.lwt.2020.109448.
  • Chen, Y., Z. Wang, H. Zhang, Y. Liu, S. Zhang, Q. Meng, and W. Liu. 2018. Isolation of high purity anthocyanin monomers from red cabbage with recycling preparative liquid chromatography and their photostability. Molecules 23 (5):991. doi: 10.3390/molecules23050991.
  • Cheng, J.-R., R. Xiang, X.-M. Liu, and M.-J. Zhu. 2019. The effects of thermal processing and beta-cyclodextrin on extractable polyphenols in mulberry juice-enriched dried minced pork slices. Lwt 116:108503. doi: 10.1016/j.lwt.2019.108503.
  • Cheynier, V., J.-M. Souquet, A. Kontek, and M. Moutounet. 1994. Anthocyanin degradation in oxidising grape musts. Journal of the Science of Food and Agriculture 66 (3):283–8. doi: 10.1002/jsfa.2740660304.
  • Chitgar, M. F., M. Aalami, R. Kadkhodaee, Y. Maghsoudlou, and E. Milani. 2018. Effect of thermosonication and thermal treatments on phytochemical stability of barberry juice copigmented with ferulic acid and licorice extract. Innovative Food Science & Emerging Technologies 50:102–11. doi: 10.1016/j.ifset.2018.09.004.
  • Colasanto, A., F. Travaglia, M. Bordiga, S. Monteduro, M. Arlorio, J. D. Coïsson, and M. Locatelli. 2021. Cooking of artemide black rice: Impact on proximate composition and phenolic compounds. Foods (Basel, Switzerland) 10 (4):824. doi: 10.3390/foods10040824.
  • Condurache (Lazăr), N.-N., C. Croitoru, E. Enachi, G.-E. Bahrim, N. Stănciuc, and G. Râpeanu. 2021. Eggplant peels as a valuable source of anthocyanins: Extraction, thermal stability and biological activities. Plants 10 (3):577. doi: 10.3390/plants10030577.
  • Cordeiro, T., I. Fernandes, O. Pinho, C. Calha, N. Mateus, and A. Faria. 2021. Anthocyanin content in raspberry and elderberry: The impact of cooking and recipe composition. International Journal of Gastronomy and Food Science 24:100316. doi: 10.1016/j.ijgfs.2021.100316.
  • Curaba, J., H. Bostan, P. F. Cavagnaro, D. Senalik, M. F. Mengist, Y. Zhao, P. W. Simon, and M. Iorizzo. 2019. Identification of an scpl gene controlling anthocyanin acylation in carrot (Daucus carota L.) root. Frontiers in Plant Science 10:1770. doi: 10.3389/fpls.2019.01770.
  • Dangles, O., and J. A. Fenger. 2018. The chemical reactivity of anthocyanins and its consequences in food science and nutrition. Molecules 23 (8):1970. doi: 10.3390/molecules23081970.
  • Echegaray, N., P. Munekata, P. Gullon, C. Dzuvor, B. Gullon, F. Kubi, and J. M. Lorenzo. 2022. Recent advances in food products fortification with anthocyanins. Critical Reviews in Food Science and Nutrition 62 (6):1553–67. doi: 10.1080/10408398.2020.1844141.
  • El Darra, N., M. F. Turk, M.-A. Ducasse, N. Grimi, R. G. Maroun, N. Louka, and E. Vorobiev. 2016. Changes in polyphenol profiles and color composition of freshly fermented model wine due to pulsed electric field, enzymes and thermovinification pretreatments. Food Chemistry 194:944–50. doi: 10.1016/j.foodchem.2015.08.059.
  • Eliášová, M., Z. Kotíková, J. Lachman, M. Orsák, and P. Martinek. 2020. Influence of baking on anthocyanin content in coloured-grain wheat bread. Plant, Soil and Environment 66 ( 8):381–6. doi: 10.17221/210/2020-PSE.
  • Evrendilek, G. A., E. Agcam, and A. Akyildiz. 2021. Effects of pulsed electric fields on sour cherry juice properties and formations of furfural and hydroxymethylfurfural. International Journal of Food Engineering 17 (3):217–26. doi: 10.1515/ijfe-2020-0189.
  • Fan, L., Y. Wang, P. Xie, L. Zhang, Y. Li, and J. Zhou. 2019. Copigmentation effects of phenolics on color enhancement and stability of blackberry wine residue anthocyanins: Chromaticity, kinetics and structural simulation. Food Chemistry 275:299–308. doi: 10.1016/j.foodchem.2018.09.103.
  • Farr, J. E., and M. M. Giusti. 2018. Investigating the interaction of ascorbic acid with anthocyanins and pyranoanthocyanins. Molecules 23 (4):744. doi: 10.3390/molecules23040744.
  • Farr, J. E., G. T. Sigurdson, and M. M. Giusti. 2019. Stereochemistry and glycosidic linkages of c3-glycosylations affected the reactivity of cyanidin derivatives. Food Chemistry 278:443–51. doi: 10.1016/j.foodchem.2018.11.076.
  • Fedenko, V. S., S. A. Shemet, and M. Landi. 2017. UV-vis spectroscopy and colorimetric models for detecting anthocyanin-metal complexes in plants: An overview of in vitro and in vivo techniques. Journal of Plant Physiology 212:13–28. doi: 10.1016/j.jplph.2017.02.001.
  • Fenger, J. A., M. Moloney, R. J. Robbins, T. M. Collins, and O. Dangles. 2019. The influence of acylation, metal binding and natural antioxidants on the thermal stability of red cabbage anthocyanins in neutral solution. Food & Function 10 (10):6740–51. doi: 10.1039/C9FO01884K.
  • Fernandes, A., N. F. Bras, N. Mateus, and V. de Freitas. 2015. A study of anthocyanin self-association by NMR spectroscopy. New Journal of Chemistry 39 (4):2602–11. doi: 10.1039/C4NJ02339K.
  • Fernandes, A., G. Ivanova, N. F. Brás, N. Mateus, M. J. Ramos, M. Rangel, and V. de Freitas. 2014. Structural characterization of inclusion complexes between cyanidin-3-o-glucoside and β-cyclodextrin. Carbohydrate Polymers 102:269–77. doi: 10.1016/j.carbpol.2013.11.037.
  • Fleschhut, J., F. Kratzer, G. Rechkemmer, and S. E. Kulling. 2006. Stability and biotransformation of various dietary anthocyanins in vitro. European Journal of Nutrition 45 (1):7–18. doi: 10.1007/s00394-005-0557-8.
  • Forino, M., A. Gambuti, P. Luciano, and L. Moio. 2019. Malvidin-3-O-glucoside chemical behavior in the wine pH range . Journal of Agricultural and Food Chemistry 67 (4):1222–9. doi: 10.1021/acs.jafc.8b05895.
  • Fracassetti, D., C. Pozzoli, S. Vitalini, A. Tirelli, and M. Iriti. 2020. Impact of cooking on bioactive compounds and antioxidant activity of pigmented rice cultivars. Foods (Basel, Switzerland ) 9 (8):E967. doi: 10.3390/foods9080967.
  • Furrer, A., D. P. Cladis, A. Kurilich, R. Manoharan, and M. G. Ferruzzi. 2017. Changes in phenolic content of commercial potato varieties through industrial processing and fresh preparation. Food Chemistry 218:47–55. doi: 10.1016/j.foodchem.2016.08.126.
  • Gerard, V., E. Ay, F. Morlet-Savary, B. Graff, C. Galopin, T. Ogren, W. Mutilangi, and J. Lalevee. 2019. Thermal and photochemical stability of anthocyanins from black carrot, grape juice, and purple sweet potato in model beverages in the presence of ascorbic acid. Journal of Agricultural and Food Chemistry 67 (19):5647–60. doi: 10.1021/acs.jafc.9b01672.
  • Ghareaghajlou, N., S. Hallaj-Nezhadi, and Z. Ghasempour. 2021. Red cabbage anthocyanins: Stability, extraction, biological activities and applications in food systems. Food Chemistry 365:130482. doi: 10.1016/j.foodchem.2021.130482.
  • González-Manzano, S., M. Dueñas, J. C. Rivas-Gonzalo, M. T. Escribano-Bailón, and C. Santos-Buelga. 2009. Studies on the copigmentation between anthocyanins and flavan-3-ols and their influence in the colour expression of red wine. Food Chemistry 114 (2):649–56. doi: 10.1016/j.foodchem.2008.10.002.
  • Gras, C. C., K. Bause, S. Leptihn, R. Carle, and R. M. Schweiggert. 2018. Effect of chlorogenic acid on spectral properties and stability of acylated and non-acylated cyanidin-3-o-glycosides. Food Chemistry 240:940–50. doi: 10.1016/j.foodchem.2017.07.137.
  • Gras, C. C., H. Bogner, R. Carle, and R. M. Schweiggert. 2016. Effect of genuine non-anthocyanin phenolics and chlorogenic acid on color and stability of black carrot (Daucus carota ssp sativus var. atrorubens Alef.) anthocyanins. Food Research International (Ottawa, Ont.) 85:291–300. doi: 10.1016/j.foodres.2016.05.006.
  • Gupta, S., R. Padole, P. S. Variyar, and A. Sharma. 2015. Influence of radiation processing of grapes on wine quality. Radiation Physics and Chemistry 111:46–56. doi: 10.1016/j.radphyschem.2015.02.019.
  • Han, F., and Y. Xu. 2015. Effect of the structure of seven anthocyanins on self-association and colour in an aqueous alcohol solution. South African Journal for Enology and Viticulture 36 (1):105–16. doi: 10.21548/36-1-940.
  • Hao, Y., J. Yang, J. Cui, Y. Fan, N. Li, C. Wang, Y. Liu, and Y. Dong. 2021. Stability and mechanism of phenolic compounds from raspberry extract under in vitro gastrointestinal digestion. Lwt 139:110552. doi: 10.1016/j.lwt.2020.110552.
  • Hartmann, A., C.-D. Patz, W. Andlauer, H. Dietrich, and M. Ludwig. 2008. Influence of processing on quality parameters of strawberries. Journal of Agricultural and Food Chemistry 56 (20):9484–9. doi: 10.1021/jf801555q.
  • Holzwarth, M., S. Korhummel, D. R. Kammerer, and R. Carle. 2012. Thermal inactivation of strawberry polyphenoloxidase and its impact on anthocyanin and color retention in strawberry (Fragaria x ananassa duch.) purées. European Food Research and Technology 235 (6):1171–80. doi: 10.1007/s00217-012-1852-2.
  • Holzwarth, M., S. Korhummel, T. Siekmann, R. Carle, and D. R. Kammerer. 2013. Influence of different pectins, process and storage conditions on anthocyanin and colour retention in strawberry jams and spreads. LWT - Food Science and Technology 52 (2):131–8. doi: 10.1016/j.lwt.2012.05.020.
  • Hong, Y.-S., K. S. Hong, E.-S. Lee, J.-H. Cho, C. Lee, C. Cheong, and C.-H. Lee. 2009. MR imaging and diffusion studies of soaked rice. Food Research International 42 (2):237–45. doi: 10.1016/j.foodres.2008.11.004.
  • Hooshyar, L., J. Hesari, and S. Azadmard-Damirchi. 2020. Investigation of selected thermal and non-thermal preservative techniques to produce high quality and safe to drink sour cherry, red grape and pomegranate juices. Journal of Food Science and Technology 57 (5):1689–97. doi: 10.1007/s13197-019-04202-w.
  • Hoshino, T. 1992. Self-association of flavylium cations of anthocyanidin 3,5-diglucosides studied by circular dichroism and 1h NMR. Phytochemistry 31 (2):647–53. doi: 10.1016/0031-9422(92)90053-s.
  • Howe, P. A., R. Worobo, and G. L. Sacks. 2018. Conventional measurements of sulfur dioxide (so2) in red wine overestimate so2 antimicrobial activity. American Journal of Enology and Viticulture 69 (3):210–20. doi: 10.5344/ajev.2018.17037.
  • Hrazdina, G., A. J. Borzell, and W. B. Robinson. 1970. Studies on the stability of the anthocyanidin-3,5-diglucosides. American Journal of Enology and Viticulture 21:201–4.
  • Huang, H. T. 1955. Fruit color destruction, decolorization of anthocyanins by fungal enzymes. Journal of Agricultural and Food Chemistry 3 (2):141–6. doi: 10.1021/jf60048a006.
  • Jeż, M., W. Błaszczak, K. Penkacik, and R. Amarowicz. 2020. Quality parameters of juice obtained from hydroponically grown tomato processed with high hydrostatic pressure or heat pasteurization. International Journal of Food Science 2020:4350461. doi: 10.1155/2020/4350461.
  • Jiang, Q., K. Ning, D. Yu, Y. Xu, B. Wang, F. Yang, P. Gao, and W. Xia. 2020. Effects of blanching on extraction and stability of anthocyanins from blueberry peel. Journal of Food Measurement and Characterization 14 (5):2854–61. doi: 10.1007/s11694-020-00530-0.
  • Joubran, A. M., I. H. Katz, Z. Okun, M. Davidovich-Pinhas, and A. Shpigelman. 2019. The effect of pressure level and cycling in high-pressure homogenization on physicochemical, structural and functional properties of filtered and non-filtered strawberry nectar. Innovative Food Science & Emerging Technologies 57:102203. doi: 10.1016/j.ifset.2019.102203.
  • Kader, F., M. Irmouli, J. P. Nicolas, and M. Metche. 2001. Proposed mechanism for the degradation of pelargonidin 3-glucoside by caffeic acid o-quinone. Food Chemistry 75 (2):139–44. doi: 10.1016/S0308-8146(00)00301-0.
  • Kader, F., M. Irmouli, J. P. Nicolas, and M. Metche. 2002. Involvement of blueberry peroxidase in the mechanisms of anthocyanin degradation in blueberry juice. Journal of Food Science 67 (3):910–5. doi: 10.1111/j.1365-2621.2002.tb09427.x.
  • Kader, F., B. Rovel, M. Girardin, and M. Metche. 1997. Mechanism of browning in fresh highbush blueberry fruit (Vaccinium corymbosum L). role of blueberry polyphenol oxidase, chlorogenic acid and anthocyanins. Journal of the Science of Food and Agriculture 74 (1):31–4. doi: 10.1002/(SICI)1097-0010(199705)74:1<31::AID-JSFA764>3.0.CO;2-9.
  • Kalt, W., A. Cassidy, L. R. Howard, R. Krikorian, A. J. Stull, F. Tremblay, and R. Zamora-Ros. 2020. Recent research on the health benefits of blueberries and their anthocyanins. Advances in Nutrition (Bethesda, Md.) 11 (2):224–36. doi: 10.1093/advances/nmz065.
  • Kang, H.-J., M.-J. Ko, and M.-S. Chung. 2021. Anthocyanin structure and ph dependent extraction characteristics from blueberries (Vaccinium corymbosum) and chokeberries (Aronia melanocarpa) in subcritical water state. Foods 10 (3):527. doi: 10.3390/foods10030527.
  • Kantrong, H., S. Klongdee, S. Jantapirak, N. Limsangouan, and W. Pengpinit. 2021. Effects of extrusion temperature and puffing technique on physical and functional properties of purpled third-generation snack after heat treatment. Journal of Food Science and Technology . doi: 10.1007/s13197-021-05234-x.
  • Karaoglan, H. A., N. M. Keklik, and N. D. Isikli. 2019. Degradation kinetics of anthocyanin and physicochemical changes in fermented turnip juice exposed to pulsed UV light. Journal of Food Science and Technology 56 (1):30–9. doi: 10.1007/s13197-018-3434-1.
  • Kim, A.-N., H.-J. Kim, W. L. Kerr, and S.-G. Choi. 2017. The effect of grinding at various vacuum levels on the color, phenolics, and antioxidant properties of apple. Food Chemistry 216:234–42. doi: 10.1016/j.foodchem.2016.08.025.
  • Kim, A.-N., K.-Y. Lee, E. J. Jeong, S. W. Cha, B. G. Kim, W. L. Kerr, and S.-G. Choi. 2021. Effect of vacuum-grinding on the stability of anthocyanins, ascorbic acid, and oxidative enzyme activity of strawberry. Lwt 136:110304. doi: 10.1016/j.lwt.2020.110304.
  • Kim, A.-N., K.-Y. Lee, B. G. Kim, S. W. Cha, E. J. Jeong, W. L. Kerr, and S.-G. Choi. 2021. Thermal processing under oxygen-free condition of blueberry puree: Effect on anthocyanin, ascorbic acid, antioxidant activity, and enzyme activities. Food Chemistry 342:128345. doi: 10.1016/j.foodchem.2020.128345.
  • Kim, A.-N., K.-Y. Lee, H.-J. Kim, J. Chun, W. L. Kerr, and S.-G. Choi. 2018. Effect of grinding at modified atmosphere or vacuum on browning, antioxidant capacities, and oxidative enzyme activities of apple. Journal of Food Science 83 (1):84–92. doi: 10.1111/1750-3841.14013.
  • Kim, H. W., S. R. Kim, Y. M. Lee, H. H. Jang, and J. B. Kim. 2018. Analysis of variation in anthocyanin composition in Korean coloured potato cultivars by LC-DAD-ESI-MS and PLS-DA. Potato Research 61 (1):1–17. doi: 10.1007/s11540-017-9348-x.
  • Klisurova, D., I. Petrova, M. Ognyanov, Y. Georgiev, M. Kratchanova, and P. Denev. 2019. Co-pigmentation of black chokeberry (Aronia melanocarpa) anthocyanins with phenolic co-pigments and herbal extracts. Food Chemistry 279:162–70. doi: 10.1016/j.foodchem.2018.11.125.
  • Koh, J., Z. Xu, and L. Wicker. 2020a. Blueberry pectin and increased anthocyanins stability under in vitro digestion. Food Chemistry 302:125343. doi: 10.1016/j.foodchem.2019.125343.
  • Koh, J., Z. Xu, and L. Wicker. 2020b. Binding kinetics of blueberry pectin-anthocyanins and stabilization by non-covalent interactions. Food Hydrocolloids. 99:105354. doi: 10.1016/j.foodhyd.2019.105354.
  • Krga, I., and D. Milenkovic. 2019. Anthocyanins: From sources and bioavailability to cardiovascular-health benefits and molecular mechanisms of action. Journal of Agricultural and Food Chemistry 67 (7):1771–83. doi: 10.1021/acs.jafc.8b06737.
  • Kruszewski, B., K. Zawada, and P. Karpiński. 2021. Impact of high-pressure homogenization parameters on physicochemical characteristics, bioactive compounds content, and antioxidant capacity of blackcurrant juice. Molecules 26 (6):1802. doi: 10.3390/molecules26061802.
  • Kumar, M., A. Dahuja, A. Sachdev, C. Kaur, E. Varghese, S. Saha, and K. Sairam. 2020. Black carrot (Daucus carota ssp.) and black soybean (Glycine max (L.) merr.) anthocyanin extract: A remedy to enhance stability and functionality of fruit juices by copigmentation. Waste and Biomass Valorization 11 (1):99–108. doi: 10.1007/s12649-018-0450-3.
  • Lachman, J., K. Hamouz, J. Musilová, K. Hejtmánková, Z. Kotíková, K. Pazderů, J. Domkářová, V. Pivec, and J. Cimr. 2013. Effect of peeling and three cooking methods on the content of selected phytochemicals in potato tubers with various colour of flesh. Food Chemistry 138 (2-3):1189–97. doi: 10.1016/j.foodchem.2012.11.114.
  • Lambert, S. G., R. E. Asenstorfer, N. M. Williamson, P. G. Iland, and G. P. Jones. 2011. Copigmentation between malvidin-3-glucoside and some wine constituents and its importance to colour expression in red wine. Food Chemistry 125 (1):106–15. doi: 10.1016/j.foodchem.2010.08.045.
  • Larsen, L. R., J. Buerschaper, A. Schieber, and F. Weber. 2019. Interactions of anthocyanins with pectin and pectin fragments in model solutions. Journal of Agricultural and Food Chemistry 67 (33):9344–53. doi: 10.1021/acs.jafc.9b03108.
  • Lavefve, L., L. R. Howard, and F. Carbonero. 2020. Berry polyphenols metabolism and impact on human gut microbiota and health. Food & Function 11 (1):45–65. doi: 10.1039/c9fo01634a.
  • Levy, R., Z. Okun, and A. Shpigelman. 2019. The influence of chemical structure and the presence of ascorbic acid on anthocyanins stability and spectral properties in purified model systems. Foods 8 (6):207. doi: 10.3390/foods8060207.
  • Leydet, Y., R. Gavara, V. Petrov, A. M. Diniz, A. Jorge Parola, J. C. Lima, and F. Pina. 2012. The effect of self-aggregation on the determination of the kinetic and thermodynamic constants of the network of chemical reactions in 3-glucoside anthocyanins. Phytochemistry 83:125–35. doi: 10.1016/j.phytochem.2012.06.022.
  • Li, W., J. Bi, Y. Li, C. Chen, X. Zhao, Q. Zheng, S. Tan, and X. Gao. 2020. Chemometric analysis reveals influences of hot air drying on the degradation of polyphenols in red radish. International Journal of Food Engineering 16 (4):20190387. doi: 10.1515/ijfe-2019-0387.
  • Li, X., L. Zhang, Z. Peng, Y. Zhao, K. Wu, N. Zhou, Y. Yan, H. S. Ramaswamy, J. Sun, and W. Bai. 2020. The impact of ultrasonic treatment on blueberry wine anthocyanin color and its in-vitro anti-oxidant capacity. Food Chemistry 333:127455. doi: 10.1016/j.foodchem.2020.127455.
  • Liu, J., X. Li, Y. Yang, H. Wei, L. Xue, M. Zhao, and J. Cai. 2021. Optimization of combined microwave and hot air drying technology for purple cabbage by response surface methodology (RSM). Food Science & Nutrition 9 (8):4568–77. doi: 10.1002/fsn3.2444.
  • Lukić, K., M. Brnčić, N. Ćurko, M. Tomašević, D. Valinger, G. I. Denoya, F. J. Barba, and K. K. Ganić. 2019. Effects of high power ultrasound treatments on the phenolic, chromatic and aroma composition of young and aged red wine. Ultrasonics Sonochemistry 59:104725. doi: 10.1016/j.ultsonch.2019.104725.
  • Luna-Vital, D., R. Cortez, P. Ongkowijoyo, and E. G. de Mejia. 2018. Protection of color and chemical degradation of anthocyanin from purple corn (Zea mays L.) by zinc ions and alginate through chemical interaction in a beverage model. Food Research International (Ottawa, Ont.) 105:169–77. doi: 10.1016/j.foodres.2017.11.009.
  • Ma, Y., X. Yin, X. Bi, F. Su, Z. Liang, M. Luo, D. Fu, Y. Xing, and Z. Che. 2019. Physicochemical properties and bioactive compounds of fermented pomegranate juice as affected by high-pressure processing and thermal treatment. International Journal of Food Properties 22 (1):1250–69. doi: 10.1080/10942912.2019.1640737.
  • Macura, R., M. Michalczyk, G. Fiutak, and I. Maciejaszek. 2019. Effect of freeze-drying and air-drying on the content of carotenoids and anthocyanins in stored purple carrot. Acta Scientiarum Polonorum. Technologia Alimentaria 18 (2):135–42. doi: 10.17306/j.afs.2019.0637.
  • Mahmudatussa’adah, A. R. Patriasih, R. R. Maulani, and A. S. Nurani. 2019. Effect of blanching pre-treatment on colour and anthocyanin of dried slice purple sweet potato (Ipomoea batatas L.). Presented at the 4th Annual Applied Science and Engineering Conference, Bali, Indonesia.
  • Manzoor, M. F., Z. Ahmed, N. Ahmad, E. Karrar, A. Rehman, R. M. Aadil, A. Al-Farga, M. W. Iqbal, A. Rahaman, and X.-A. Zeng. 2021. Probing the combined impact of pulsed electric field and ultra-sonication on the quality of spinach juice. Journal of Food Processing and Preservation 45 (5):e15475. doi: 10.1111/jfpp.15475.
  • Manzoor, M. F., X.-A. Zeng, A. Rahaman, A. Siddeeg, R. M. Aadil, Z. Ahmed, J. Li, and D. Niu. 2019. Combined impact of pulsed electric field and ultrasound on bioactive compounds and FT-IR analysis of almond extract. Journal of Food Science and Technology 56 (5):2355–64. doi: 10.1007/s13197-019-03627-7.
  • Marszałek, K., B. Kruszewski, Ł. Woźniak, and S. Skąpska. 2017. The application of supercritical carbon dioxide for the stabilization of native and commercial polyphenol oxidases and peroxidases in cloudy apple juice (cv. golden delicious). Innovative Food Science & Emerging Technologies 39:42–8. doi: 10.1016/j.ifset.2016.11.006.
  • Marszałek, K., Ł. Woźniak, B. Kruszewski, and S. Skąpska. 2017. The effect of high pressure techniques on the stability of anthocyanins in fruit and vegetables. International Journal of Molecular Sciences 18 (2):277. doi: 10.3390/ijms18020277.
  • Medina-Plaza, C., J. W. Beaver, K. V. Miller, L. Lerno, N. Dokoozlian, R. Ponangi, T. Blair, D. E. Block, and A. Oberholster. 2020. Cell wall-anthocyanin interactions during red wine fermentation-like conditions. American Journal of Enology and Viticulture 71 (2):149–56. doi: 10.5344/ajev.2019.19063.
  • Mendoza, J., N. Basilio, V. de Freitas, and F. Pina. 2019. New procedure to calculate all equilibrium constants in flavylium compounds: Application to the copigmentation of anthocyanins. ACS Omega. 4 (7):12058–70. doi: 10.1021/acsomega.9b01066.
  • Mohammad, S. S., R. O. Santos, M. Barbosa, and J. L. Barbosa Junior. 2021. Anthocyanins: Chemical properties and health benefits: A review. Current Nutrition & Food Science 17 (7):662–72. doi: 10.2174/1573401317999210101150652.
  • Molaeafard, S., R. Jamei, and A. P. Marjani. 2021. Co-pigmentation of anthocyanins extracted from sour cherry (Prunus cerasus L.) with some organic acids: Color intensity, thermal stability, and thermodynamic parameters. Food Chemistry 339:128070. doi: 10.1016/j.foodchem.2020.128070.
  • Moloney, M., R. J. Robbins, T. M. Collins, T. Kondo, K. Yoshida, and O. Dangles. 2018. Red cabbage anthocyanins: The influence of di-glucose acylation by hydroxycinnamic acids on their structural transformations in acidic to mildly alkaline conditions and on the resulting color. Dyes and Pigments 158:342–52. doi: 10.1016/j.dyepig.2018.05.057.
  • Monalisa, K., J. A. Bhuiyan, and M. Z. Islam. 2020. Bioactive compounds and in vitro antioxidant activity assessment of GM Bt eggplant-III (Noyantara) and stability upon boiling. Journal of Food Measurement and Characterization 14 (3):1383–90. doi: 10.1007/s11694-020-00388-2.
  • Mora-Soumille, N., S. Al Bittar, M. Rosa, and O. Dangles. 2013. Analogs of anthocyanins with a 3′,4′-dihydroxy substitution: Synthesis and investigation of their acid–base, hydration, metal binding and hydrogen-donating properties in aqueous solution. Dyes and Pigments 96 (1):7–15. doi: 10.1016/j.dyepig.2012.07.006.
  • Može Bornšek, S., T. Polak, M. Skrt, L. Demšar, N. Poklar Ulrih, and V. Abram. 2015. Effects of industrial and home-made spread processing on bilberry phenolics. Food Chemistry 173:61–9. doi: 10.1016/j.foodchem.2014.10.005.
  • Murador, D., A. R. Braga, D. Da Cunha, and V. De Rosso. 2018. Alterations in phenolic compound levels and antioxidant activity in response to cooking technique effects: A meta-analytic investigation. Critical Reviews in Food Science and Nutrition 58 (2):169–77. doi: 10.1080/10408398.2016.1140121.
  • Murador, D. C., A. Z. Mercadante, and V. V. de Rosso. 2016. Cooking techniques improve the levels of bioactive compounds and antioxidant activity in kale and red cabbage. Food Chemistry 196:1101–7. doi: 10.1016/j.foodchem.2015.10.037.
  • Nayak, B., R. H. Liu, and J. Tang. 2015. Effect of processing on phenolic antioxidants of fruits, vegetables, and grains–A review. Critical Reviews in Food Science and Nutrition 55 (7):887–918. doi: 10.1080/10408398.2011.654142.
  • Nemś, A., A. Kita, A. Sokół-Łętowska, and A. Kucharska. 2020. Influence of blanching medium on the quality of crisps from red- and purple-fleshed potatoes. Journal of Food Processing and Preservation 44 (12):e14937. doi: 10.1111/jfpp.14937.
  • Nie, Q., L. Feng, J. Hu, S. Wang, H. Chen, X. Huang, S. Nie, T. Xiong, and M. Xie. 2017. Effect of fermentation and sterilization on anthocyanins in blueberry. Journal of the Science of Food and Agriculture 97 (5):1459–66. doi: 10.1002/jsfa.7885.
  • Okitsu, N., K. Matsui, M. Horikawa, K. Sugahara, and Y. Tanaka. 2018. Identification and characterization of novel Nemophila menziesii flavone glucosyltransferases that catalyze biosynthesis of flavone 7,4’-O-diglucoside, a key component of blue metalloanthocyanins. Plant & Cell Physiology 59 (10):2075–85. doi: 10.1093/pcp/pcy129.
  • Oliveira, H., R. Perez-Gregório, V. de Freitas, N. Mateus, and I. Fernandes. 2019. Comparison of the in vitro gastrointestinal bioavailability of acylated and non-acylated anthocyanins: Purple-fleshed sweet potato vs red wine. Food Chemistry 276:410–8. doi: 10.1016/j.foodchem.2018.09.159.
  • Ongkowijoyo, P., D. A. Luna-Vital, and E. G. de Mejia. 2018. Extraction techniques and analysis of anthocyanins from food sources by mass spectrometry: An update. Food Chemistry 250:113–26. doi: 10.1016/j.foodchem.2018.01.055.
  • Patras, A., N. P. Brunton, C. O’Donnell, and B. K. Tiwari. 2010. Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends in Food Science & Technology 21 (1):3–11. doi: 10.1016/j.tifs.2009.07.004.
  • Pineda-Vadillo, C., F. Nau, C. Guerin-Dubiard, J. Jardin, V. Lechevalier, M. Sanz-Buenhombre, A. Guadarrama, T. Tóth, É. Csavajda, H. Hingyi, et al. 2017. The food matrix affects the anthocyanin profile of fortified egg and dairy matrices during processing and in vitro digestion. Food Chemistry 214:486–96. doi: 10.1016/j.foodchem.2016.07.049.
  • Poei-Langston, M. S., and R. E. Wrolstad. 1981. Color degradation in an ascorbic acid-anthocyanin-flavanol model system. Journal of Food Science 46 (4):1218–36. doi: 10.1111/j.1365-2621.1981.tb03026.x.
  • Prado, J. M., P. C. Veggi, G. Nathia-Neves, and M. Meireles. 2020. Extraction methods for obtaining natural blue colorants. Current Analytical Chemistry 16 (5):504–32. doi: 10.2174/1573411014666181115125740.
  • Puértolas, E., and F. J. Barba. 2016. Electrotechnologies applied to valorization of by-products from food industry: Main findings, energy and economic cost of their industrialization. Food and Bioproducts Processing 100:172–84. doi: 10.1016/j.fbp.2016.06.020.
  • Qian, B. J., J. H. Liu, S. J. Zhao, J. X. Cai, and P. Jing. 2017. The effects of gallic/ferulic/caffeic acids on colour intensification and anthocyanin stability. Food Chemistry 228:526–32. doi: 10.1016/j.foodchem.2017.01.120.
  • Quan, W., W. He, M. Lu, B. Yuan, M. Zeng, D. Gao, F. Qin, J. Chen, and Z. He. 2019. Anthocyanin composition and storage degradation kinetics of anthocyanins‐based natural food colourant from purple‐fleshed sweet potato. International Journal of Food Science & Technology 54 (8):2529–39. doi: 10.1111/ijfs.14163.
  • Ratanapoompinyo, J., L. T. Nguyen, L. Devkota, and P. Shrestha. 2017. The effects of selected metal ions on the stability of red cabbage anthocyanins and total phenolic compounds subjected to encapsulation process. Journal of Food Processing and Preservation 41 (6):e13234. doi: 10.1111/jfpp.13234.
  • Rein, M. 2005. Copigmentation reactions and color stability of berry anthocyanins. Finland: University of Helsinki.
  • Remini, F., Y. Dahmoune, K. Sahraoui, V. N. Madani, E. F. Kapranov, and Kiselev, H. 2018. Recent advances on stability of anthocyanins. RUDN Journal of Agronomy and Animal Industries 13 (4):257–86. doi: 10.22363/2312-797X-2018-13-4-257-286.
  • Rerkasem, B., P. Sangruan, and C. T. Prom-u-thai. 2015. Effect of polishing time on distribution of monomeric anthocyanin, iron and zinc content in different grain layers of four Thai purple tice varieties. International Journal of Agriculture and Biology 17 (4):828–32. doi: 10.17957/IJAB/14.0012.
  • Ricci, A., G. P. Parpinello, B. A. Banfi, F. Olivi, and A. Versari. 2020. Preliminary study of the effects of pulsed electric field (PEF) treatments in wines obtained from early-harvested sangiovese grapes. Beverages 6 (2):34. doi: 10.3390/beverages6020034.
  • Rodriguez-Amaya, D. B. 2019. Update on natural food pigments – A mini-review on carotenoids, anthocyanins, and betalains. Food Research International (Ottawa, Ont.) 124:200–5. doi: 10.1016/j.foodres.2018.05.028.
  • Ruiz, A., A. Aguilera, S. Ercoli, J. Parada, P. Winterhalter, B. Contreras, and P. Cornejo. 2018. Effect of the frying process on the composition of hydroxycinnamic acid derivatives and antioxidant activity in flesh colored potatoes. Food Chemistry 268:577–84. doi: 10.1016/j.foodchem.2018.06.116.
  • Rytel, E., A. Tajner-Czopek, A. Kita, A. SokÓł-Łętowska, A. Z. Kucharska, and K. Hamouz. 2019. Effect of the production process on the content of anthocyaninsin dried red-fleshed potato cubes. Italian Journal of Food Science 31 (1):150–60.
  • Rytel, E., A. Tajner-Czopek, A. Kita, A. Z. Kucharska, A. Sokół-Łętowska, and K. Hamouz. 2018. Content of anthocyanins and glycoalkaloids in blue-fleshed potatoes and changes in the content of α-solanine and α-chaconine during manufacture of fried and dried products. International Journal of Food Science & Technology 53 (3):719–27. doi: 10.1111/ijfs.13647.
  • Rytel, E., A. Tajner-Czopek, A. Kita, A. Tkaczyńska, A. Z. Kucharska, and A. Sokół-Łętowska. 2021. The influence of the production process on the anthocyanin content and composition in dried potato cubes, chips, and French fries made from red-fleshed potatoes. Applied Sciences 11 (3):1104. doi: 10.3390/app11031104.
  • Sadilova, E., R. Carle, and F. C. Stintzing. 2007. Thermal degradation of anthocyanins and its impact on color and in vitro antioxidant capacity. Molecular Nutrition & Food Research 51 (12):1461–71. doi: 10.1002/mnfr.200700179.
  • Sadilova, E., F. C. Stintzing, and R. Carle. 2006. Thermal degradation of acylated and nonacylated anthocyanins. Journal of Food Science 71 (8):C504–12. doi: 10.1111/j.1750-3841.2006.00148.x.
  • Salarbashi, D., J. Bazeli, and E. F. Rad. 2020. An update on the new achievements in the nanocapsulation of anthocyanins. Nanomedicine Journal 7 (2):87–97. doi: 10.22038/nmj.2020.07.001.
  • Salehi, F. 2020. Physico-chemical properties of fruit and vegetable juices as affected by pulsed electric field: A review. International Journal of Food Properties 23 (1):1036–50. doi: 10.1080/10942912.2020.1775250.
  • Schneider, H.-J. 2015. Dispersive interactions in solution complexes. Accounts of Chemical Research 48 (7):1815–22. doi: 10.1021/acs.accounts.5b00111.
  • Sigurdson, G. T., P. Tang, and M. M. Giusti. 2017. Natural colorants: Food colorants from natural sources. Annual Review of Food Science and Technology 8:261–80. doi: 10.1146/annurev-food-030216-025923.
  • Sigurdson, G. T., P. Tang, and M. M. Giusti. 2018. Cis-trans configuration of coumaric acid acylation affects the spectral and colorimetric properties of anthocyanins. Molecules 23 (3):598. doi: 10.3390/molecules23030598.
  • Sinela, A. M., C. Mertz, N. Achir, N. Rawat, K. Vidot, H. Fulcrand, and M. Dornier. 2017. Exploration of reaction mechanisms of anthocyanin degradation in a roselle extract through kinetic studies on formulated model media. Food Chemistry 235:67–75. doi: 10.1016/j.foodchem.2017.05.027.
  • da Silva, P. F., and R. G. Moreira. 2008. Vacuum frying of high-quality fruit and vegetable-based snacks. LWT - Food Science and Technology 41 (10):1758–67. doi: 10.1016/j.lwt.2008.01.016.
  • da Silva, R., J. Barreira, S. A. Heleno, L. Barros, R. C. Calhelha, and I. Ferreira. 2019. Anthocyanin profile of elderberry juice: A natural-based bioactive colouring ingredient with potential food application. Molecules 24 (13):2359. doi: 10.3390/molecules24132359.
  • da Silveira, T., M. Cristianini, G. G. Kuhnle, A. B. Ribeiro, J. T. Filho, and H. T. Godoy. 2019. Anthocyanins, non-anthocyanin phenolics, tocopherols and antioxidant capacity of açaí juice (Euterpe oleracea) as affected by high pressure processing and thermal pasteurization. Innovative Food Science & Emerging Technologies 55:88–96. doi: 10.1016/j.ifset.2019.05.001.
  • Skaar, I., M. Jordheim, R. Byamukama, A. Mbabazi, S. G. Wubshet, B. Kiremire, and Ø. M. Andersen. 2012. New anthocyanidin and anthocyanin pigments from blue plumbago. Journal of Agricultural and Food Chemistry 60 (6):1510–5. doi: 10.1021/jf2048004.
  • Stinco, C. M., J. Szczepańska, K. Marszałek, C. A. Pinto, R. S. Inácio, P. Mapelli-Brahm, F. J. Barba, J. M. Lorenzo, J. A. Saraiva, and A. J. Meléndez-Martínez. 2019. Effect of high-pressure processing on carotenoids profile, colour, microbial and enzymatic stability of cloudy carrot juice. Food Chemistry 299:125112. doi: 10.1016/j.foodchem.2019.125112.
  • Stübler, A.-S., L. Böhmker, A. Juadjur, V. Heinz, C. Rauh, A. Shpigelman, and K. Aganovic. 2020. Matrix- and technology-dependent stability and bioaccessibility of strawberry anthocyanins during storage. Antioxidants 10 (1):30. doi: 10.3390/antiox10010030.
  • Su, Y., M. Zhang, B. Bhandari, and W. Zhang. 2018. Enhancement of water removing and the quality of fried purple-fleshed sweet potato in the vacuum frying by combined power ultrasound and microwave technology. Ultrasonics Sonochemistry 44:368–79. doi: 10.1016/j.ultsonch.2018.02.049.
  • Sui, X., P. Y. Yap, and W. Zhou. 2015. Anthocyanins during baking: Their degradation kinetics and impacts on color and antioxidant capacity of bread. Food and Bioprocess Technology 8 (5):983–94. doi: 10.1007/s11947-014-1464-x.
  • Sun, J., H. Luo, X. Li, X. Li, Y. Lu, and W. Bai. 2019. Effects of low power ultrasonic treatment on the transformation of cyanidin-3-o-glucoside to methylpyranocyanidin-3-o-glucoside and its stability evaluation. Food Chemistry 276:240–6. doi: 10.1016/j.foodchem.2018.10.038.
  • Sun, Q., M. Du, D. A. Navarre, and M. Zhu. 2021. Effect of cooking methods on bioactivity of polyphenols in purple potatoes. Antioxidants (Basel, Switzerland) 10 (8):1176. doi: 10.3390/antiox10081176.
  • Tamaroh, S., and A. Sudrajat. 2021. Antioxidative characteristics and sensory acceptability of bread substituted with purple yam (Dioscorea alata l.). International Journal of Food Science 2021:1–9. doi: 10.1155/2021/5586316.
  • Tang, P., and M. M. Giusti. 2018. Black goji as a potential source of natural color in a wide pH range. Food Chemistry 269:419–26. doi: 10.1016/j.foodchem.2018.07.034.
  • Teribia, N., C. Buve, D. Bonerz, J. Aschoff, P. Goos, M. Hendrickx, and A. Van Loey. 2021. The effect of thermal processing and storage on the color stability of strawberry puree originating from different cultivars. Lwt 145:111270. doi: 10.1016/j.lwt.2021.111270.
  • Thuengtung, S., and Y. Ogawa. 2020. Comparative study of conventional steam cooking and microwave cooking on cooked pigmented rice texture and their phenolic antioxidant. Food Science & Nutrition 8 (2):965–72. doi: 10.1002/fsn3.1377.
  • Tian, J., J. Chen, F. Lv, S. Chen, J. Chen, D. Liu, and X. Ye. 2016. Domestic cooking methods affect the phytochemical composition and antioxidant activity of purple-fleshed potatoes. Food Chemistry 197:1264–70. doi: 10.1016/j.foodchem.2015.11.049.
  • Tian, J., C. Pan, M. Zhang, Y. Y. Gan, S. Y. Pan, M. Liu, Y. X. Li, and X. B. Zeng. 2019. Induced cell death in ceratocystis fimbriata by pro-apoptotic activity of a natural organic compound, perillaldehyde, through Ca2+ overload and accumulation of reactive oxygen species. Plant Pathology 68 (2):344–57. doi: 10.1111/ppa.12937.
  • Tierno, R., and J. de Galarreta. 2016. Infuence of selected factors on anthocyanin stability in colored potato extracts. Journal of Food Processing and Preservation 40 (5):1020–6. doi: 10.1111/jfpp.12682.
  • Tiwari, B. K., A. Patras, N. Brunton, P. J. Cullen, and C. P. O’Donnell. 2010. Effect of ultrasound processing on anthocyanins and color of red grape juice. Ultrasonics Sonochemistry 17 (3):598–604. doi: 10.1016/j.ultsonch.2009.10.009.
  • Transparency Market Research. 2019. Global Anthocyanin Market (2018–2026). https://www.transparencymarketresearch.com/anthocyanin-market.html
  • Trouillas, P., J. C. Sancho-Garcia, V. De Freitas, J. Gierschner, M. Otyepka, and O. Dangles. 2016. Stabilizing and modulating color by copigmentation: Insights from theory and experiment. Chemical Reviews 116 (9):4937–82. doi: 10.1021/acs.chemrev.5b00507.
  • Truong, V.-D., N. Deighton, R. T. Thompson, R. F. McFeeters, L. O. Dean, K. V. Pecota, and G. C. Yencho. 2010. Characterization of anthocyanins and anthocyanidins in purple-fleshed sweetpotatoes by HPLC-DAD/ESI-MS/MS. Journal of Agricultural and Food Chemistry 58 (1):404–10. doi: 10.1021/jf902799a.
  • Vidana Gamage, G. C., Y. Y. Lim, and W. S. Choo. 2022. Sources and relative stabilities of acylated and nonacylated anthocyanins in beverage systems. Journal of Food Science and Technology 59 (3):831–45. doi: 10.1007/s13197-021-05054-z.
  • Wallace, T. C., and M. M. Giusti. 2015. Anthocyanins. Advances in Nutrition 6 (5):620–2. doi: 10.3945/an.115.009233.
  • Wallace, T. C., and M. M. Giusti. 2019. Anthocyanins-nature’s bold, beautiful, and health-promoting colors. Foods 8 (11):550. doi: 10.3390/foods8110550.
  • Wang, F., H. Li, Y. Qin, Y. Mao, B. Zhang, and Z. Deng. 2019. Effects of heat, ultrasound, and microwave processing on the stability and antioxidant activity of delphinidin and petunidin. Journal of Food Biochemistry 43 (5):e12818. doi: 10.1111/jfbc.12818.
  • Wang, L., K. Burhenne, B. K. Kristensen, and S. K. Rasmussen. 2004. Purification and cloning of a chinese red radish peroxidase that metabolise pelargonidin and forms a gene family in brassicaceae. Gene 343 (2):323–35. doi: 10.1016/j.gene.2004.09.018.
  • Wang, Y. X. Liao, L. Zhao, and Y. Li. 2021a. Method for improving anthocyanin stability. PCT International Patent Application.
  • Wang, Y. X. Liao, L. Zhao, and Y. Li. 2021b. Method for regulating interaction of proteins and anthocyanin through ultra-high pressure treatment to improve stability of anthocyanin. PCT International Patent Application.
  • Xie, L., H. Su, C. Sun, X. Zheng, and W. Chen. 2018. Recent advances in understanding the anti-obesity activity of anthocyanins and their biosynthesis in microorganisms. Trends in Food Science & Technology 72:13–24. doi: 10.1016/j.tifs.2017.12.002.
  • Xu, F., Y. Zheng, Z. Yang, S. Cao, X. Shao, and H. Wang. 2014. Domestic cooking methods affect the nutritional quality of red cabbage. Food Chemistry 161:162–7. doi: 10.1016/j.foodchem.2014.04.025.
  • Xu, X., S. Fang, Y. Li, F. Zhang, Z. Shao, Y. Zeng, J. Chen, and Y. Meng. 2019. Effects of low acyl and high acyl gellan gum on the thermal stability of purple sweet potato anthocyanins in the presence of ascorbic acid. Food Hydrocolloids. 86:116–23. doi: 10.1016/j.foodhyd.2018.03.007.
  • Yamuangmorn, S., B. Dell, and C. Prom-u-thai. 2018. Effects of cooking on anthocyanin concentration and bioactive antioxidant capacity in glutinous and non-glutinous purple rice. Rice Science 25 (5):270–8. doi: 10.1016/j.rsci.2018.04.004.
  • Yamuangmorn, S., and C. Prom-u-Thai. 2021. The potential of high-anthocyanin purple rice as a functional ingredient in human health. Antioxidants 10 (6):833. doi: 10.3390/antiox10060833.
  • Yang, N., R. Qiu, S. Yang, K. Zhou, C. Wang, S. Ou, and J. Zheng. 2019. Influences of stir-frying and baking on flavonoid profile, antioxidant property, and hydroxymethylfurfural formation during preparation of blueberry-filled pastries. Food Chemistry 287:167–75. doi: 10.1016/j.foodchem.2019.02.053.
  • Yang, P., C. Yuan, H. Wang, F. Han, Y. Liu, L. Wang, and Y. Liu. 2018. Stability of anthocyanins and their degradation products from cabernet sauvignon red wine under gastrointestinal pH and temperature conditions. Molecules 23 (2):354. doi: 10.3390/molecules23020354.
  • Yao, G. L., X. H. Ma, X. Y. Cao, and J. Chen. 2016. Effects of power ultrasound on stability of cyanidin-3-glucoside obtained from blueberry. Molecules 21 (11):1564. doi: 10.3390/molecules21111564.
  • Yong, S., C. P. Song, and W. S. Choo. 2021. Impact of high-pressure homogenization on the extractability and stability of phytochemicals. Frontiers in Sustainable Food Systems 4:593259. doi: 10.3389/fsufs.2020.593259.
  • Yoshida, K., K. Tojo, M. Mori, K. Yamashita, S. Kitahara, M. Noda, and S. Uchiyama. 2015. Chemical mechanism of petal color development of Nemophila menziesii by a metalloanthocyanin, nemophilin. Tetrahedron 71 (48):9123–30. doi: 10.1016/j.tet.2015.10.007.
  • You, Y., N. Li, X. Han, J. Guo, Y. Zhao, G. Liu, W. Huang, and J. Zhan. 2018. Influence of different sterilization treatments on the color and anthocyanin contents of mulberry juice during refrigerated storage. Innovative Food Science & Emerging Technologies 48:1–10. doi: 10.1016/j.ifset.2018.05.007.
  • Zhang, L., G. Wu, W. Wang, J. Yue, P. Yue, and X. Gao. 2019. Anthocyanin profile, color and antioxidant activity of blueberry (Vaccinium ashei) juice as affected by thermal pretreatment. International Journal of Food Properties 22 (1):1035–46. doi: 10.1080/10942912.2019.1625366.
  • Zhang, P., S. Liu, Z. Zhao, L. You, M. D. Harrison, and Z. Zhang. 2021. Enzymatic acylation of cyanidin-3-glucoside with fatty acid methyl esters improves stability and antioxidant activity. Food Chemistry 343:128482. doi: 10.1016/j.foodchem.2020.128482.
  • Zhang, Q., T. Chen, X. Wang, P. Zhao, X. Lei, P. Liu, H. Yuan, and Y. Guo. 2020. Influence of simulated grape crushing process on phenolic compounds extraction, astringency and color of cabernet sauvignon model wine. Lwt 128:109514. doi: 10.1016/j.lwt.2020.109514.
  • Zhang, W., Y. Shen, Z. Li, X. Xie, E. S. Gong, J. Tian, X. Si, Y. Wang, N. Gao, C. Shu, et al. 2021. Effects of high hydrostatic pressure and thermal processing on anthocyanin content, polyphenol oxidase and β-glucosidase activities, color, and antioxidant activities of blueberry (vaccinium spp.) puree. Food Chemistry 342:128564. doi: 10.1016/j.foodchem.2020.128564.
  • Zhang, X., M. Zhang, and B. Adhikari. 2020. Recent developments in frying technologies applied to fresh foods. Trends in Food Science & Technology 98:68–81. doi: 10.1016/j.tifs.2020.02.007.
  • Zhang, Y., Z. Deng, H. Li, L. Zheng, R. Liu, and B. Zhang. 2020. Degradation kinetics of anthocyanins from purple eggplant in a fortified food model system during microwave and frying treatments. Journal of Agricultural and Food Chemistry 68 (42):11817–28. doi: 10.1021/acs.jafc.0c05224.
  • Zhao, C., Y. Yu, Z. Chen, G. Wen, F. G. Wei, Q. Zheng, C. Wang, and X. Xiao. 2017. Stability-increasing effects of anthocyanin glycosyl acylation. Food Chemistry 214:119–28. doi: 10.1016/j.foodchem.2016.07.073.
  • Zhao, C. L., Z. J. Chen, X. S. Bai, C. Ding, T. J. Long, F. G. Wei, and K. R. Miao. 2014. Structure-activity relationships of anthocyanidin glycosylation. Molecular Diversity 18 (3):687–700. doi: 10.1007/s11030-014-9520-z.
  • Zhao, M., Y. Luo, Y. Li, X. Liu, J. Wu, X. Liao, and F. Chen. 2013. The identification of degradation products and degradation pathway of malvidin-3-glucoside and malvidin-3,5-diglucoside under microwave treatment. Food Chemistry 141 (3):3260–7. doi: 10.1016/j.foodchem.2013.05.147.
  • Zhao, X., B. Ding, J. Qin, F. He, and C. Duan. 2020. Intermolecular copigmentation between five common 3-o-monoglucosidic anthocyanins and three phenolics in red wine model solutions: The influence of substituent pattern of anthocyanin b ring. Food Chemistry 326:126960. doi: 10.1016/j.foodchem.2020.126960.
  • Zheng, X., M. Zhang, Z. Fang, and Y. Liu. 2014. Effects of low frequency ultrasonic treatment on the maturation of steeped greengage wine. Food Chemistry 162:264–9. doi: 10.1016/j.foodchem.2014.04.071.
  • Zhu, N., Y. Zhu, N. Yu, Y. Wei, J. Zhang, Y. Hou, and A. Sun. 2019. Evaluation of microbial, physicochemical parameters and flavor of blueberry juice after microchip-pulsed electric field. Food Chemistry 274:146–55. doi: 10.1016/j.foodchem.2018.08.092.
  • Zhu, Y., H. Chen, L. Lou, Y. Chen, X. Ye, and J. Chen. 2020. Copigmentation effect of three phenolic acids on color and thermal stability of Chinese bayberry anthocyanins. Food Science & Nutrition 8 (7):3234–42. doi: 10.1002/fsn3.1583.
  • Zhu, Z., Q. Guan, M. Koubaa, F. J. Barba, and J. He. 2017. Preparation of highly clarified anthocyanin-enriched purple sweet potato juices by membrane filtration and optimization of their sensorial properties. Journal of Food Processing and Preservation 41 (3):e12929. doi: 10.1111/jfpp.12929.
  • Zou, H., L. Xu, Z. Xu, W. Xie, Y. Wang, X. Liao, and X. Kong. 2018. Effects of ultra-high temperature treatment and packages on baked purple sweet potato nectar. Lwt 94:129–35. doi: 10.1016/j.lwt.2018.04.037.
  • Zulj, M. M., L. M. Bandic, I. T. Bujak, I. Puhelek, A. Jeromel, and B. Mihaljevic. 2019. Gamma irradiation as pre-fermentative method for improving wine quality. Lwt 101:175–82. doi: 10.1016/j.lwt.2018.11.016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.