631
Views
3
CrossRef citations to date
0
Altmetric
Review Articles

Nostoc sphaeroides Cyanobacteria: a review of its nutritional characteristics and processing technologies

, ORCID Icon, ORCID Icon, &

References

  • Aladaileh, S. H., A. F. Khafaga, M. E. Abd El-Hack, N. A. Al-Gabri, M. H. Abukhalil, M. A. Alfwuaires, M. Bin-Jumah, S. Alkahtani, M. M. Abdel-Daim, L. Aleya, et al. 2020. Spirulina platensis ameliorates the sub chronic toxicities of lead in rabbits via anti-oxidative, anti- inflammatory, and immune stimulatory properties. The Science of the Total Environment 701:134879. doi: 10.1016/j.scitotenv.2019.134879.
  • Alvarez, X., A. Alves, M. P. Ribeiro, M. Lazzari, P. Coutinho, and A. Otero. 2021. Biochemical characterization of Nostoc sp. exopolysaccharides and evaluation of potential use in wound healing. Carbohydrate Polymers 254:117303. doi: 10.1016/j.carbpol.2020.117303.
  • Alzokaky, A. A., E. M. Abdelkader, A. M. El-Dessouki, S. A. Khaleel, and N. A. Raslan. 2020. C-phycocyanin protects against ethanol-induced gastric ulcers in rats: Role of HMGB1/NLRP3/NF-κB pathway. Basic & Clinical Pharmacology & Toxicology 127 (4):265–77. doi: 10.1111/bcpt.13415.
  • Benedetti, S., F. Benvenuti, S. Scoglio, and F. Canestrari. 2010. Oxygen radical absorbance capacity of phycocyanin and phycocyanobilin from the food supplement Aphanizomenon flos-aquae. Journal of Medicinal Food 13 (1):223–7. doi: 10.1089/jmf.2008.0257.
  • Bengtsson, N. E., and P. O. Risman. 1971. Dielectric properties of foods at 3 GHz as determined by a cavity perturbation technique. Journal of Microwave Power 6 (2):107–23. doi: 10.1080/00222739.1971.11688789.
  • Bhat, V. B., and K. M. Madyastha. 2001. Scavenging of peroxynitrite by phycocyanin and phycocyanobilin from Spirulina platensis: Protection against oxidative damage to DNA. Biochemical and Biophysical Research Communications 285 (2):262–6. doi: 10.1006/bbrc.2001.5195.
  • Briones-Nagata, M. P., M. R. Martinez-Goss, and K. Hori. 2007. A comparison of the morpho-cytology and chemical composition of the two forms of the cyanobacterium, Nostoc commune Vauch., from the Philippines and Japan. Journal of Applied Phycology 19 (6):675–83. doi: 10.1007/s10811-007-9240-1.
  • Cao, X., M. Zhang, A. S. Mujumdar, Q. Zhong, and Z. Wang. 2018. Effects of ultrasonic pretreatments on quality, energy consumption and sterilization of barley grass in freeze drying. Ultrasonics Sonochemistry 40 (Pt A):333–40. doi: 10.1016/j.ultsonch.2017.06.014.
  • Cervantes-Llanos, M., N. Lagumersindez-Denis, J. Marin-Prida, N. Pavon-Fuentes, V. Falcon-Cama, B. Piniella-Matamoros, H. Camacho-Rodriguez, J. R. Fernandez-Masso, C. Valenzuela-Silva, I. Raices-Cruz, et al. 2018. Beneficial effects of oral administration of C-Phycocyanin and Phycocyanobilin in rodent models of experimental autoimmune encephalomyelitis. Life Sciences 194:130–8. doi: 10.1016/j.lfs.2017.12.032.
  • Chen, J. C., K. S. Liu, T. J. Yang, J. H. Hwang, Y. C. Chan, and I. T. Lee. 2012. Spirulina and C-phycocyanin reduce cytotoxicity and inflammation-related genes expression of microglial cells. Nutritional Neuroscience 15 (6):252–6. doi: 10.1179/1476830512Y.0000000020.
  • Chen, Z., J. L. Shang, S. Hou, T. Li, Q. Li, Y. W. Yang, W. R. Hess, and B. S. Qiu. 2021. Genomic and transcriptomic insights into the habitat adaptation of the diazotrophic paddy-field cyanobacterium Nostoc sphaeroides. Environmental Microbiology 23 (10):5802–22. doi: 10.1111/1462-2920.15521.
  • Chitrakar, B., M. Zhang, and B. Bhandari. 2019. Edible flowers with the common name “marigold”: Their therapeutic values and processing. Trends in Food Science & Technology 89:76–87. doi: 10.1016/j.tifs.2019.05.008.
  • Colica, G., S. Caparrotta, G. Bertini, and R. De Philippis. 2012. Gold biosorption by exopolysaccharide producing cyanobacteria and purple nonsulphur bacteria. Journal of Applied Microbiology 113 (6):1380–8. doi: 10.1111/jam.12004.
  • Deniz, I., M. O. Ozen, and O. Yesil-Celiktas. 2016. Supercritical fluid extraction of phycocyanin and investigation of cytotoxicity on human lung cancer cells. The Journal of Supercritical Fluids 108:13–8. doi: 10.1016/j.supflu.2015.10.015.
  • Derossi, A., M. Francavilla, M. Monteleone, R. Caporizzi, and C. Severini. 2021. From biorefinery of microalgal biomass to vacuum impregnation of fruit. A multidisciplinary strategy to develop innovative food with increased nutritional properties. Innovative Food Science & Emerging Technologies 70:102677. doi: 10.1016/j.ifset.2021.102677.
  • Desmorieux, H., and N. Decaen. 2005. Convective drying of spirulina in thin layer. Journal of Food Engineering 66 (4):497–503. doi: 10.1016/j.jfoodeng.2004.04.021.
  • Dewi, E. N., L. Purnamayati, and R. A. Kurniasih. 2017. Physical characteristics of phycocyanin from spirulina microcapsules using different coating materials with freeze drying method. IOP Conference Series: Earth and Environmental Science 55 (1):012060. doi: 10.1088/1755-1315/55/1/012060.
  • Dhiman, A., R. Suhag, D. S. Chauhan, D. Thakur, S. Chhikara, and P. K. Prabhakar. 2021. Status of beetroot processing and processed products: Thermal and emerging technologies intervention. Trends in Food Science & Technology 114:443–58. doi: 10.1016/j.tifs.2021.05.042.
  • Dissa, A. O., H. Desmorieux, P. W. Savadogo, B. G. Segda, and J. Koulidiati. 2010. Shrinkage, porosity and density behaviour during convective drying of spirulina. Journal of Food Engineering 97 (3):410–8. doi: 10.1016/j.jfoodeng.2009.10.036.
  • Dixit, R. B., and M. R. Suseela. 2013. Cyanobacteria: Potential candidates for drug discovery. Antonie Van Leeuwenhoek 103 (5):947–61. doi: 10.1007/s10482-013-9898-0.
  • Duan, X., M. Zhang, X. Li, and A. S. Mujumdar. 2008. Ultrasonically enhanced osmotic pretreatment of sea cucumber prior to microwave freeze drying. Drying Technology 26 (4):420–6. doi: 10.1080/07373930801929201.
  • Duarte-Correa, Y., A. Díaz-Osorio, J. Osorio-Arias, P. Sobral, and O. Vega-Castro. 2020a. Development of fortified low-fat potato chips through vacuum impregnation and microwave vacuum drying. Innovative Food Science & Emerging Technologies 64:102437. doi: 10.1016/j.ifset.2020.102437.
  • Duarte-Correa, Y., D. Granda-Restrepo, M. Cortes, and O. Vega-Castro. 2020b. Potato snacks added with active components: Effects of the vacuum impregnation and drying processes. Journal of Food Science and Technology 57 (4):1523–34. doi: 10.1007/s13197-019-04188-5.
  • Farag, M. R., M. Alagawany, M. E. Abd El-Hac, and K. Dhama. 2015. Nutritional and healthical aspects of Spirulina (Arthrospira) for poultry, animals and human. International Journal of Pharmacology 12 (1):36–51. doi: 10.3923/ijp.2016.36.51.
  • Feng, H., and J. Tang. 2006. Microwave finish drying of diced apples in a spouted bed. Journal of Food Science 63 (4):679–83. doi: 10.1111/j.1365-2621.1998.tb15811.x.
  • Fernandes, F., and S. Rodrigues. 2007. Ultrasound as pre-treatment for drying of fruits: Dehydration of banana. Journal of Food Engineering 82 (2):261–7. doi: 10.1016/j.jfoodeng.2007.02.032.
  • Fernandes, F., F. Oliveira, and S. Rodrigues. 2008. Use of ultrasound for dehydration of papayas. Food and Bioprocess Technology 1 (4):339–45. doi: 10.1007/s11947-007-0019-9.
  • Gajendragadkar, C. N., and P. R. Gogate. 2017. Ultrasound assisted acid catalyzed lactose hydrolysis: Understanding into effect of operating parameters and scale up studies. Ultrasonics Sonochemistry 37:9–15. doi: 10.1016/j.ultsonch.2016.12.029.
  • Gdara, N. B., A. Belgacem, I. Khemiri, S. Mannai, and L. Bitri. 2018. Protective effects of phycocyanin on ischemia/reperfusion liver injuries. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 102:196–202. doi: 10.1016/j.biopha.2018.03.025.
  • Geveke, D. J. 2020. Inactivation of yeast and bacteria using combinations of radio frequency electric fields and ultraviolet light. Journal of Food Processing and Preservation 44 (4):14385. doi: 10.1111/jfpp.14385.
  • Geveke, D. J., and C. Brunkhorst. 2008. Radio frequency electric fields inactivation of Escherichia coli in apple cider. Journal of Food Engineering 85 (2):215–21. doi: 10.1016/j.jfoodeng.2007.06.029.
  • Geveke, D. J., C. Brunkhorst, and X. Fan. 2007. Radio frequency electric fields processing of orange juice. Innovative Food Science & Emerging Technologies 8 (4):549–54. doi: 10.1016/j.ifset.2007.04.012.
  • Giavasis, I. 2014. Bioactive fungal polysaccharides as potential functional ingredients in food and nutraceuticals. Current Opinion in Biotechnology 26:162–73. doi: 10.1016/j.copbio.2014.01.010.
  • Gras, M. L., D. Vidal, N. Betoret, A. Chiralt, and P. Fito. 2003. Calcium fortification of vegetables by vacuum impregnation: Interactions with cellular matrix. Journal of Food Engineering 56 (2–3):279–84. doi: 10.1016/S0260-8774(02)00269-8.
  • Guo, M., G. B. Ding, S. Guo, Z. Li, L. Zhao, K. Li, and X. Guo. 2015. Isolation and antitumor efficacy evaluation of a polysaccharide from Nostoc commune Vauch. Food & Function 6 (9):3035–44. doi: 10.1039/c5fo00471c.
  • Guzik, P., P. Kulawik, M. Zając, and W. Migdał. 2021. Microwave applications in the food industry: An overview of recent developments. Critical Reviews in Food Science and Nutrition. 5:1–20. doi: 10.1080/10408398.2021.1922871.
  • Hadiyanto, H., M. Christwardana, M. Suzery, H. Sutanto, A. M. Nilamsari, and A. Yunanda. 2019. Effects of carrageenan and chitosan as coating materials on the thermal degradation of microencapsulated phycocyanin from Spirulina sp. International Journal of Food Engineering 15 (5–6):1–4. doi: 10.1515/ijfe-2018-0290.
  • Hamedi, F., M. Mohebbi, F. Shahidi, and E. Azarpazhooh. 2018. Ultrasound-Assisted osmotic treatment of model food impregnated with pomegranate peel phenolic compounds: Mass transfer, texture, and phenolic evaluations. Food and Bioprocess Technology 11 (5):1061–74. doi: 10.1007/s11947-018-2071-z.
  • Hao, S., S. Li, J. Wang, L. Zhao, C. Zhang, W. Huang, and C. Wang. 2018. Phycocyanin reduces proliferation of melanoma cells through downregulating GRB2/ERK signaling. Journal of Agricultural and Food Chemistry 66 (41):10921–9. doi: 10.1021/acs.jafc.8b03495.
  • Hao, S., Y. Liu, S. Li, J. Wang, L. Zhao, C. Wang, and B. Sun. 2020. Insight into the potential antineoplastic mechanism of phycocyanin in non-small cell lung carcinoma A549 cells based on micro-RNA sequencing. Journal of Functional Foods 74:104175. doi: 10.1016/j.jff.2020.104175.
  • Hao, Z., D. Li, Y. Li, Z. Wang, Y. Xiao, G. Wang, Y. Liu, C. Hu, and Q. Liu. 2011. Nostoc sphaeroides Kützing, an excellent candidate producer for CELSS. Advances in Space Research 48 (10):1565–71. doi: 10.1016/j.asr.2011.06.035.
  • He, H., S. Liu, H. Li, and T. Chen. 2017. Selenium–phycocyanin from selenium-enriched cultures of Nostoc sp. isolated from rice field prevents human kidney cells from paraquat-induced damage. RSC Advances 7 (68):43266–72. doi: 10.1039/C7RA08250A.
  • Hodgson, D. A. 2002. The Ecology of cyanobacteria: Their diversity in time and space. Journal of Paleolimnology 28 (3):383–4. doi: 10.1023/A:1021694308518.
  • Hori, K., G. Ishibashi, and T. Okita. 1994. Hypocholesterolemic effect of blue-green alga, ishikurage (Nostoc commune) in rats fed atherogenic diet. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 45 (1):63–70. doi: 10.1007/BF01091230.
  • Hosseini, S. M., K. Khosravi-Darani, and M. R. Mozafari. 2013. Nutritional and medical applications of spirulina microalgae. Mini Reviews in Medicinal Chemistry 13 (8):1231–7. doi: 10.2174/1389557511313080009.
  • Jiang, J., N. Zhang, X. Yang, L. Song, and S. Yang. 2016. Toxic metal biosorption by macrocolonies of cyanobacterium Nostoc sphaeroides Kützing. Journal of Applied Phycology 28 (4):2265–77. doi: 10.1007/s10811-015-0753-8.
  • Jiang, L., Y. Wang, Q. Yin, G. Liu, H. Liu, Y. Huang, and B. Li. 2017. Phycocyanin: A potential drug for cancer treatment. Journal of Cancer 8 (17):3416–29. doi: 10.7150/jca.21058.
  • Johnson, H. E., S. R. King, S. A. Banack, C. Webster, W. J. Callanaupa, and P. A. Cox. 2008. Cyanobacteria (Nostoc commune) used as a dietary item in the Peruvian highlands produce the neurotoxic amino acid BMAA. Journal of Ethnopharmacology 118 (1):159–65. doi: 10.1016/j.jep.2008.04.008.
  • Kadam, S. U., B. K. Tiwari, and C. P. O’Donnell. 2015. Effect of ultrasound pre-treatment on the drying kinetics of brown seaweed Ascophyllum nodosum. Ultrasonics Sonochemistry 23:302–7. doi: 10.1016/j.ultsonch.2014.10.001.
  • Kim, E., Y. Choi, and T. Nam. 2018. Identification and antioxidant activity of synthetic peptides from phycobiliproteins of Pyropia yezoensis. International Journal of Molecular Medicine 42 (2):789–98. doi: 10.3892/ijmm.2018.3650.
  • Kim, Y. R., J. M. Do, K. H. Kim, A. R. Stoica, S. W. Jo, U. K. Kim, and H. S. Yoon. 2019. C-phycocyanin from limnothrix species KNUA002 alleviates cisplatin-induced ototoxicity by blocking the mitochondrial apoptotic pathway in auditory cells. Marine Drugs 17 (4):235. doi: 10.3390/md17040235.
  • Ku, C. S., B. Kim, T. X. Pham, Y. Yang, C. J. Wegner, Y. K. Park, M. Balunas, and J. Y. Lee. 2015a. Blue-Green algae inhibit the development of atherosclerotic lesions in apolipoprotein E Knockout mice. Journal of Medicinal Food 18 (12):1299–306. doi: 10.1089/jmf.2015.0025.
  • Ku, C. S., B. Kim, T. X. Pham, Y. Yang, C. L. Weller, T. P. Carr, Y. K. Park, and J. Y. Lee. 2015b. Hypolipidemic effect of a blue-green alga (Nostoc commune) is attributed to its nonlipid fraction by decreasing intestinal cholesterol absorption in C57BL/6J mice. Journal of Medicinal Food 18 (11):1214–22. doi: 10.1089/jmf.2014.0121.
  • Ku, C. S., T. X. Pham, Y. Park, B. Kim, M. S. Shin, I. Kang, and J. Lee. 2013. Edible blue-green algae reduce the production of pro-inflammatory cytokines by inhibiting NF-κB pathway in macrophages and splenocytes. Biochimica et Biophysica Acta 1830 (4):2981–8. doi: 10.1016/j.bbagen.2013.01.018.
  • Larrosa, A., A. A. Comitre, L. B. Vaz, and L. Pinto. 2017. Influence of air temperature on physical characteristics and bioactive compounds in vacuum drying of Arthrospira Spirulina. Journal of Food Process Engineering 40 (2):e12359–9. doi: 10.1111/jfpe.12359.
  • Li, C., Y. Yu, W. Li, B. Liu, X. Jiao, X. Song, C. Lv, and S. Qin. 2017. Phycocyanin attenuates pulmonary fibrosis via the TLR2-MyD88-NF-κB signaling pathway. Scientific Reports 7 (1):5843. doi: 10.1038/s41598-017-06021-5.
  • Li, H., J. Xu, Y. Liu, S. Ai, F. Qin, Z. Li, H. Zhang, and Z. Huang. 2011b. Antioxidant and moisture-retention activities of the polysaccharide from Nostoc commune. Carbohydrate Polymers 83 (4):1821–7. doi: 10.1016/j.carbpol.2010.10.046.
  • Li, H., L. Su, S. Chen, L. Zhao, H. Wang, F. Ding, H. Chen, R. Shi, Y. Wang, and Z. Huang. 2018. Physicochemical characterization and functional analysis of the polysaccharide from the edible microalga Nostoc sphaeroides. Molecules 23 (2):508. doi: 10.3390/molecules23020508.
  • Li, H., Z. Li, S. Xiong, H. Zhang, N. Li, S. Zhou, Y. Liu, and Z. Huang. 2011a. Pilot-scale isolation of bioactive extracellular polymeric substances from cell-free media of mass microalgal cultures using tangential-flow ultrafiltration. Process Biochemistry 46 (5):1104–9. doi: 10.1016/j.procbio.2011.01.028.
  • Li, L., M. Zhang, and L. Zhou. 2021. A promising pulse-spouted microwave freeze drying method used for Chinese yam cubes dehydration: Quality, energy consumption, and uniformity. Drying Technology 39 (2):148–61. doi: 10.1080/07373937.2019.1624564.
  • Li, L., Y. Yu, Y. Xu, J. Wu, Y. Yu, J. Peng, K. An, B. Zou, and W. Yang. 2021. Effect of ultrasound-assisted osmotic dehydration pretreatment on the drying characteristics and quality properties of Sanhua plum (Prunus salicina L.). LWT - Food Science & Technology 138:110653. doi: 10.1016/j.lwt.2020.110653.
  • Li, W., H. N. Su, Y. Pu, J. Chen, L. N. Liu, Q. Liu, and S. Qin. 2019a. Phycobiliproteins: Molecular structure, production, applications, and prospects. Biotechnology Advances 37 (2):340–53. doi: 10.1016/j.biotechadv.2019.01.008.
  • Li, Y., J. Ma, Q. Fang, T. Guo, and X. Li. 2019b. Protective effects of Nostoc sphaeroides Kütz against cyclophosphamide-induced immunosuppression and oxidative stress in mice. Toxin Reviews 40 (4):1118–27. doi: 10.1080/15569543.2019.1650067.
  • Liao, H. F., T. J. Wu, J. L. Tai, M. C. Chi, and L. L. Lin. 2015. Immunomodulatory potential of the polysaccharide-rich extract from edible cyanobacterium Nostoc commune. Medical Sciences (Basel, Switzerland) 3 (4):112–23. doi: 10.3390/medsci3040112.
  • Liu, Q., W. Li, and S. Qin. 2020. Therapeutic effect of phycocyanin on acute liver oxidative damage caused by X-ray. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 130:110553. doi: 10.1016/j.biopha.2020.110553.
  • Liu, Y., P. Su, J. Xu, S. Chen, J. Zhang, S. Zhou, Y. Wang, Q. Tang, and Y. Wang. 2018. Structural characterization of a bioactive water-soluble heteropolysaccharide from Nostoc sphaeroids kütz. Carbohydrate Polymers 200:552–9. doi: 10.1016/j.carbpol.2018.08.034.
  • Liu, Y., Y. Sun, S. Miao, F. Li, and D. Luo. 2015. Drying characteristics of ultrasound assisted hot air drying of Flos Lonicerae. Journal of Food Science and Technology 52 (8):4955–64. doi: 10.1007/s13197-014-1612-3.
  • Lv, W., M. Zhang, B. Bhandari, Y. Wang, and C. Liu. 2017. Freeze drying and vacuum impregnating characteristics of Nostoc sphaeroides Kützing. Drying Technology 35 (11):1379–87. doi: 10.1080/07373937.2017.1323336.
  • Ma, R., F. Lu, Y. Bi, and Z. Hu. 2015. Effects of light intensity and quality on phycobiliprotein accumulation in the cyanobacterium Nostoc sphaeroides Kützing. Biotechnology Letters 37 (8):1663–9. doi: 10.1007/s10529-015-1831-3.
  • Manirafasha, E., T. Ndikubwimana, X. Zeng, Y. Lu, and K. Jing. 2016. Phycobiliprotein: Potential microalgae derived pharmaceutical and biological reagent. Biochemical Engineering Journal 109:282–96. doi: 10.1016/j.bej.2016.01.025.
  • Marçal, S., A. S. Sousa, O. Taofiq, F. Antunes, A. Morais, A. C. Freitas, L. Barros, I. Ferreira, and M. Pintado. 2021. Impact of postharvest preservation methods on nutritional value and bioactive properties of mushrooms. Trends in Food Science & Technology 110:418–31. doi: 10.1016/j.tifs.2021.02.007.
  • Marra, F., L. Zhang, and J. G. Lyng. 2009. Radio frequency treatment of foods: Review of recent advances. Journal of Food Engineering 91 (4):497–508. doi: 10.1016/j.jfoodeng.2008.10.015.
  • Mauliasari, E. S., T. W. Agustini, and U. Amalia. 2019. Stabilization of phycocyanin from Spirulina platensis using microencapsulation and pH treatment. Jurnal Pengolahan Hasil Perikanan Indonesia 22 (3):526–34. doi: 10.17844/jphpi.v22i3.29121.
  • Michalak, I., M. Mironiuk, K. Godlewska, J. Trynda, and K. Marycz. 2020. Arthrospira (Spirulina) platensis: An effective biosorbent for nutrients. Process Biochemistry 88:129–37. doi: 10.1016/j.procbio.2019.10.004.
  • Min, S. K., J. S. Park, L. Luo, Y. S. Kwon, H. C. Lee, H. J. Shim, I. D. Kim, J. K. Lee, and H. S. Shin. 2015. Assessment of C-phycocyanin effect on astrocytes-mediated neuroprotection against oxidative brain injury using 2D and 3D astrocyte tissue model. Scientific Reports 5 (5):14418. doi: 10.1038/srep14418.
  • Moreira, I., T. S. Passos, C. Chiapinni, G. K. Silveira, J. C. Souza, L. G. Coca-Vellarde, R. Deliza, and K. G. de Lima Araujo. 2012. Colour evaluation of a phycobiliprotein-rich extract obtained from Nostoc PCC9205 in acidic solutions and yogurt. Journal of the Science of Food and Agriculture 92 (3):598–605. doi: 10.1002/jsfa.4614.
  • Mothibe, K. J., M. Zhang, J. Nsor-Atindana, and Y.-C. Wang. 2011. Use of ultrasound pretreatment in drying of fruits: Drying rates, quality attributes, and shelf life extension. Drying Technology 29 (14):1611–21. doi: 10.1080/07373937.2011.602576.
  • Mysliwa-Kurdziel, B., and K. Solymosi. 2017. Phycobilins and phycobiliproteins used in food industry and medicine. Mini-Reviews in Medicinal Chemistry 17 (13):1173–93. doi: 10.2174/1389557516666160912180155.
  • Neri, L., L. D. Biase, G. Sacchetti, C. D. Mattia, V. Santarelli, D. Mastrocola, and P. Pittia. 2016. Use of vacuum impregnation for the production of high quality fresh-like apple products. Journal of Food Engineering 179:98–108. doi: 10.1016/j.jfoodeng.2016.02.002.
  • Oliveira, E. G., J. H. Duarte, K. Moraes, V. T. Crexi, and L. Pinto. 2010. Optimisation of Spirulina platensis convective drying: Evaluation of phycocyanin loss and lipid oxidation. International Journal of Food Science & Technology 45 (8):1572–8. doi: 10.1111/j.1365-2621.2010.02299.x.
  • Orsat, V., G. Raghavan, and K. Krishnaswamy. 2017. Microwave technology for food processing: An overview of current and future applications: The microwave processing of foods 2:100–16. doi: 10.1016/b978-0-08-100528-6.00005-x.
  • Ovissipour, M., C. Liu, G. Ünlü, B. Rasco, J. Tang, and S. S. Sablani. 2018. Quality changes in chum salmon (Oncorhynchus keta) caviar (ikura) affected by thermal pasteurization, storage time, and packaging material. Journal of Aquatic Food Product Technology 27 (2):200–10. doi: 10.1080/10498850.2017.1417340.
  • Pagels, F., A. C. Guedes, H. M. Amaro, A. Kijjoa, and V. Vasconcelos. 2019. Phycobiliproteins from cyanobacteria: Chemistry and biotechnological applications. Biotechnology Advances 37 (3):422–43. doi: 10.1016/j.biotechadv.2019.02.010.
  • Pan, R., R. Lu, Y. Zhang, M. Zhu, W. Zhu, R. Yang, E. Zhang, J. Ying, T. Xu, H. Yi, et al. 2015. Spirulina phycocyanin induces differential protein expression and apoptosis in SKOV-3 cells. International Journal of Biological Macromolecules 81:951–9. doi: 10.1016/j.ijbiomac.2015.09.039.
  • Park, Y. K., H. E. Rasmussen, S. J. Ehlers, K. R. Blobaum, F. Lu, V. L. Schlegal, T. P. Carr, and J. Y. Lee. 2008. Repression of proinflammatory gene expression by lipid extract of Nostoc commune var sphaeroides Kützing, a blue-green alga, via inhibition of nuclear factor-kappaB in RAW 264.7 macrophages. Nutrition Research (New York, NY) 28 (2):83–91. doi: 10.1016/j.nutres.2007.11.008.
  • Patel, S. N., R. R. Sonani, K. Jakharia, B. Bhastana, H. M. Patel, M. G. Chaubey, N. K. Singh, and D. Madamwar. 2018. Antioxidant activity and associated structural attributes of Halomicronema phycoerythrin. International Journal of Biological Macromolecules 111:359–69. doi: 10.1016/j.ijbiomac.2017.12.170.
  • Prabakaran, G., P. Sampathkumar, M. Kavisri, and M. Moovendhan. 2020. Extraction and characterization of phycocyanin from Spirulina platensis and evaluation of its anticancer, antidiabetic and antiinflammatory effect. International Journal of Biological Macromolecules 153:256–63. doi: 10.1016/j.ijbiomac.2020.03.009.
  • Qin, H., J. Lu, Z. Wang, and D. Li. 2013. The influence of soil and water physicochemical properties on the distribution of Nostoc sphaeroides (Cyanophyceae) in paddy fields and biochemical comparison with indoor cultured biomass. Journal of Applied Phycology 25 (6):1737–45. doi: 10.1007/s10811-013-0040-5.
  • Qiu, B., J. Liu, Z. Liu, and S. Liu. 2002. Distribution and ecology of the edible cyanobacterium Ge-Xian-Mi (Nostoc) in rice fields of Hefeng County in China. Journal of Applied Phycology 14 (5):423–9. doi: 10.1023/A:1022198605743.
  • Qiu, L., M. Zhang, Y. Wang, and Y. Liu. 2019. Physicochemical and nutritional properties of wasabi (Eutrema yunnanense) dried by four different drying methods. Drying Technology 37 (3):363–72. doi: 10.1080/07373937.2018.1458318.
  • Qu, H., M. H. Masud, M. Islam, M. I. H. Khan, A. A. Ananno, and A. Karim. 2021. Sustainable food drying technologies based on renewable energy sources. Critical Reviews in Food Science and Nutrition. 4:1–15. doi: 10.1080/10408398.2021.1907529.
  • Quan, Y., S. Yang, J. Wan, T. Su, J. Zhang, and Z. Wang. 2015. Optimization for the extraction of polysaccharides from Nostoc commune and its antioxidant and antibacterial activities. Journal of the Taiwan Institute of Chemical Engineers 52:14–21. doi: 10.1016/j.jtice.2015.02.004.
  • Ran, X. L., M. Zhang, Y. Wang, and B. Adhikari. 2019. Novel technologies applied for recovery and value addition of high value compounds from plant byproducts: A review. Critical Reviews in Food Science and Nutrition 59 (3):450–61. doi: 10.1080/10408398.2017.1377149.
  • Rasmussen, H. E., K. R. Blobaum, E. D. Jesch, C. S. Ku, Y. K. Park, F. Lu, T. P. Carr, and J. Y. Lee. 2009. Hypocholesterolemic effect of Nostoc commune var. sphaeroides Kützing, an edible blue-green alga. European Journal of Nutrition 48 (7):387–94. doi: 10.1007/s00394-009-0025-y.
  • Rasmussen, H. E., K. R. Blobaum, Y.-K. Park, S. J. Ehlers, F. Lu, and J.-Y. Lee. 2008. Lipid extract of Nostoc commune var. sphaeroides Kutzing, a blue-green alga, inhibits the activation of sterol regulatory element binding proteins in HepG2 cells. The Journal of Nutrition 138 (3):476–81. doi: 10.1093/jn/138.3.476.
  • Ravi, M., S. Tentu, G. Baskar, S. Rohan Prasad, S. Raghavan, P. Jayaprakash, J. Jeyakanthan, S. K. Rayala, and G. Venkatraman. 2015. Molecular mechanism of anti-cancer activity of phycocyanin in triple-negative breast cancer cells. BMC Cancer 15:768. doi: 10.1186/s12885-015-1784-x.
  • Safaei, M., H. Maleki, H. Soleimanpour, A. Norouzy, H. S. Zahiri, H. Vali, and K. A. Noghabi. 2019. Development of a novel method for the purification of C-phycocyanin pigment from a local cyanobacterial strain Limnothrix sp. NS01 and evaluation of its anticancer properties. Scientific Reports 9 (1):9474. doi: 10.1038/s41598-019-45905-6.
  • Shebis, Y., D. Iluz, Y. Kinel-Tahan, Z. Dubinsky, and Y. Yehoshua. 2013. Natural antioxidants: Function and sources. Food and Nutrition Sciences 4 (6):643–9. doi: 10.4236/fns.2013.46083.
  • Shi, H., M. Zhang, and S. Yi. 2020. Effects of ultrasonic impregnation pretreatment on drying characteristics of Nostoc sphaeroides Kützing. Drying Technology 38 (8):1051–61. doi: 10.1080/07373937.2019.1611596.
  • Strasky, Z., L. Zemankova, I. Nemeckova, J. Rathouska, R. J. Wong, L. Muchova, I. Subhanova, J. Vanikova, K. Vanova, L. Vitek, et al. 2013. Spirulina platensis and phycocyanobilin activate atheroprotective heme oxygenase-1: A possible implication for atherogenesis. Food & Function 4 (11):1586–94. doi: 10.1039/c3fo60230c.
  • Tan, L. T. 2007. Bioactive natural products from marine cyanobacteria for drug discovery. Phytochemistry 68 (7):954–79. doi: 10.1016/j.phytochem.2007.01.012.
  • Tang, J., Z. Y. Hu, X. W. Chen, J. Tang, Z. Y. Hu, and X. W. Chen. 2007. Free radical scavenging and antioxidant enzymes activation of polysaccharide extract from Nostoc sphaeroides. The American Journal of Chinese Medicine 35 (5):887–96. doi: 10.1142/S0192415X07005351.
  • Tang, X., Y. Gao, C. Ren, L. Zhao, L. Song, and N. A. Dongchen. 2019. Preparation and performance test of Gexianmi (Nostoc sphaeroides kützing) moisturizing lotion. Agricultural Biotechnology 6:95–6.
  • Uan, D. G., M. Cheng, Y. Wang, and J. Tang. 2004. Dielectric properties of mashed potatoes relevant to microwave and radio-frequency pasteurization and sterilization processes. Journal of Food Science 69 (1):FEP30–37. doi: 10.1111/j.1365-2621.2004.tb17864.x.
  • Ukuku, D. O., and D. J. Geveke. 2010. A combined treatment of UV-light and radio frequency electric field for the inactivation of Escherichia coli K-12 in apple juice. International Journal of Food Microbiology 138 (1–2):50–5. doi: 10.1016/j.ijfoodmicro.2010.01.004.
  • Venugopal, V. C., A. Thakur, L. K. Chennabasappa, G. Mishra, K. Singh, P. Rathee, and A. Ranjan. 2020. Phycocyanin extracted from Oscillatoria minima shows antimicrobial, algicidal, and antiradical activities: In silico and In vitro analysis. Anti-Inflammatory & anti-Allergy Agents in Medicinal Chemistry 19 (3):240–53. doi: 10.2174/1871523018666190405114524.
  • Viana Carlos, T. A., K. M. dos Santos Pires Cavalcante, F. de Cássia Evangelista de Oliveira, C. do Ó Pessoa, H. B. Sant’Ana, F. X. Feitosa, and M. Rocha. 2021. Pressurized extraction of phycobiliproteins from Arthrospira platensis and evaluation of its effect on antioxidant and anticancer activities of these biomolecules. Journal of Applied Phycology 33 (2):929–38. doi: 10.1007/s10811-020-02358-z.
  • Vigliante, I., G. Mannino, and M. E. Maffei. 2019. OxiCyan®, a phytocomplex of bilberry (Vaccinium myrtillus) and spirulina (Spirulina platensis), exerts both direct antioxidant activity and modulation of ARE/Nrf2 pathway in HepG2 cells. Journal of Functional Foods 61:103508. doi: 10.1016/j.jff.2019.103508.
  • Wang, C., Y. Zhao, L. Wang, S. Pan, Y. Liu, S. Li, and D. Wang. 2021. C-phycocyanin mitigates cognitive impairment in doxorubicin-induced chemobrain: Impact on neuroinflammation, oxidative stress, and brain mitochondrial and synaptic alterations. Neurochemical Research 46 (2):149–58. doi: 10.1007/s11064-020-03164-2.
  • Wang, D., M. Zhang, Y. Wang, and A. Martynenko. 2018. Effect of pulsed-spouted bed microwave freeze drying on quality of apple cuboids. Food and Bioprocess Technology 11 (5):941–52. doi: 10.1007/s11947-018-2061-1.
  • Wang, J., M. Zhang, and Z. Fang. 2019. Recent development in efficient processing technology for edible algae: A review. Trends in Food Science & Technology 88:251–9. doi: 10.1016/j.tifs.2019.03.032.
  • Wang, Y., T. D. Wig, J. Tang, and L. M. Hallberg. 2003. Sterilization of foodstuffs using radio frequency heating. Journal of Food Science 68 (2):539–44. doi: 10.1111/j.1365-2621.2003.tb05708.x.
  • Wei, F., Y. Liu, C. Bi, and B. Zhang. 2019. Nostoc sphaeroids Kutz powder ameliorates diet-induced hyperlipidemia in C57BL/6j mice. Food & Nutrition Research 63:1–10. doi: 10.29219/fnr.v63.3618.
  • Wei, F., Y. Liu, C. Bi, S. Chen, Y. Wang, and B. Zhang. 2020. Nostoc sphaeroids Kütz ameliorates hyperlipidemia and maintains the intestinal barrier and gut microbiota composition of high-fat diet mice. Food Science & Nutrition 8 (5):2348–59. doi: 10.1002/fsn3.1521.
  • Wen, X., Z. Han, S. J. Liu, X. Hao, X. J. Zhang, X. Y. Wang, C. J. Zhou, Y. Z. Ma, and C. G. Liang. 2020. Phycocyanin improves reproductive ability in obese female mice by restoring ovary and oocyte quality. Frontiers in Cell and Developmental Biology 8:595373. doi: 10.3389/fcell.2020.595373.
  • Wray, D., and H. S. Ramaswamy. 2015. Novel concepts in microwave drying of foods. Drying Technology 33 (7):769–83. doi: 10.1080/07373937.2014.985793.
  • Wu, Q., L. Liu, A. Miron, B. Klimova, D. Wan, and K. Kuca. 2016. The antioxidant, immunomodulatory, and anti-inflammatory ­activities of Spirulina: An overview. Archives of Toxicology 90 (8):1817–40. doi: 10.1007/s00204-016-1744-5.
  • Xia, D., B. Liu, X. Luan, J. Sun, N. Liu, S. Qin, and Z. Du. 2016. Protective effects of C-phycocyanin on alcohol-induced acute liver injury in mice. Chinese Journal of Oceanology and Limnology 34 (2):399–404. doi: 10.1007/s00343-015-4312-6.
  • Xie, J., and Y. Zhao. 2003. Nutritional enrichment of fresh apple (Royal Gala) by vacuum impregnation. International Journal of Food Sciences and Nutrition 54 (5):387–98. doi: 10.1080/09637480310001595261.
  • Xu, B., A. Ren, J. Chen, H. Li, B. Wei, J. Wang, S. M. R. Azam, B. Bhandari, C. Zhou, and H. Ma. 2021. Effect of multi-mode dual-frequency ultrasound irradiation on the degradation of waxy corn starch in a gelatinized state. Food Hydrocolloids. 113:106440. doi: 10.1016/j.foodhyd.2020.106440.
  • Xu, B., E. Sylvain Tiliwa, W. Yan, S. M. Roknul Azam, B. Wei, C. Zhou, H. Ma, and B. Bhandari. 2022b. Recent development in high quality drying of fruits and vegetables assisted by ultrasound: A review. Food Research International (Ottawa, ON) 152:110744. doi: 10.1016/j.foodres.2021.110744.
  • Xu, B., J. Yuan, L. Wang, F. Lu, B. Wei, R. S. M. Azam, X. Ren, C. Zhou, H. Ma, and B. Bhandari. 2020. Effect of multi-frequency power ultrasound (MFPU) treatment on enzyme hydrolysis of casein. Ultrasonics Sonochemistry 63:104930. doi: 10.1016/j.lwt.2021.113037.
  • Xu, B., M. Feng, E. S. Tiliwa, W. Yan, B. Wei, C. Zhou, H. Ma, B. Wang, and L. Chang. 2022a. Multi-frequency power ultrasound green extraction of polyphenols from Pingyin rose: Optimization using the response surface methodology and exploration of the underlying mechanism. LWT 156:113037. doi: 10.1016/j.lwt.2021.113037.
  • Xu, G., H. Yin, X. He, D. Wang, Y. Zhao, and J. Yue. 2020. Optimization of microwave vacuum drying of okra and the study of the product quality. Journal of Food Process Engineering 43 (2):13337. doi: 10.1016/j.ultsonch.2019.104930.
  • Xu, J., M. Zhang, and B. Adhikari. 2018. Comparative study on the effect of radio frequency and high-pressure pasteurization on the texture, water distribution, and rheological properties of Nostoc sphaeroides. Journal of Applied Phycology 30 (2):1041–8. doi: 10.1007/s10811-017-1325-x.
  • Xu, J., M. Zhang, Y. An, A. S. Roknul, and B. Adhikari. 2018. Effects of radio frequency and high pressure steam sterilisation on the colour and flavour of prepared Nostoc sphaeroides. Journal of the Science of Food and Agriculture 98 (5):1719–24. doi: 10.1002/jsfa.8644.
  • Xu, J., S. Zhu, M. Zhang, P. Cao, and B. Adhikari. 2021. Combined radio frequency and hot water pasteurization of Nostoc sphaeroides: Effect on temperature uniformity, nutrients content, and phycocyanin stability. LWT 141:110880. doi: 10.1016/j.lwt.2021.110880.
  • Yang, Y., and D. J. Geveke. 2020. Shell egg pasteurization using radio frequency in combination with hot air or hot water. Food Microbiology 85:103281. doi: 10.1016/j.fm.2019.103281.
  • Yang, Y., B. Kim, Y. K. Park, and J. Y. Lee. 2014. Effects of long-term supplementation of blue-green algae on lipid metabolism in C57BL/6J mice. Journal of Nutritional Health & Food Science 2 (1):6. doi: 10.15226/jnhfs.2014.00108.
  • Yang, Y., Y. Park, D. A. Cassada, D. D. Snow, D. G. Rogers, and J. Lee. 2011. In vitro and in vivo safety assessment of edible blue-green algae, Nostoc commune var. sphaeroides Kützing and Spirulina plantensis. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 49 (7):1560–4. doi: 10.1016/j.fct.2011.03.052.
  • Yang, Z., X. Li, Z. Tao, N. Luo, and F. Yu. 2018. Ultrasound-assisted heat pump drying of pea seed. Drying Technology 36 (16):1958–69. doi: 10.1080/07373937.2018.1430041.
  • Yilmaz, F. M., and S. E. Bilek. 2018. Ultrasound-assisted vacuum impregnation on the fortification of fresh-cut apple with calcium and black carrot phenolics. Ultrasonics Sonochemistry 48:509–16. doi: 10.1016/j.ultsonch.2018.07.007.
  • Zhang, L., C. Zhou, B. Wang, A. Yagoub, H. Ma, X. Zhang, and M. Wu. 2017a. Study of ultrasonic cavitation during extraction of the peanut oil at varying frequencies. Ultrasonics Sonochemistry 37:106–13. doi: 10.1016/j.ultsonch.2016.12.034.
  • Zhang, L., R. Lan, B. Zhang, F. Erdogdu, and S. Wang. 2021. A comprehensive review on recent developments of radio frequency treatment for pasteurizing agricultural products. Critical Reviews in Food Science and Nutrition 61 (3):380–94. doi: 10.1080/10408398.2020.1733929.
  • Zhang, Z., L. Niu, D. Li, C. Liu, R. Ma, J. Song, and J. Zhao. 2017b. Low intensity ultrasound as a pretreatment to drying of daylilies: Impact on enzyme inactivation, color changes and nutrition quality parameters. Ultrasonics Sonochemistry 36:50–8. doi: 10.1016/j.ultsonch.2016.11.007.
  • Zhao, L., H. Fan, M. Zhang, B. Chitrakar, B. Bhandari, and B. Wang. 2019. Edible flowers: Review of flower processing and extraction of bioactive compounds by novel technologies. Food Research International (Ottawa, ON) 126:108660. doi: 10.1016/j.foodres.2019.108660.
  • Zhao, L., M. Zhang, B. Bhandari, and B. Bai. 2020. Microbial and quality improvement of boiled gansi dish using carbon dots combined with radio frequency treatment. International Journal of Food Microbiology 334:108835. doi: 10.1016/j.ijfoodmicro.2020.108835.
  • Zhong, G., W. Pan, Z. Huang, K. Guo, J. Hu, P. Liu, S. Chen, Y. Wang, L. Ai, and Z. Huang. 2021. Physicochemical and geroprotective comparison of Nostoc sphaeroides polysaccharides across colony growth stages and with derived oligosaccharides. Journal of Applied Phycology 33 (2):939–52. doi: 10.1007/s10811-021-02383-6.
  • Zhou, X., and S. Wang. 2019. Recent developments in radio frequency drying of food and agricultural products: A review. Drying Technology 37 (3):271–86. doi: 10.1080/07373937.2018.1452255.
  • Zhu, C., Q. Ling, Z. Cai, Y. Wang, Y. Zhang, P. R. Hoffmann, W. Zheng, T. Zhou, and Z. Huang. 2016. Selenium-containing phycocyanin from se-enriched Spirulina platensis reduces inflammation in dextran sulfate sodium-induced colitis by inhibiting NF-κB Activation. Journal of Agricultural and Food Chemistry 64 (24):5060–70. doi: 10.1021/acs.jafc.6b01308.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.